Properties

Label 486.2.g.b.73.3
Level $486$
Weight $2$
Character 486.73
Analytic conductor $3.881$
Analytic rank $0$
Dimension $90$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [486,2,Mod(19,486)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(486, base_ring=CyclotomicField(54))
 
chi = DirichletCharacter(H, H._module([52]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("486.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 486 = 2 \cdot 3^{5} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 486.g (of order \(27\), degree \(18\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.88072953823\)
Analytic rank: \(0\)
Dimension: \(90\)
Relative dimension: \(5\) over \(\Q(\zeta_{27})\)
Twist minimal: no (minimal twist has level 162)
Sato-Tate group: $\mathrm{SU}(2)[C_{27}]$

Embedding invariants

Embedding label 73.3
Character \(\chi\) \(=\) 486.73
Dual form 486.2.g.b.253.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.893633 + 0.448799i) q^{2} +(0.597159 - 0.802123i) q^{4} +(0.379535 - 1.26773i) q^{5} +(-0.768169 + 1.78082i) q^{7} +(-0.173648 + 0.984808i) q^{8} +(0.229793 + 1.30322i) q^{10} +(2.10911 + 0.499867i) q^{11} +(-1.69934 + 1.11767i) q^{13} +(-0.112768 - 1.93615i) q^{14} +(-0.286803 - 0.957990i) q^{16} +(7.02180 + 2.55572i) q^{17} +(2.13356 - 0.776551i) q^{19} +(-0.790236 - 1.06147i) q^{20} +(-2.10911 + 0.499867i) q^{22} +(-1.34938 - 3.12822i) q^{23} +(2.71434 + 1.78525i) q^{25} +(1.01697 - 1.76145i) q^{26} +(0.969715 + 1.67960i) q^{28} +(0.282496 - 4.85027i) q^{29} +(5.07563 + 0.593256i) q^{31} +(0.686242 + 0.727374i) q^{32} +(-7.42191 + 0.867497i) q^{34} +(1.96605 + 1.64972i) q^{35} +(4.70814 - 3.95060i) q^{37} +(-1.55810 + 1.65149i) q^{38} +(1.18257 + 0.593908i) q^{40} +(6.98634 + 3.50867i) q^{41} +(-4.77609 + 5.06236i) q^{43} +(1.66043 - 1.39326i) q^{44} +(2.60979 + 2.18988i) q^{46} +(-4.18562 + 0.489229i) q^{47} +(2.22247 + 2.35568i) q^{49} +(-3.22684 - 0.377163i) q^{50} +(-0.118264 + 2.03051i) q^{52} +(5.39818 + 9.34993i) q^{53} +(1.43418 - 2.48407i) q^{55} +(-1.62037 - 1.06573i) q^{56} +(1.92435 + 4.46115i) q^{58} +(-6.72062 + 1.59282i) q^{59} +(-5.37986 - 7.22641i) q^{61} +(-4.80200 + 1.74779i) q^{62} +(-0.939693 - 0.342020i) q^{64} +(0.771954 + 2.57851i) q^{65} +(0.661912 + 11.3646i) q^{67} +(6.24313 - 4.10617i) q^{68} +(-2.49732 - 0.591876i) q^{70} +(-0.518333 - 2.93961i) q^{71} +(1.80390 - 10.2304i) q^{73} +(-2.43432 + 5.64339i) q^{74} +(0.651182 - 2.17510i) q^{76} +(-2.51032 + 3.37195i) q^{77} +(9.16461 - 4.60264i) q^{79} -1.32333 q^{80} -7.81791 q^{82} +(-3.24547 + 1.62994i) q^{83} +(5.90499 - 7.93178i) q^{85} +(1.99609 - 6.66740i) q^{86} +(-0.858516 + 1.99026i) q^{88} +(-1.42927 + 8.10577i) q^{89} +(-0.684990 - 3.88477i) q^{91} +(-3.31501 - 0.785672i) q^{92} +(3.52084 - 2.31569i) q^{94} +(-0.174701 - 2.99951i) q^{95} +(-2.30761 - 7.70796i) q^{97} +(-3.04330 - 1.10767i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 90 q - 18 q^{13} + 9 q^{20} - 27 q^{23} - 18 q^{25} + 27 q^{26} - 18 q^{28} + 27 q^{29} + 54 q^{31} + 27 q^{35} + 18 q^{38} + 9 q^{41} - 36 q^{43} + 18 q^{46} + 27 q^{47} + 36 q^{52} + 27 q^{53} - 54 q^{55}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/486\mathbb{Z}\right)^\times\).

\(n\) \(245\)
\(\chi(n)\) \(e\left(\frac{23}{27}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.893633 + 0.448799i −0.631894 + 0.317349i
\(3\) 0 0
\(4\) 0.597159 0.802123i 0.298579 0.401062i
\(5\) 0.379535 1.26773i 0.169733 0.566948i −0.830222 0.557433i \(-0.811786\pi\)
0.999955 0.00951452i \(-0.00302861\pi\)
\(6\) 0 0
\(7\) −0.768169 + 1.78082i −0.290341 + 0.673085i −0.999489 0.0319744i \(-0.989821\pi\)
0.709148 + 0.705060i \(0.249080\pi\)
\(8\) −0.173648 + 0.984808i −0.0613939 + 0.348182i
\(9\) 0 0
\(10\) 0.229793 + 1.30322i 0.0726671 + 0.412115i
\(11\) 2.10911 + 0.499867i 0.635919 + 0.150716i 0.535916 0.844271i \(-0.319966\pi\)
0.100004 + 0.994987i \(0.468115\pi\)
\(12\) 0 0
\(13\) −1.69934 + 1.11767i −0.471312 + 0.309987i −0.762854 0.646571i \(-0.776202\pi\)
0.291541 + 0.956558i \(0.405832\pi\)
\(14\) −0.112768 1.93615i −0.0301385 0.517458i
\(15\) 0 0
\(16\) −0.286803 0.957990i −0.0717008 0.239497i
\(17\) 7.02180 + 2.55572i 1.70304 + 0.619854i 0.996165 0.0874893i \(-0.0278843\pi\)
0.706870 + 0.707343i \(0.250107\pi\)
\(18\) 0 0
\(19\) 2.13356 0.776551i 0.489471 0.178153i −0.0854813 0.996340i \(-0.527243\pi\)
0.574952 + 0.818187i \(0.305021\pi\)
\(20\) −0.790236 1.06147i −0.176702 0.237352i
\(21\) 0 0
\(22\) −2.10911 + 0.499867i −0.449663 + 0.106572i
\(23\) −1.34938 3.12822i −0.281366 0.652279i 0.717661 0.696393i \(-0.245213\pi\)
−0.999027 + 0.0441139i \(0.985954\pi\)
\(24\) 0 0
\(25\) 2.71434 + 1.78525i 0.542867 + 0.357049i
\(26\) 1.01697 1.76145i 0.199445 0.345449i
\(27\) 0 0
\(28\) 0.969715 + 1.67960i 0.183259 + 0.317414i
\(29\) 0.282496 4.85027i 0.0524582 0.900673i −0.864735 0.502229i \(-0.832513\pi\)
0.917193 0.398444i \(-0.130450\pi\)
\(30\) 0 0
\(31\) 5.07563 + 0.593256i 0.911610 + 0.106552i 0.558952 0.829200i \(-0.311204\pi\)
0.352658 + 0.935752i \(0.385278\pi\)
\(32\) 0.686242 + 0.727374i 0.121312 + 0.128583i
\(33\) 0 0
\(34\) −7.42191 + 0.867497i −1.27285 + 0.148775i
\(35\) 1.96605 + 1.64972i 0.332324 + 0.278853i
\(36\) 0 0
\(37\) 4.70814 3.95060i 0.774013 0.649474i −0.167720 0.985835i \(-0.553640\pi\)
0.941733 + 0.336360i \(0.109196\pi\)
\(38\) −1.55810 + 1.65149i −0.252757 + 0.267907i
\(39\) 0 0
\(40\) 1.18257 + 0.593908i 0.186981 + 0.0939052i
\(41\) 6.98634 + 3.50867i 1.09108 + 0.547962i 0.901006 0.433807i \(-0.142830\pi\)
0.190077 + 0.981769i \(0.439126\pi\)
\(42\) 0 0
\(43\) −4.77609 + 5.06236i −0.728347 + 0.772003i −0.980676 0.195639i \(-0.937322\pi\)
0.252329 + 0.967641i \(0.418803\pi\)
\(44\) 1.66043 1.39326i 0.250319 0.210042i
\(45\) 0 0
\(46\) 2.60979 + 2.18988i 0.384793 + 0.322880i
\(47\) −4.18562 + 0.489229i −0.610535 + 0.0713614i −0.415741 0.909483i \(-0.636478\pi\)
−0.194794 + 0.980844i \(0.562404\pi\)
\(48\) 0 0
\(49\) 2.22247 + 2.35568i 0.317496 + 0.336526i
\(50\) −3.22684 0.377163i −0.456344 0.0533389i
\(51\) 0 0
\(52\) −0.118264 + 2.03051i −0.0164002 + 0.281581i
\(53\) 5.39818 + 9.34993i 0.741497 + 1.28431i 0.951813 + 0.306678i \(0.0992174\pi\)
−0.210316 + 0.977633i \(0.567449\pi\)
\(54\) 0 0
\(55\) 1.43418 2.48407i 0.193384 0.334952i
\(56\) −1.62037 1.06573i −0.216531 0.142415i
\(57\) 0 0
\(58\) 1.92435 + 4.46115i 0.252680 + 0.585777i
\(59\) −6.72062 + 1.59282i −0.874950 + 0.207367i −0.643469 0.765472i \(-0.722505\pi\)
−0.231481 + 0.972839i \(0.574357\pi\)
\(60\) 0 0
\(61\) −5.37986 7.22641i −0.688820 0.925246i 0.310862 0.950455i \(-0.399382\pi\)
−0.999682 + 0.0252087i \(0.991975\pi\)
\(62\) −4.80200 + 1.74779i −0.609855 + 0.221969i
\(63\) 0 0
\(64\) −0.939693 0.342020i −0.117462 0.0427525i
\(65\) 0.771954 + 2.57851i 0.0957491 + 0.319824i
\(66\) 0 0
\(67\) 0.661912 + 11.3646i 0.0808654 + 1.38841i 0.757860 + 0.652417i \(0.226245\pi\)
−0.676994 + 0.735988i \(0.736718\pi\)
\(68\) 6.24313 4.10617i 0.757091 0.497946i
\(69\) 0 0
\(70\) −2.49732 0.591876i −0.298487 0.0707427i
\(71\) −0.518333 2.93961i −0.0615148 0.348868i −0.999994 0.00353124i \(-0.998876\pi\)
0.938479 0.345336i \(-0.112235\pi\)
\(72\) 0 0
\(73\) 1.80390 10.2304i 0.211131 1.19738i −0.676365 0.736567i \(-0.736446\pi\)
0.887496 0.460816i \(-0.152443\pi\)
\(74\) −2.43432 + 5.64339i −0.282984 + 0.656031i
\(75\) 0 0
\(76\) 0.651182 2.17510i 0.0746956 0.249501i
\(77\) −2.51032 + 3.37195i −0.286078 + 0.384269i
\(78\) 0 0
\(79\) 9.16461 4.60264i 1.03110 0.517837i 0.148968 0.988842i \(-0.452405\pi\)
0.882131 + 0.471005i \(0.156108\pi\)
\(80\) −1.32333 −0.147953
\(81\) 0 0
\(82\) −7.81791 −0.863344
\(83\) −3.24547 + 1.62994i −0.356237 + 0.178909i −0.617912 0.786247i \(-0.712021\pi\)
0.261675 + 0.965156i \(0.415725\pi\)
\(84\) 0 0
\(85\) 5.90499 7.93178i 0.640486 0.860323i
\(86\) 1.99609 6.66740i 0.215244 0.718964i
\(87\) 0 0
\(88\) −0.858516 + 1.99026i −0.0915181 + 0.212163i
\(89\) −1.42927 + 8.10577i −0.151502 + 0.859210i 0.810413 + 0.585860i \(0.199243\pi\)
−0.961915 + 0.273350i \(0.911868\pi\)
\(90\) 0 0
\(91\) −0.684990 3.88477i −0.0718065 0.407235i
\(92\) −3.31501 0.785672i −0.345614 0.0819120i
\(93\) 0 0
\(94\) 3.52084 2.31569i 0.363147 0.238846i
\(95\) −0.174701 2.99951i −0.0179240 0.307743i
\(96\) 0 0
\(97\) −2.30761 7.70796i −0.234302 0.782624i −0.991576 0.129527i \(-0.958654\pi\)
0.757274 0.653098i \(-0.226531\pi\)
\(98\) −3.04330 1.10767i −0.307420 0.111892i
\(99\) 0 0
\(100\) 3.05288 1.11116i 0.305288 0.111116i
\(101\) −11.1155 14.9307i −1.10603 1.48566i −0.855678 0.517509i \(-0.826859\pi\)
−0.250357 0.968153i \(-0.580548\pi\)
\(102\) 0 0
\(103\) −17.5969 + 4.17055i −1.73388 + 0.410937i −0.971660 0.236383i \(-0.924038\pi\)
−0.762218 + 0.647320i \(0.775890\pi\)
\(104\) −0.805606 1.86761i −0.0789962 0.183134i
\(105\) 0 0
\(106\) −9.02023 5.93270i −0.876122 0.576235i
\(107\) −2.04335 + 3.53919i −0.197538 + 0.342146i −0.947730 0.319075i \(-0.896628\pi\)
0.750192 + 0.661221i \(0.229961\pi\)
\(108\) 0 0
\(109\) −6.16219 10.6732i −0.590231 1.02231i −0.994201 0.107538i \(-0.965703\pi\)
0.403970 0.914772i \(-0.367630\pi\)
\(110\) −0.166780 + 2.86350i −0.0159019 + 0.273024i
\(111\) 0 0
\(112\) 1.92632 + 0.225154i 0.182020 + 0.0212751i
\(113\) −10.6469 11.2851i −1.00158 1.06161i −0.998100 0.0616189i \(-0.980374\pi\)
−0.00348030 0.999994i \(-0.501108\pi\)
\(114\) 0 0
\(115\) −4.47789 + 0.523390i −0.417565 + 0.0488064i
\(116\) −3.72182 3.12298i −0.345562 0.289961i
\(117\) 0 0
\(118\) 5.29091 4.43960i 0.487068 0.408698i
\(119\) −9.94520 + 10.5413i −0.911675 + 0.966319i
\(120\) 0 0
\(121\) −5.63150 2.82824i −0.511954 0.257113i
\(122\) 8.05082 + 4.04328i 0.728887 + 0.366061i
\(123\) 0 0
\(124\) 3.50682 3.71701i 0.314922 0.333798i
\(125\) 8.36204 7.01659i 0.747924 0.627583i
\(126\) 0 0
\(127\) 13.4767 + 11.3083i 1.19586 + 1.00345i 0.999739 + 0.0228661i \(0.00727913\pi\)
0.196121 + 0.980580i \(0.437165\pi\)
\(128\) 0.993238 0.116093i 0.0877907 0.0102613i
\(129\) 0 0
\(130\) −1.84708 1.95779i −0.161999 0.171709i
\(131\) 4.78234 + 0.558975i 0.417835 + 0.0488379i 0.322413 0.946599i \(-0.395506\pi\)
0.0954217 + 0.995437i \(0.469580\pi\)
\(132\) 0 0
\(133\) −0.256037 + 4.39599i −0.0222013 + 0.381181i
\(134\) −5.69192 9.85870i −0.491707 0.851662i
\(135\) 0 0
\(136\) −3.73622 + 6.47132i −0.320378 + 0.554911i
\(137\) −0.519408 0.341620i −0.0443760 0.0291866i 0.527127 0.849786i \(-0.323269\pi\)
−0.571503 + 0.820600i \(0.693640\pi\)
\(138\) 0 0
\(139\) 1.16974 + 2.71177i 0.0992164 + 0.230010i 0.960594 0.277956i \(-0.0896570\pi\)
−0.861377 + 0.507966i \(0.830398\pi\)
\(140\) 2.49732 0.591876i 0.211062 0.0500227i
\(141\) 0 0
\(142\) 1.78249 + 2.39430i 0.149584 + 0.200926i
\(143\) −4.14278 + 1.50785i −0.346436 + 0.126093i
\(144\) 0 0
\(145\) −6.04164 2.19898i −0.501731 0.182615i
\(146\) 2.97939 + 9.95185i 0.246576 + 0.823621i
\(147\) 0 0
\(148\) −0.357360 6.13564i −0.0293748 0.504347i
\(149\) 1.10328 0.725642i 0.0903846 0.0594469i −0.503512 0.863988i \(-0.667959\pi\)
0.593897 + 0.804541i \(0.297589\pi\)
\(150\) 0 0
\(151\) −1.68015 0.398202i −0.136728 0.0324052i 0.161682 0.986843i \(-0.448308\pi\)
−0.298410 + 0.954438i \(0.596456\pi\)
\(152\) 0.394265 + 2.23599i 0.0319791 + 0.181363i
\(153\) 0 0
\(154\) 0.729978 4.13991i 0.0588233 0.333604i
\(155\) 2.67847 6.20939i 0.215140 0.498750i
\(156\) 0 0
\(157\) −3.15286 + 10.5313i −0.251625 + 0.840487i 0.735082 + 0.677979i \(0.237144\pi\)
−0.986707 + 0.162509i \(0.948041\pi\)
\(158\) −6.12413 + 8.22614i −0.487210 + 0.654436i
\(159\) 0 0
\(160\) 1.18257 0.593908i 0.0934903 0.0469526i
\(161\) 6.60734 0.520731
\(162\) 0 0
\(163\) −18.8589 −1.47714 −0.738570 0.674177i \(-0.764498\pi\)
−0.738570 + 0.674177i \(0.764498\pi\)
\(164\) 6.98634 3.50867i 0.545541 0.273981i
\(165\) 0 0
\(166\) 2.16874 2.91313i 0.168327 0.226103i
\(167\) 2.91724 9.74426i 0.225743 0.754033i −0.767812 0.640676i \(-0.778654\pi\)
0.993554 0.113357i \(-0.0361605\pi\)
\(168\) 0 0
\(169\) −3.51047 + 8.13820i −0.270037 + 0.626015i
\(170\) −1.71712 + 9.73826i −0.131697 + 0.746890i
\(171\) 0 0
\(172\) 1.20855 + 6.85404i 0.0921513 + 0.522616i
\(173\) 18.1978 + 4.31295i 1.38355 + 0.327908i 0.853957 0.520344i \(-0.174196\pi\)
0.529594 + 0.848251i \(0.322344\pi\)
\(174\) 0 0
\(175\) −5.26427 + 3.46236i −0.397941 + 0.261730i
\(176\) −0.126031 2.16386i −0.00949993 0.163107i
\(177\) 0 0
\(178\) −2.36062 7.88504i −0.176936 0.591008i
\(179\) −16.1486 5.87760i −1.20700 0.439312i −0.341338 0.939941i \(-0.610880\pi\)
−0.865662 + 0.500628i \(0.833102\pi\)
\(180\) 0 0
\(181\) −21.3524 + 7.77164i −1.58711 + 0.577661i −0.976735 0.214450i \(-0.931204\pi\)
−0.610376 + 0.792112i \(0.708982\pi\)
\(182\) 2.35561 + 3.16414i 0.174610 + 0.234541i
\(183\) 0 0
\(184\) 3.31501 0.785672i 0.244386 0.0579205i
\(185\) −3.22141 7.46806i −0.236842 0.549062i
\(186\) 0 0
\(187\) 13.5322 + 8.90026i 0.989571 + 0.650851i
\(188\) −2.10706 + 3.64953i −0.153673 + 0.266169i
\(189\) 0 0
\(190\) 1.50230 + 2.60205i 0.108988 + 0.188773i
\(191\) 0.341122 5.85684i 0.0246827 0.423786i −0.963220 0.268713i \(-0.913402\pi\)
0.987903 0.155073i \(-0.0495613\pi\)
\(192\) 0 0
\(193\) 11.7776 + 1.37661i 0.847771 + 0.0990903i 0.528875 0.848699i \(-0.322614\pi\)
0.318896 + 0.947790i \(0.396688\pi\)
\(194\) 5.52148 + 5.85243i 0.396419 + 0.420180i
\(195\) 0 0
\(196\) 3.21671 0.375980i 0.229765 0.0268557i
\(197\) −2.29618 1.92672i −0.163596 0.137273i 0.557315 0.830301i \(-0.311832\pi\)
−0.720911 + 0.693028i \(0.756276\pi\)
\(198\) 0 0
\(199\) 15.4208 12.9396i 1.09315 0.917261i 0.0962034 0.995362i \(-0.469330\pi\)
0.996945 + 0.0781009i \(0.0248856\pi\)
\(200\) −2.22946 + 2.36309i −0.157647 + 0.167096i
\(201\) 0 0
\(202\) 16.6341 + 8.35395i 1.17037 + 0.587782i
\(203\) 8.42044 + 4.22890i 0.590999 + 0.296811i
\(204\) 0 0
\(205\) 7.09962 7.52516i 0.495859 0.525580i
\(206\) 13.8535 11.6244i 0.965216 0.809913i
\(207\) 0 0
\(208\) 1.55810 + 1.30740i 0.108034 + 0.0906517i
\(209\) 4.88807 0.571333i 0.338115 0.0395199i
\(210\) 0 0
\(211\) −9.85383 10.4445i −0.678366 0.719026i 0.293133 0.956072i \(-0.405302\pi\)
−0.971498 + 0.237046i \(0.923821\pi\)
\(212\) 10.7234 + 1.25338i 0.736484 + 0.0860826i
\(213\) 0 0
\(214\) 0.237620 4.07979i 0.0162434 0.278888i
\(215\) 4.60503 + 7.97615i 0.314061 + 0.543969i
\(216\) 0 0
\(217\) −4.95542 + 8.58304i −0.336396 + 0.582655i
\(218\) 10.2969 + 6.77236i 0.697392 + 0.458682i
\(219\) 0 0
\(220\) −1.13610 2.63377i −0.0765957 0.177569i
\(221\) −14.7889 + 3.50503i −0.994808 + 0.235774i
\(222\) 0 0
\(223\) 6.68444 + 8.97876i 0.447623 + 0.601262i 0.967466 0.252999i \(-0.0814171\pi\)
−0.519843 + 0.854262i \(0.674010\pi\)
\(224\) −1.82247 + 0.663324i −0.121769 + 0.0443202i
\(225\) 0 0
\(226\) 14.5792 + 5.30639i 0.969794 + 0.352976i
\(227\) 4.56463 + 15.2469i 0.302965 + 1.01197i 0.964945 + 0.262453i \(0.0845314\pi\)
−0.661980 + 0.749522i \(0.730283\pi\)
\(228\) 0 0
\(229\) 0.625990 + 10.7478i 0.0413666 + 0.710236i 0.953695 + 0.300776i \(0.0972458\pi\)
−0.912328 + 0.409460i \(0.865717\pi\)
\(230\) 3.76669 2.47739i 0.248368 0.163354i
\(231\) 0 0
\(232\) 4.72753 + 1.12045i 0.310378 + 0.0735608i
\(233\) −2.99957 17.0114i −0.196508 1.11445i −0.910254 0.414050i \(-0.864114\pi\)
0.713746 0.700405i \(-0.246997\pi\)
\(234\) 0 0
\(235\) −0.968376 + 5.49193i −0.0631699 + 0.358254i
\(236\) −2.73564 + 6.34193i −0.178075 + 0.412824i
\(237\) 0 0
\(238\) 4.15643 13.8834i 0.269421 0.899930i
\(239\) −14.5713 + 19.5727i −0.942540 + 1.26605i 0.0213560 + 0.999772i \(0.493202\pi\)
−0.963896 + 0.266279i \(0.914206\pi\)
\(240\) 0 0
\(241\) 24.9082 12.5094i 1.60448 0.805800i 0.604522 0.796588i \(-0.293364\pi\)
0.999958 0.00921168i \(-0.00293221\pi\)
\(242\) 6.30180 0.405095
\(243\) 0 0
\(244\) −9.00910 −0.576748
\(245\) 3.82988 1.92344i 0.244682 0.122884i
\(246\) 0 0
\(247\) −2.75771 + 3.70424i −0.175469 + 0.235695i
\(248\) −1.46562 + 4.89550i −0.0930668 + 0.310865i
\(249\) 0 0
\(250\) −4.32356 + 10.0231i −0.273446 + 0.633918i
\(251\) 2.51752 14.2776i 0.158904 0.901192i −0.796224 0.605001i \(-0.793173\pi\)
0.955129 0.296191i \(-0.0957164\pi\)
\(252\) 0 0
\(253\) −1.28230 7.27226i −0.0806172 0.457203i
\(254\) −17.1183 4.05712i −1.07410 0.254566i
\(255\) 0 0
\(256\) −0.835488 + 0.549509i −0.0522180 + 0.0343443i
\(257\) 1.18052 + 20.2687i 0.0736386 + 1.26433i 0.809470 + 0.587161i \(0.199754\pi\)
−0.735832 + 0.677165i \(0.763208\pi\)
\(258\) 0 0
\(259\) 3.41864 + 11.4191i 0.212424 + 0.709546i
\(260\) 2.52926 + 0.920575i 0.156858 + 0.0570916i
\(261\) 0 0
\(262\) −4.52452 + 1.64679i −0.279526 + 0.101739i
\(263\) −5.30489 7.12570i −0.327114 0.439390i 0.607894 0.794018i \(-0.292015\pi\)
−0.935007 + 0.354629i \(0.884607\pi\)
\(264\) 0 0
\(265\) 13.9020 3.29484i 0.853994 0.202400i
\(266\) −1.74411 4.04331i −0.106938 0.247911i
\(267\) 0 0
\(268\) 9.51107 + 6.25553i 0.580981 + 0.382117i
\(269\) −0.798719 + 1.38342i −0.0486987 + 0.0843487i −0.889347 0.457232i \(-0.848841\pi\)
0.840649 + 0.541581i \(0.182174\pi\)
\(270\) 0 0
\(271\) 10.0971 + 17.4887i 0.613355 + 1.06236i 0.990671 + 0.136277i \(0.0435137\pi\)
−0.377316 + 0.926084i \(0.623153\pi\)
\(272\) 0.434484 7.45980i 0.0263444 0.452317i
\(273\) 0 0
\(274\) 0.617479 + 0.0721729i 0.0373033 + 0.00436013i
\(275\) 4.83244 + 5.12208i 0.291407 + 0.308873i
\(276\) 0 0
\(277\) 1.65097 0.192970i 0.0991970 0.0115945i −0.0663496 0.997796i \(-0.521135\pi\)
0.165547 + 0.986202i \(0.447061\pi\)
\(278\) −2.26236 1.89835i −0.135688 0.113855i
\(279\) 0 0
\(280\) −1.96605 + 1.64972i −0.117494 + 0.0985894i
\(281\) 8.32617 8.82522i 0.496698 0.526469i −0.429722 0.902961i \(-0.641388\pi\)
0.926420 + 0.376492i \(0.122870\pi\)
\(282\) 0 0
\(283\) −12.6764 6.36632i −0.753533 0.378439i 0.0301938 0.999544i \(-0.490388\pi\)
−0.783727 + 0.621105i \(0.786684\pi\)
\(284\) −2.66746 1.33965i −0.158284 0.0794934i
\(285\) 0 0
\(286\) 3.02540 3.20674i 0.178896 0.189618i
\(287\) −11.6150 + 9.74613i −0.685611 + 0.575296i
\(288\) 0 0
\(289\) 29.7511 + 24.9642i 1.75007 + 1.46848i
\(290\) 6.38590 0.746405i 0.374993 0.0438304i
\(291\) 0 0
\(292\) −7.12886 7.55615i −0.417185 0.442190i
\(293\) 19.9431 + 2.33102i 1.16509 + 0.136179i 0.676573 0.736375i \(-0.263464\pi\)
0.488517 + 0.872555i \(0.337538\pi\)
\(294\) 0 0
\(295\) −0.531441 + 9.12449i −0.0309417 + 0.531248i
\(296\) 3.07302 + 5.32263i 0.178616 + 0.309371i
\(297\) 0 0
\(298\) −0.660264 + 1.14361i −0.0382481 + 0.0662476i
\(299\) 5.78939 + 3.80774i 0.334809 + 0.220207i
\(300\) 0 0
\(301\) −5.34629 12.3941i −0.308155 0.714383i
\(302\) 1.68015 0.398202i 0.0966816 0.0229140i
\(303\) 0 0
\(304\) −1.35584 1.82121i −0.0777626 0.104453i
\(305\) −11.2030 + 4.07756i −0.641482 + 0.233480i
\(306\) 0 0
\(307\) −24.0050 8.73709i −1.37004 0.498652i −0.450893 0.892578i \(-0.648894\pi\)
−0.919142 + 0.393926i \(0.871117\pi\)
\(308\) 1.20566 + 4.02717i 0.0686987 + 0.229470i
\(309\) 0 0
\(310\) 0.393201 + 6.75101i 0.0223323 + 0.383431i
\(311\) −8.61224 + 5.66436i −0.488355 + 0.321196i −0.769695 0.638412i \(-0.779592\pi\)
0.281340 + 0.959608i \(0.409221\pi\)
\(312\) 0 0
\(313\) −11.2681 2.67060i −0.636913 0.150951i −0.100541 0.994933i \(-0.532057\pi\)
−0.536372 + 0.843982i \(0.680205\pi\)
\(314\) −1.90893 10.8261i −0.107727 0.610952i
\(315\) 0 0
\(316\) 1.78084 10.0997i 0.100180 0.568150i
\(317\) 9.27900 21.5111i 0.521160 1.20819i −0.430935 0.902383i \(-0.641816\pi\)
0.952095 0.305802i \(-0.0989247\pi\)
\(318\) 0 0
\(319\) 3.02031 10.0885i 0.169105 0.564849i
\(320\) −0.790236 + 1.06147i −0.0441756 + 0.0593381i
\(321\) 0 0
\(322\) −5.90453 + 2.96537i −0.329047 + 0.165253i
\(323\) 16.9660 0.944015
\(324\) 0 0
\(325\) −6.60790 −0.366540
\(326\) 16.8529 8.46384i 0.933395 0.468769i
\(327\) 0 0
\(328\) −4.66853 + 6.27093i −0.257777 + 0.346254i
\(329\) 2.34404 7.82963i 0.129231 0.431661i
\(330\) 0 0
\(331\) 0.0953783 0.221112i 0.00524246 0.0121534i −0.915575 0.402148i \(-0.868264\pi\)
0.920817 + 0.389994i \(0.127523\pi\)
\(332\) −0.630651 + 3.57660i −0.0346115 + 0.196291i
\(333\) 0 0
\(334\) 1.76627 + 10.0170i 0.0966462 + 0.548108i
\(335\) 14.6585 + 3.47413i 0.800879 + 0.189812i
\(336\) 0 0
\(337\) −6.75532 + 4.44304i −0.367986 + 0.242028i −0.720011 0.693962i \(-0.755863\pi\)
0.352026 + 0.935990i \(0.385493\pi\)
\(338\) −0.515341 8.84805i −0.0280308 0.481271i
\(339\) 0 0
\(340\) −2.83605 9.47306i −0.153806 0.513749i
\(341\) 10.4085 + 3.78838i 0.563651 + 0.205152i
\(342\) 0 0
\(343\) −18.6595 + 6.79152i −1.00752 + 0.366708i
\(344\) −4.15609 5.58260i −0.224081 0.300994i
\(345\) 0 0
\(346\) −18.1978 + 4.31295i −0.978318 + 0.231866i
\(347\) 3.71942 + 8.62258i 0.199669 + 0.462884i 0.988404 0.151849i \(-0.0485228\pi\)
−0.788735 + 0.614733i \(0.789264\pi\)
\(348\) 0 0
\(349\) −2.98629 1.96411i −0.159853 0.105137i 0.467062 0.884224i \(-0.345312\pi\)
−0.626915 + 0.779088i \(0.715683\pi\)
\(350\) 3.15041 5.45668i 0.168397 0.291672i
\(351\) 0 0
\(352\) 1.08377 + 1.87714i 0.0577649 + 0.100052i
\(353\) 0.231753 3.97905i 0.0123350 0.211783i −0.986509 0.163709i \(-0.947654\pi\)
0.998844 0.0480749i \(-0.0153086\pi\)
\(354\) 0 0
\(355\) −3.92337 0.458576i −0.208231 0.0243387i
\(356\) 5.64833 + 5.98688i 0.299361 + 0.317304i
\(357\) 0 0
\(358\) 17.0687 1.99505i 0.902111 0.105442i
\(359\) −17.0190 14.2806i −0.898227 0.753702i 0.0716159 0.997432i \(-0.477184\pi\)
−0.969843 + 0.243730i \(0.921629\pi\)
\(360\) 0 0
\(361\) −10.6058 + 8.89934i −0.558201 + 0.468386i
\(362\) 15.5933 16.5279i 0.819565 0.868688i
\(363\) 0 0
\(364\) −3.52512 1.77038i −0.184766 0.0927931i
\(365\) −12.2848 6.16968i −0.643018 0.322936i
\(366\) 0 0
\(367\) −8.65683 + 9.17571i −0.451883 + 0.478968i −0.912760 0.408496i \(-0.866053\pi\)
0.460877 + 0.887464i \(0.347535\pi\)
\(368\) −2.60979 + 2.18988i −0.136045 + 0.114155i
\(369\) 0 0
\(370\) 6.23041 + 5.22794i 0.323904 + 0.271787i
\(371\) −20.7972 + 2.43085i −1.07974 + 0.126203i
\(372\) 0 0
\(373\) −2.77388 2.94015i −0.143626 0.152235i 0.651567 0.758591i \(-0.274112\pi\)
−0.795193 + 0.606356i \(0.792631\pi\)
\(374\) −16.0872 1.88033i −0.831851 0.0972294i
\(375\) 0 0
\(376\) 0.245029 4.20698i 0.0126364 0.216959i
\(377\) 4.94096 + 8.55800i 0.254473 + 0.440759i
\(378\) 0 0
\(379\) 18.2374 31.5882i 0.936795 1.62258i 0.165392 0.986228i \(-0.447111\pi\)
0.771402 0.636348i \(-0.219556\pi\)
\(380\) −2.51030 1.65105i −0.128776 0.0846971i
\(381\) 0 0
\(382\) 2.32371 + 5.38696i 0.118891 + 0.275621i
\(383\) 3.77992 0.895858i 0.193145 0.0457762i −0.132905 0.991129i \(-0.542430\pi\)
0.326050 + 0.945353i \(0.394282\pi\)
\(384\) 0 0
\(385\) 3.32198 + 4.46219i 0.169304 + 0.227414i
\(386\) −11.1427 + 4.05560i −0.567148 + 0.206425i
\(387\) 0 0
\(388\) −7.56074 2.75188i −0.383838 0.139706i
\(389\) −7.91140 26.4259i −0.401124 1.33985i −0.885359 0.464909i \(-0.846087\pi\)
0.484235 0.874938i \(-0.339098\pi\)
\(390\) 0 0
\(391\) −1.48022 25.4144i −0.0748578 1.28526i
\(392\) −2.70582 + 1.77965i −0.136665 + 0.0898857i
\(393\) 0 0
\(394\) 2.91665 + 0.691259i 0.146939 + 0.0348251i
\(395\) −2.35664 13.3651i −0.118575 0.672474i
\(396\) 0 0
\(397\) 0.343883 1.95026i 0.0172590 0.0978806i −0.974961 0.222374i \(-0.928619\pi\)
0.992220 + 0.124493i \(0.0397305\pi\)
\(398\) −7.97323 + 18.4840i −0.399662 + 0.926521i
\(399\) 0 0
\(400\) 0.931767 3.11232i 0.0465884 0.155616i
\(401\) −15.0228 + 20.1791i −0.750203 + 1.00770i 0.249028 + 0.968496i \(0.419889\pi\)
−0.999231 + 0.0392012i \(0.987519\pi\)
\(402\) 0 0
\(403\) −9.28829 + 4.66475i −0.462683 + 0.232368i
\(404\) −18.6140 −0.926081
\(405\) 0 0
\(406\) −9.42271 −0.467641
\(407\) 11.9047 5.97878i 0.590096 0.296357i
\(408\) 0 0
\(409\) 18.9183 25.4117i 0.935450 1.25653i −0.0309600 0.999521i \(-0.509856\pi\)
0.966410 0.257006i \(-0.0827361\pi\)
\(410\) −2.96717 + 9.91103i −0.146538 + 0.489471i
\(411\) 0 0
\(412\) −7.16287 + 16.6054i −0.352889 + 0.818089i
\(413\) 2.32606 13.1917i 0.114458 0.649123i
\(414\) 0 0
\(415\) 0.834558 + 4.73301i 0.0409668 + 0.232334i
\(416\) −1.97912 0.469061i −0.0970345 0.0229976i
\(417\) 0 0
\(418\) −4.11172 + 2.70432i −0.201111 + 0.132273i
\(419\) −0.100748 1.72977i −0.00492185 0.0845049i 0.994953 0.100345i \(-0.0319947\pi\)
−0.999875 + 0.0158403i \(0.994958\pi\)
\(420\) 0 0
\(421\) −8.06168 26.9279i −0.392902 1.31238i −0.894416 0.447235i \(-0.852409\pi\)
0.501514 0.865149i \(-0.332777\pi\)
\(422\) 13.4932 + 4.91111i 0.656837 + 0.239069i
\(423\) 0 0
\(424\) −10.1453 + 3.69257i −0.492698 + 0.179327i
\(425\) 14.4969 + 19.4727i 0.703204 + 0.944566i
\(426\) 0 0
\(427\) 17.0015 4.02944i 0.822762 0.194998i
\(428\) 1.61866 + 3.75247i 0.0782408 + 0.181383i
\(429\) 0 0
\(430\) −7.69490 5.06102i −0.371081 0.244064i
\(431\) 0.567396 0.982759i 0.0273305 0.0473378i −0.852037 0.523482i \(-0.824633\pi\)
0.879367 + 0.476144i \(0.157966\pi\)
\(432\) 0 0
\(433\) 8.75124 + 15.1576i 0.420558 + 0.728427i 0.995994 0.0894194i \(-0.0285011\pi\)
−0.575436 + 0.817846i \(0.695168\pi\)
\(434\) 0.576264 9.89408i 0.0276616 0.474931i
\(435\) 0 0
\(436\) −12.2410 1.43077i −0.586240 0.0685216i
\(437\) −5.30820 5.62636i −0.253926 0.269146i
\(438\) 0 0
\(439\) −16.5282 + 1.93187i −0.788849 + 0.0922032i −0.500971 0.865464i \(-0.667024\pi\)
−0.287878 + 0.957667i \(0.592950\pi\)
\(440\) 2.19729 + 1.84374i 0.104752 + 0.0878970i
\(441\) 0 0
\(442\) 11.6428 9.76945i 0.553790 0.464685i
\(443\) −18.5257 + 19.6360i −0.880180 + 0.932937i −0.998194 0.0600754i \(-0.980866\pi\)
0.118014 + 0.993012i \(0.462347\pi\)
\(444\) 0 0
\(445\) 9.73351 + 4.88835i 0.461412 + 0.231730i
\(446\) −10.0031 5.02374i −0.473660 0.237881i
\(447\) 0 0
\(448\) 1.33092 1.41069i 0.0628800 0.0666489i
\(449\) −14.6102 + 12.2594i −0.689499 + 0.578558i −0.918765 0.394806i \(-0.870812\pi\)
0.229266 + 0.973364i \(0.426367\pi\)
\(450\) 0 0
\(451\) 12.9811 + 10.8924i 0.611254 + 0.512903i
\(452\) −15.4100 + 1.80117i −0.724823 + 0.0847197i
\(453\) 0 0
\(454\) −10.9219 11.5766i −0.512591 0.543315i
\(455\) −5.18484 0.606021i −0.243069 0.0284107i
\(456\) 0 0
\(457\) −0.570163 + 9.78932i −0.0266711 + 0.457925i 0.958362 + 0.285558i \(0.0921788\pi\)
−0.985033 + 0.172368i \(0.944858\pi\)
\(458\) −5.38302 9.32367i −0.251532 0.435666i
\(459\) 0 0
\(460\) −2.25419 + 3.90436i −0.105102 + 0.182042i
\(461\) 12.2701 + 8.07018i 0.571476 + 0.375866i 0.802111 0.597175i \(-0.203710\pi\)
−0.230635 + 0.973040i \(0.574080\pi\)
\(462\) 0 0
\(463\) −12.0622 27.9633i −0.560577 1.29956i −0.929060 0.369930i \(-0.879382\pi\)
0.368482 0.929635i \(-0.379877\pi\)
\(464\) −4.72753 + 1.12045i −0.219470 + 0.0520154i
\(465\) 0 0
\(466\) 10.3152 + 13.8558i 0.477844 + 0.641855i
\(467\) 4.51390 1.64293i 0.208879 0.0760256i −0.235462 0.971884i \(-0.575660\pi\)
0.444340 + 0.895858i \(0.353438\pi\)
\(468\) 0 0
\(469\) −20.7467 7.55118i −0.957994 0.348681i
\(470\) −1.59940 5.34238i −0.0737749 0.246425i
\(471\) 0 0
\(472\) −0.401594 6.89511i −0.0184849 0.317373i
\(473\) −12.6038 + 8.28964i −0.579523 + 0.381158i
\(474\) 0 0
\(475\) 7.17752 + 1.70110i 0.329327 + 0.0780520i
\(476\) 2.51656 + 14.2721i 0.115346 + 0.654161i
\(477\) 0 0
\(478\) 4.23720 24.0304i 0.193805 1.09912i
\(479\) 1.04518 2.42300i 0.0477555 0.110710i −0.892668 0.450714i \(-0.851169\pi\)
0.940424 + 0.340005i \(0.110429\pi\)
\(480\) 0 0
\(481\) −3.58525 + 11.9756i −0.163473 + 0.546039i
\(482\) −16.6446 + 22.3576i −0.758141 + 1.01836i
\(483\) 0 0
\(484\) −5.63150 + 2.82824i −0.255977 + 0.128557i
\(485\) −10.6475 −0.483476
\(486\) 0 0
\(487\) 30.3949 1.37732 0.688662 0.725082i \(-0.258198\pi\)
0.688662 + 0.725082i \(0.258198\pi\)
\(488\) 8.05082 4.04328i 0.364444 0.183030i
\(489\) 0 0
\(490\) −2.55927 + 3.43769i −0.115616 + 0.155299i
\(491\) 5.83806 19.5005i 0.263468 0.880045i −0.719221 0.694782i \(-0.755501\pi\)
0.982689 0.185263i \(-0.0593138\pi\)
\(492\) 0 0
\(493\) 14.3796 33.3356i 0.647624 1.50136i
\(494\) 0.801915 4.54789i 0.0360799 0.204619i
\(495\) 0 0
\(496\) −0.887374 5.03255i −0.0398443 0.225968i
\(497\) 5.63307 + 1.33506i 0.252678 + 0.0598857i
\(498\) 0 0
\(499\) −0.982338 + 0.646094i −0.0439755 + 0.0289231i −0.571306 0.820737i \(-0.693563\pi\)
0.527331 + 0.849660i \(0.323193\pi\)
\(500\) −0.634701 10.8974i −0.0283847 0.487347i
\(501\) 0 0
\(502\) 4.15802 + 13.8888i 0.185582 + 0.619886i
\(503\) −29.3121 10.6687i −1.30696 0.475696i −0.407705 0.913114i \(-0.633671\pi\)
−0.899258 + 0.437418i \(0.855893\pi\)
\(504\) 0 0
\(505\) −23.1469 + 8.42479i −1.03002 + 0.374898i
\(506\) 4.40968 + 5.92323i 0.196034 + 0.263320i
\(507\) 0 0
\(508\) 17.1183 4.05712i 0.759503 0.180005i
\(509\) −0.914081 2.11908i −0.0405159 0.0939265i 0.896756 0.442525i \(-0.145917\pi\)
−0.937272 + 0.348598i \(0.886658\pi\)
\(510\) 0 0
\(511\) 16.8328 + 11.0711i 0.744641 + 0.489758i
\(512\) 0.500000 0.866025i 0.0220971 0.0382733i
\(513\) 0 0
\(514\) −10.1515 17.5829i −0.447764 0.775550i
\(515\) −1.39150 + 23.8911i −0.0613168 + 1.05277i
\(516\) 0 0
\(517\) −9.07246 1.06042i −0.399007 0.0466372i
\(518\) −8.17987 8.67016i −0.359403 0.380945i
\(519\) 0 0
\(520\) −2.67338 + 0.312474i −0.117236 + 0.0137029i
\(521\) 20.8735 + 17.5150i 0.914485 + 0.767344i 0.972967 0.230944i \(-0.0741815\pi\)
−0.0584819 + 0.998288i \(0.518626\pi\)
\(522\) 0 0
\(523\) 20.3758 17.0974i 0.890973 0.747615i −0.0774318 0.996998i \(-0.524672\pi\)
0.968405 + 0.249382i \(0.0802276\pi\)
\(524\) 3.30418 3.50223i 0.144344 0.152996i
\(525\) 0 0
\(526\) 7.93863 + 3.98693i 0.346141 + 0.173838i
\(527\) 34.1238 + 17.1376i 1.48646 + 0.746527i
\(528\) 0 0
\(529\) 7.81863 8.28727i 0.339941 0.360316i
\(530\) −10.9446 + 9.18359i −0.475402 + 0.398910i
\(531\) 0 0
\(532\) 3.37323 + 2.83048i 0.146248 + 0.122717i
\(533\) −15.7937 + 1.84602i −0.684102 + 0.0799600i
\(534\) 0 0
\(535\) 3.71122 + 3.93367i 0.160450 + 0.170067i
\(536\) −11.3069 1.32158i −0.488383 0.0570837i
\(537\) 0 0
\(538\) 0.0928827 1.59474i 0.00400446 0.0687539i
\(539\) 3.50990 + 6.07932i 0.151182 + 0.261855i
\(540\) 0 0
\(541\) 1.08463 1.87864i 0.0466321 0.0807692i −0.841767 0.539841i \(-0.818484\pi\)
0.888399 + 0.459071i \(0.151818\pi\)
\(542\) −16.8720 11.0969i −0.724714 0.476652i
\(543\) 0 0
\(544\) 2.95968 + 6.86131i 0.126895 + 0.294176i
\(545\) −15.8696 + 3.76116i −0.679778 + 0.161110i
\(546\) 0 0
\(547\) −14.1538 19.0118i −0.605171 0.812886i 0.388939 0.921264i \(-0.372842\pi\)
−0.994110 + 0.108378i \(0.965434\pi\)
\(548\) −0.584191 + 0.212628i −0.0249554 + 0.00908302i
\(549\) 0 0
\(550\) −6.61721 2.40847i −0.282159 0.102697i
\(551\) −3.16376 10.5677i −0.134781 0.450199i
\(552\) 0 0
\(553\) 1.15649 + 19.8561i 0.0491788 + 0.844367i
\(554\) −1.38875 + 0.913398i −0.0590025 + 0.0388065i
\(555\) 0 0
\(556\) 2.87370 + 0.681079i 0.121872 + 0.0288842i
\(557\) 2.15153 + 12.2019i 0.0911633 + 0.517013i 0.995856 + 0.0909475i \(0.0289895\pi\)
−0.904692 + 0.426065i \(0.859899\pi\)
\(558\) 0 0
\(559\) 2.45814 13.9408i 0.103968 0.589632i
\(560\) 1.01654 2.35660i 0.0429566 0.0995847i
\(561\) 0 0
\(562\) −3.47978 + 11.6233i −0.146786 + 0.490299i
\(563\) 27.7670 37.2976i 1.17024 1.57191i 0.424875 0.905252i \(-0.360318\pi\)
0.745366 0.666655i \(-0.232275\pi\)
\(564\) 0 0
\(565\) −18.3474 + 9.21440i −0.771880 + 0.387653i
\(566\) 14.1852 0.596250
\(567\) 0 0
\(568\) 2.98496 0.125246
\(569\) −20.7775 + 10.4349i −0.871038 + 0.437452i −0.827411 0.561596i \(-0.810187\pi\)
−0.0436265 + 0.999048i \(0.513891\pi\)
\(570\) 0 0
\(571\) −9.27277 + 12.4555i −0.388053 + 0.521246i −0.952629 0.304135i \(-0.901633\pi\)
0.564575 + 0.825381i \(0.309040\pi\)
\(572\) −1.26442 + 4.22344i −0.0528679 + 0.176591i
\(573\) 0 0
\(574\) 6.00548 13.9223i 0.250664 0.581104i
\(575\) 1.92197 10.9000i 0.0801516 0.454562i
\(576\) 0 0
\(577\) 5.56862 + 31.5812i 0.231825 + 1.31474i 0.849199 + 0.528074i \(0.177086\pi\)
−0.617374 + 0.786670i \(0.711803\pi\)
\(578\) −37.7905 8.95651i −1.57188 0.372542i
\(579\) 0 0
\(580\) −5.37167 + 3.53300i −0.223046 + 0.146700i
\(581\) −0.409547 7.03166i −0.0169909 0.291722i
\(582\) 0 0
\(583\) 6.71162 + 22.4184i 0.277967 + 0.928474i
\(584\) 9.76177 + 3.55299i 0.403945 + 0.147024i
\(585\) 0 0
\(586\) −18.8680 + 6.86739i −0.779429 + 0.283689i
\(587\) 20.4031 + 27.4061i 0.842127 + 1.13117i 0.989846 + 0.142143i \(0.0453993\pi\)
−0.147719 + 0.989029i \(0.547193\pi\)
\(588\) 0 0
\(589\) 11.2898 2.67574i 0.465189 0.110252i
\(590\) −3.62015 8.39245i −0.149039 0.345512i
\(591\) 0 0
\(592\) −5.13494 3.37730i −0.211045 0.138806i
\(593\) −5.78538 + 10.0206i −0.237577 + 0.411496i −0.960019 0.279936i \(-0.909687\pi\)
0.722441 + 0.691432i \(0.243020\pi\)
\(594\) 0 0
\(595\) 9.58901 + 16.6087i 0.393111 + 0.680889i
\(596\) 0.0767819 1.31829i 0.00314511 0.0539994i
\(597\) 0 0
\(598\) −6.88250 0.804448i −0.281446 0.0328963i
\(599\) 15.6147 + 16.5506i 0.638000 + 0.676241i 0.963009 0.269470i \(-0.0868486\pi\)
−0.325008 + 0.945711i \(0.605367\pi\)
\(600\) 0 0
\(601\) 4.24750 0.496462i 0.173259 0.0202511i −0.0290209 0.999579i \(-0.509239\pi\)
0.202280 + 0.979328i \(0.435165\pi\)
\(602\) 10.3401 + 8.67635i 0.421430 + 0.353622i
\(603\) 0 0
\(604\) −1.32272 + 1.10990i −0.0538208 + 0.0451610i
\(605\) −5.72281 + 6.06583i −0.232665 + 0.246611i
\(606\) 0 0
\(607\) 9.54035 + 4.79135i 0.387231 + 0.194475i 0.631754 0.775169i \(-0.282335\pi\)
−0.244523 + 0.969643i \(0.578631\pi\)
\(608\) 2.02898 + 1.01899i 0.0822859 + 0.0413255i
\(609\) 0 0
\(610\) 8.18136 8.67174i 0.331254 0.351108i
\(611\) 6.56599 5.50952i 0.265632 0.222891i
\(612\) 0 0
\(613\) 7.81287 + 6.55577i 0.315559 + 0.264785i 0.786785 0.617227i \(-0.211744\pi\)
−0.471226 + 0.882012i \(0.656188\pi\)
\(614\) 25.3728 2.96566i 1.02396 0.119684i
\(615\) 0 0
\(616\) −2.88481 3.05772i −0.116232 0.123199i
\(617\) 33.5712 + 3.92391i 1.35153 + 0.157971i 0.760845 0.648934i \(-0.224785\pi\)
0.590682 + 0.806905i \(0.298859\pi\)
\(618\) 0 0
\(619\) 1.53303 26.3211i 0.0616177 1.05793i −0.815839 0.578279i \(-0.803725\pi\)
0.877457 0.479656i \(-0.159238\pi\)
\(620\) −3.38122 5.85645i −0.135793 0.235201i
\(621\) 0 0
\(622\) 5.15402 8.92702i 0.206657 0.357941i
\(623\) −13.3370 8.77186i −0.534334 0.351437i
\(624\) 0 0
\(625\) 0.712447 + 1.65164i 0.0284979 + 0.0660655i
\(626\) 11.2681 2.67060i 0.450365 0.106739i
\(627\) 0 0
\(628\) 6.56463 + 8.81782i 0.261957 + 0.351869i
\(629\) 43.1562 15.7076i 1.72075 0.626302i
\(630\) 0 0
\(631\) −16.7461 6.09507i −0.666650 0.242641i −0.0135452 0.999908i \(-0.504312\pi\)
−0.653105 + 0.757267i \(0.726534\pi\)
\(632\) 2.94130 + 9.82462i 0.116999 + 0.390802i
\(633\) 0 0
\(634\) 1.36216 + 23.3875i 0.0540984 + 0.928834i
\(635\) 19.4507 12.7929i 0.771878 0.507672i
\(636\) 0 0
\(637\) −6.40961 1.51911i −0.253958 0.0601892i
\(638\) 1.82868 + 10.3709i 0.0723981 + 0.410590i
\(639\) 0 0
\(640\) 0.229793 1.30322i 0.00908338 0.0515144i
\(641\) −8.32976 + 19.3106i −0.329006 + 0.762721i 0.670772 + 0.741663i \(0.265963\pi\)
−0.999778 + 0.0210581i \(0.993297\pi\)
\(642\) 0 0
\(643\) −0.298435 + 0.996842i −0.0117691 + 0.0393116i −0.963672 0.267087i \(-0.913939\pi\)
0.951903 + 0.306399i \(0.0991241\pi\)
\(644\) 3.94563 5.29990i 0.155480 0.208845i
\(645\) 0 0
\(646\) −15.1614 + 7.61434i −0.596517 + 0.299582i
\(647\) 3.98241 0.156565 0.0782823 0.996931i \(-0.475056\pi\)
0.0782823 + 0.996931i \(0.475056\pi\)
\(648\) 0 0
\(649\) −14.9707 −0.587651
\(650\) 5.90504 2.96562i 0.231615 0.116321i
\(651\) 0 0
\(652\) −11.2617 + 15.1271i −0.441043 + 0.592424i
\(653\) 4.59762 15.3571i 0.179919 0.600970i −0.819685 0.572815i \(-0.805851\pi\)
0.999604 0.0281555i \(-0.00896335\pi\)
\(654\) 0 0
\(655\) 2.52369 5.85058i 0.0986089 0.228601i
\(656\) 1.35757 7.69914i 0.0530040 0.300601i
\(657\) 0 0
\(658\) 1.41922 + 8.04881i 0.0553271 + 0.313775i
\(659\) 5.19134 + 1.23037i 0.202226 + 0.0479284i 0.330480 0.943813i \(-0.392789\pi\)
−0.128254 + 0.991741i \(0.540937\pi\)
\(660\) 0 0
\(661\) 5.47643 3.60191i 0.213009 0.140098i −0.438522 0.898721i \(-0.644498\pi\)
0.651530 + 0.758623i \(0.274127\pi\)
\(662\) 0.0140016 + 0.240398i 0.000544188 + 0.00934334i
\(663\) 0 0
\(664\) −1.04160 3.47920i −0.0404221 0.135019i
\(665\) 5.47577 + 1.99302i 0.212341 + 0.0772859i
\(666\) 0 0
\(667\) −15.5539 + 5.66116i −0.602250 + 0.219201i
\(668\) −6.07404 8.15885i −0.235012 0.315675i
\(669\) 0 0
\(670\) −14.6585 + 3.47413i −0.566307 + 0.134217i
\(671\) −7.73445 17.9305i −0.298585 0.692198i
\(672\) 0 0
\(673\) −15.1546 9.96731i −0.584165 0.384212i 0.222753 0.974875i \(-0.428496\pi\)
−0.806918 + 0.590663i \(0.798866\pi\)
\(674\) 4.04274 7.00223i 0.155720 0.269716i
\(675\) 0 0
\(676\) 4.43152 + 7.67563i 0.170443 + 0.295216i
\(677\) −1.04089 + 17.8714i −0.0400046 + 0.686853i 0.917376 + 0.398023i \(0.130303\pi\)
−0.957380 + 0.288830i \(0.906734\pi\)
\(678\) 0 0
\(679\) 15.4991 + 1.81158i 0.594800 + 0.0695222i
\(680\) 6.78589 + 7.19262i 0.260227 + 0.275824i
\(681\) 0 0
\(682\) −11.0016 + 1.28590i −0.421273 + 0.0492397i
\(683\) −19.3775 16.2596i −0.741459 0.622158i 0.191770 0.981440i \(-0.438577\pi\)
−0.933229 + 0.359282i \(0.883022\pi\)
\(684\) 0 0
\(685\) −0.630217 + 0.528815i −0.0240793 + 0.0202050i
\(686\) 13.6267 14.4435i 0.520272 0.551456i
\(687\) 0 0
\(688\) 6.21949 + 3.12354i 0.237116 + 0.119084i
\(689\) −19.6235 9.85530i −0.747596 0.375457i
\(690\) 0 0
\(691\) −3.92984 + 4.16539i −0.149498 + 0.158459i −0.797795 0.602929i \(-0.794000\pi\)
0.648297 + 0.761388i \(0.275482\pi\)
\(692\) 14.3265 12.0213i 0.544611 0.456983i
\(693\) 0 0
\(694\) −7.19360 6.03614i −0.273065 0.229129i
\(695\) 3.88176 0.453713i 0.147244 0.0172103i
\(696\) 0 0
\(697\) 40.0894 + 42.4923i 1.51850 + 1.60951i
\(698\) 3.55014 + 0.414952i 0.134375 + 0.0157062i
\(699\) 0 0
\(700\) −0.366361 + 6.29017i −0.0138471 + 0.237746i
\(701\) −17.6846 30.6306i −0.667937 1.15690i −0.978480 0.206342i \(-0.933844\pi\)
0.310543 0.950559i \(-0.399489\pi\)
\(702\) 0 0
\(703\) 6.97724 12.0849i 0.263151 0.455792i
\(704\) −1.81095 1.19108i −0.0682526 0.0448905i
\(705\) 0 0
\(706\) 1.57869 + 3.65982i 0.0594148 + 0.137739i
\(707\) 35.1275 8.32536i 1.32110 0.313108i
\(708\) 0 0
\(709\) −3.93861 5.29048i −0.147918 0.198688i 0.721989 0.691905i \(-0.243228\pi\)
−0.869906 + 0.493217i \(0.835821\pi\)
\(710\) 3.71186 1.35101i 0.139304 0.0507024i
\(711\) 0 0
\(712\) −7.73444 2.81510i −0.289860 0.105501i
\(713\) −4.99313 16.6782i −0.186994 0.624604i
\(714\) 0 0
\(715\) 0.339222 + 5.82422i 0.0126862 + 0.217813i
\(716\) −14.3578 + 9.44328i −0.536577 + 0.352912i
\(717\) 0 0
\(718\) 21.6178 + 5.12352i 0.806771 + 0.191208i
\(719\) 8.53090 + 48.3811i 0.318149 + 1.80431i 0.553993 + 0.832521i \(0.313103\pi\)
−0.235845 + 0.971791i \(0.575786\pi\)
\(720\) 0 0
\(721\) 6.09044 34.5406i 0.226820 1.28636i
\(722\) 5.48369 12.7126i 0.204082 0.473115i
\(723\) 0 0
\(724\) −6.51696 + 21.7682i −0.242201 + 0.809007i
\(725\) 9.42572 12.6609i 0.350063 0.470216i
\(726\) 0 0
\(727\) −32.4735 + 16.3088i −1.20438 + 0.604860i −0.933785 0.357835i \(-0.883515\pi\)
−0.270590 + 0.962695i \(0.587219\pi\)
\(728\) 3.94470 0.146200
\(729\) 0 0
\(730\) 13.7471 0.508802
\(731\) −46.4747 + 23.3405i −1.71893 + 0.863279i
\(732\) 0 0
\(733\) −5.43505 + 7.30054i −0.200748 + 0.269652i −0.891085 0.453837i \(-0.850055\pi\)
0.690337 + 0.723488i \(0.257462\pi\)
\(734\) 3.61798 12.0849i 0.133542 0.446062i
\(735\) 0 0
\(736\) 1.34938 3.12822i 0.0497389 0.115308i
\(737\) −4.28474 + 24.3000i −0.157831 + 0.895102i
\(738\) 0 0
\(739\) −1.83509 10.4073i −0.0675048 0.382839i −0.999778 0.0210830i \(-0.993289\pi\)
0.932273 0.361756i \(-0.117823\pi\)
\(740\) −7.91399 1.87565i −0.290924 0.0689503i
\(741\) 0 0
\(742\) 17.4941 11.5061i 0.642229 0.422401i
\(743\) −1.62018 27.8173i −0.0594385 1.02052i −0.887772 0.460284i \(-0.847748\pi\)
0.828333 0.560235i \(-0.189289\pi\)
\(744\) 0 0
\(745\) −0.501186 1.67408i −0.0183620 0.0613335i
\(746\) 3.79837 + 1.38249i 0.139068 + 0.0506167i
\(747\) 0 0
\(748\) 15.2200 5.53961i 0.556497 0.202548i
\(749\) −4.73300 6.35752i −0.172940 0.232299i
\(750\) 0 0
\(751\) 2.57908 0.611252i 0.0941118 0.0223049i −0.183290 0.983059i \(-0.558675\pi\)
0.277402 + 0.960754i \(0.410527\pi\)
\(752\) 1.66913 + 3.86947i 0.0608667 + 0.141105i
\(753\) 0 0
\(754\) −8.25623 5.43021i −0.300674 0.197757i
\(755\) −1.14249 + 1.97885i −0.0415794 + 0.0720177i
\(756\) 0 0
\(757\) −7.00766 12.1376i −0.254698 0.441149i 0.710116 0.704085i \(-0.248643\pi\)
−0.964813 + 0.262936i \(0.915309\pi\)
\(758\) −2.12083 + 36.4132i −0.0770319 + 1.32259i
\(759\) 0 0
\(760\) 2.98428 + 0.348812i 0.108251 + 0.0126527i
\(761\) −12.0637 12.7867i −0.437308 0.463519i 0.470810 0.882235i \(-0.343962\pi\)
−0.908117 + 0.418716i \(0.862480\pi\)
\(762\) 0 0
\(763\) 23.7407 2.77489i 0.859470 0.100458i
\(764\) −4.49421 3.77109i −0.162595 0.136433i
\(765\) 0 0
\(766\) −2.97580 + 2.49699i −0.107520 + 0.0902200i
\(767\) 9.64037 10.2182i 0.348094 0.368958i
\(768\) 0 0
\(769\) −7.88360 3.95929i −0.284290 0.142776i 0.300940 0.953643i \(-0.402699\pi\)
−0.585230 + 0.810867i \(0.698996\pi\)
\(770\) −4.97126 2.49666i −0.179152 0.0899733i
\(771\) 0 0
\(772\) 8.13731 8.62505i 0.292868 0.310422i
\(773\) −3.30370 + 2.77213i −0.118826 + 0.0997066i −0.700264 0.713884i \(-0.746935\pi\)
0.581439 + 0.813590i \(0.302490\pi\)
\(774\) 0 0
\(775\) 12.7179 + 10.6715i 0.456839 + 0.383333i
\(776\) 7.99157 0.934080i 0.286881 0.0335315i
\(777\) 0 0
\(778\) 18.9298 + 20.0644i 0.678666 + 0.719344i
\(779\) 17.6304 + 2.06070i 0.631675 + 0.0738322i
\(780\) 0 0
\(781\) 0.376197 6.45905i 0.0134614 0.231123i
\(782\) 12.7287 + 22.0468i 0.455178 + 0.788391i
\(783\) 0 0
\(784\) 1.61931 2.80472i 0.0578323 0.100169i
\(785\) 12.1542 + 7.99397i 0.433803 + 0.285317i
\(786\) 0 0
\(787\) 19.1364 + 44.3631i 0.682138 + 1.58137i 0.807905 + 0.589313i \(0.200602\pi\)
−0.125767 + 0.992060i \(0.540139\pi\)
\(788\) −2.91665 + 0.691259i −0.103901 + 0.0246251i
\(789\) 0 0
\(790\) 8.10423 + 10.8859i 0.288336 + 0.387302i
\(791\) 28.2753 10.2914i 1.00536 0.365919i
\(792\) 0 0
\(793\) 17.2190 + 6.26719i 0.611464 + 0.222555i
\(794\) 0.567969 + 1.89715i 0.0201565 + 0.0673273i
\(795\) 0 0
\(796\) −1.17048 20.0963i −0.0414865 0.712295i
\(797\) −21.2718 + 13.9907i −0.753484 + 0.495574i −0.867213 0.497938i \(-0.834091\pi\)
0.113729 + 0.993512i \(0.463720\pi\)
\(798\) 0 0
\(799\) −30.6409 7.26203i −1.08400 0.256912i
\(800\) 0.564149 + 3.19945i 0.0199457 + 0.113118i
\(801\) 0 0
\(802\) 4.36849 24.7749i 0.154257 0.874834i
\(803\) 8.91848 20.6754i 0.314726 0.729618i
\(804\) 0 0
\(805\) 2.50771 8.37635i 0.0883853 0.295227i
\(806\) 6.20678 8.33715i 0.218624 0.293664i
\(807\) 0 0
\(808\) 16.6341 8.35395i 0.585185 0.293891i
\(809\) −17.8042 −0.625963 −0.312982 0.949759i \(-0.601328\pi\)
−0.312982 + 0.949759i \(0.601328\pi\)
\(810\) 0 0
\(811\) 17.6535 0.619898 0.309949 0.950753i \(-0.399688\pi\)
0.309949 + 0.950753i \(0.399688\pi\)
\(812\) 8.42044 4.22890i 0.295499 0.148405i
\(813\) 0 0
\(814\) −7.95519 + 10.6857i −0.278829 + 0.374533i
\(815\) −7.15759 + 23.9080i −0.250719 + 0.837461i
\(816\) 0 0
\(817\) −6.25887 + 14.5097i −0.218970 + 0.507630i
\(818\) −5.50127 + 31.1992i −0.192347 + 1.09086i
\(819\) 0 0
\(820\) −1.79650 10.1885i −0.0627367 0.355797i
\(821\) 11.3701 + 2.69476i 0.396819 + 0.0940478i 0.424180 0.905578i \(-0.360562\pi\)
−0.0273612 + 0.999626i \(0.508710\pi\)
\(822\) 0 0
\(823\) 8.74128 5.74923i 0.304702 0.200406i −0.387945 0.921683i \(-0.626815\pi\)
0.692647 + 0.721277i \(0.256445\pi\)
\(824\) −1.05151 18.0538i −0.0366313 0.628934i
\(825\) 0 0
\(826\) 3.84180 + 12.8325i 0.133673 + 0.446500i
\(827\) −36.5997 13.3212i −1.27270 0.463224i −0.384687 0.923047i \(-0.625690\pi\)
−0.888010 + 0.459823i \(0.847913\pi\)
\(828\) 0 0
\(829\) −9.00820 + 3.27872i −0.312868 + 0.113875i −0.493681 0.869643i \(-0.664349\pi\)
0.180814 + 0.983517i \(0.442127\pi\)
\(830\) −2.86996 3.85503i −0.0996178 0.133810i
\(831\) 0 0
\(832\) 1.97912 0.469061i 0.0686138 0.0162618i
\(833\) 9.58526 + 22.2211i 0.332109 + 0.769916i
\(834\) 0 0
\(835\) −11.2459 7.39657i −0.389182 0.255969i
\(836\) 2.46067 4.26201i 0.0851041 0.147405i
\(837\) 0 0
\(838\) 0.866352 + 1.50057i 0.0299276 + 0.0518362i
\(839\) 1.25711 21.5837i 0.0434001 0.745151i −0.904479 0.426519i \(-0.859740\pi\)
0.947879 0.318632i \(-0.103223\pi\)
\(840\) 0 0
\(841\) 5.35857 + 0.626327i 0.184778 + 0.0215975i
\(842\) 19.2894 + 20.4456i 0.664756 + 0.704601i
\(843\) 0 0
\(844\) −14.2620 + 1.66699i −0.490920 + 0.0573803i
\(845\) 8.98472 + 7.53908i 0.309084 + 0.259352i
\(846\) 0 0
\(847\) 9.36253 7.85609i 0.321700 0.269939i
\(848\) 7.40892 7.85299i 0.254423 0.269673i
\(849\) 0 0
\(850\) −21.6943 10.8953i −0.744107 0.373705i
\(851\) −18.7114 9.39723i −0.641419 0.322133i
\(852\) 0 0
\(853\) −33.9735 + 36.0098i −1.16323 + 1.23295i −0.195570 + 0.980690i \(0.562656\pi\)
−0.967659 + 0.252261i \(0.918826\pi\)
\(854\) −13.3847 + 11.2311i −0.458016 + 0.384321i
\(855\) 0 0
\(856\) −3.13059 2.62688i −0.107001 0.0897849i
\(857\) −32.9963 + 3.85671i −1.12713 + 0.131743i −0.659162 0.752001i \(-0.729089\pi\)
−0.467970 + 0.883744i \(0.655015\pi\)
\(858\) 0 0
\(859\) −4.73995 5.02406i −0.161725 0.171419i 0.641444 0.767170i \(-0.278336\pi\)
−0.803169 + 0.595752i \(0.796854\pi\)
\(860\) 9.14779 + 1.06922i 0.311937 + 0.0364602i
\(861\) 0 0
\(862\) −0.0659823 + 1.13287i −0.00224737 + 0.0385858i
\(863\) −6.07200 10.5170i −0.206693 0.358003i 0.743978 0.668205i \(-0.232937\pi\)
−0.950671 + 0.310201i \(0.899604\pi\)
\(864\) 0 0
\(865\) 12.3744 21.4330i 0.420741 0.728744i
\(866\) −14.6231 9.61777i −0.496913 0.326825i
\(867\) 0 0
\(868\) 3.92548 + 9.10030i 0.133240 + 0.308884i
\(869\) 21.6298 5.12637i 0.733742 0.173900i
\(870\) 0 0
\(871\) −13.8267 18.5725i −0.468500 0.629305i
\(872\) 11.5811 4.21519i 0.392187 0.142744i
\(873\) 0 0
\(874\) 7.26869 + 2.64559i 0.245867 + 0.0894883i
\(875\) 6.07179 + 20.2812i 0.205264 + 0.685629i
\(876\) 0 0
\(877\) −0.965302 16.5736i −0.0325959 0.559651i −0.974587 0.224011i \(-0.928085\pi\)
0.941991 0.335639i \(-0.108952\pi\)
\(878\) 13.9031 9.14424i 0.469208 0.308603i
\(879\) 0 0
\(880\) −2.79104 0.661488i −0.0940859 0.0222988i
\(881\) 1.14695 + 6.50466i 0.0386416 + 0.219147i 0.998014 0.0629963i \(-0.0200656\pi\)
−0.959372 + 0.282144i \(0.908955\pi\)
\(882\) 0 0
\(883\) 8.02198 45.4949i 0.269961 1.53103i −0.484565 0.874755i \(-0.661022\pi\)
0.754526 0.656270i \(-0.227867\pi\)
\(884\) −6.01984 + 13.9556i −0.202469 + 0.469376i
\(885\) 0 0
\(886\) 7.74249 25.8617i 0.260114 0.868841i
\(887\) 27.1247 36.4348i 0.910758 1.22336i −0.0635135 0.997981i \(-0.520231\pi\)
0.974271 0.225379i \(-0.0723620\pi\)
\(888\) 0 0
\(889\) −30.4903 + 15.3128i −1.02261 + 0.513575i
\(890\) −10.8921 −0.365103
\(891\) 0 0
\(892\) 11.1937 0.374794
\(893\) −8.55034 + 4.29414i −0.286126 + 0.143698i
\(894\) 0 0
\(895\) −13.5802 + 18.2413i −0.453935 + 0.609740i
\(896\) −0.556235 + 1.85795i −0.0185825 + 0.0620699i
\(897\) 0 0
\(898\) 7.55415 17.5125i 0.252085 0.584399i
\(899\) 4.31130 24.4506i 0.143790 0.815473i
\(900\) 0 0
\(901\) 14.0091 + 79.4495i 0.466711 + 2.64685i
\(902\) −16.4888 3.90792i −0.549017 0.130119i
\(903\) 0 0
\(904\) 12.9625 8.52555i 0.431126 0.283556i
\(905\) 1.74839 + 30.0188i 0.0581186 + 0.997857i
\(906\) 0 0
\(907\) 10.2417 + 34.2095i 0.340069 + 1.13591i 0.941508 + 0.336991i \(0.109409\pi\)
−0.601439 + 0.798919i \(0.705406\pi\)
\(908\) 14.9557 + 5.44344i 0.496323 + 0.180647i
\(909\) 0 0
\(910\) 4.90532 1.78539i 0.162610 0.0591851i
\(911\) 23.6477 + 31.7643i 0.783483 + 1.05240i 0.997146 + 0.0754926i \(0.0240529\pi\)
−0.213664 + 0.976907i \(0.568540\pi\)
\(912\) 0 0
\(913\) −7.65980 + 1.81540i −0.253502 + 0.0600811i
\(914\) −3.88392 9.00395i −0.128469 0.297824i
\(915\) 0 0
\(916\) 8.99490 + 5.91604i 0.297200 + 0.195471i
\(917\) −4.66908 + 8.08708i −0.154186 + 0.267059i
\(918\) 0 0
\(919\) 10.6420 + 18.4325i 0.351047 + 0.608031i 0.986433 0.164163i \(-0.0524924\pi\)
−0.635386 + 0.772194i \(0.719159\pi\)
\(920\) 0.262138 4.50074i 0.00864245 0.148385i
\(921\) 0 0
\(922\) −14.5869 1.70496i −0.480392 0.0561498i
\(923\) 4.16635 + 4.41607i 0.137137 + 0.145357i
\(924\) 0 0
\(925\) 19.8323 2.31806i 0.652081 0.0762173i
\(926\) 23.3291 + 19.5754i 0.766641 + 0.643288i
\(927\) 0 0
\(928\) 3.72182 3.12298i 0.122175 0.102517i
\(929\) −14.9295 + 15.8243i −0.489820 + 0.519179i −0.924385 0.381462i \(-0.875421\pi\)
0.434565 + 0.900641i \(0.356902\pi\)
\(930\) 0 0
\(931\) 6.57107 + 3.30011i 0.215358 + 0.108157i
\(932\) −15.4365 7.75249i −0.505638 0.253941i
\(933\) 0 0
\(934\) −3.29643 + 3.49401i −0.107862 + 0.114327i
\(935\) 16.4191 13.7773i 0.536962 0.450564i
\(936\) 0 0
\(937\) −15.1205 12.6876i −0.493965 0.414485i 0.361480 0.932380i \(-0.382272\pi\)
−0.855445 + 0.517894i \(0.826716\pi\)
\(938\) 21.9289 2.56312i 0.716004 0.0836888i
\(939\) 0 0
\(940\) 3.82693 + 4.05631i 0.124821 + 0.132302i
\(941\) −30.4590 3.56014i −0.992933 0.116057i −0.395917 0.918286i \(-0.629573\pi\)
−0.597016 + 0.802229i \(0.703647\pi\)
\(942\) 0 0
\(943\) 1.54865 26.5893i 0.0504311 0.865868i
\(944\) 3.45340 + 5.98146i 0.112398 + 0.194680i
\(945\) 0 0
\(946\) 7.54277 13.0645i 0.245237 0.424762i
\(947\) −33.4232 21.9828i −1.08611 0.714345i −0.125457 0.992099i \(-0.540040\pi\)
−0.960652 + 0.277754i \(0.910410\pi\)
\(948\) 0 0
\(949\) 8.36885 + 19.4012i 0.271664 + 0.629789i
\(950\) −7.17752 + 1.70110i −0.232869 + 0.0551911i
\(951\) 0 0
\(952\) −8.65419 11.6246i −0.280484 0.376755i
\(953\) −36.9499 + 13.4487i −1.19692 + 0.435645i −0.862150 0.506654i \(-0.830882\pi\)
−0.334774 + 0.942298i \(0.608660\pi\)
\(954\) 0 0
\(955\) −7.29545 2.65533i −0.236075 0.0859244i
\(956\) 6.99831 + 23.3760i 0.226341 + 0.756033i
\(957\) 0 0
\(958\) 0.153433 + 2.63435i 0.00495720 + 0.0851119i
\(959\) 1.00736 0.662548i 0.0325292 0.0213948i
\(960\) 0 0
\(961\) −4.75432 1.12680i −0.153365 0.0363482i
\(962\) −2.17073 12.3108i −0.0699871 0.396917i
\(963\) 0 0
\(964\) 4.84010 27.4495i 0.155889 0.884090i
\(965\) 6.21518 14.4084i 0.200074 0.463823i
\(966\) 0 0
\(967\) 5.19840 17.3639i 0.167169 0.558384i −0.832819 0.553545i \(-0.813275\pi\)
0.999988 0.00483874i \(-0.00154022\pi\)
\(968\) 3.76318 5.05482i 0.120953 0.162468i
\(969\) 0 0
\(970\) 9.51492 4.77857i 0.305506 0.153431i
\(971\) −4.40089 −0.141231 −0.0706156 0.997504i \(-0.522496\pi\)
−0.0706156 + 0.997504i \(0.522496\pi\)
\(972\) 0 0
\(973\) −5.72773 −0.183623
\(974\) −27.1619 + 13.6412i −0.870323 + 0.437092i
\(975\) 0 0
\(976\) −5.37986 + 7.22641i −0.172205 + 0.231312i
\(977\) −8.04738 + 26.8801i −0.257458 + 0.859971i 0.727341 + 0.686276i \(0.240756\pi\)
−0.984800 + 0.173695i \(0.944429\pi\)
\(978\) 0 0
\(979\) −7.06628 + 16.3815i −0.225839 + 0.523555i
\(980\) 0.744211 4.22063i 0.0237730 0.134823i
\(981\) 0 0
\(982\) 3.53472 + 20.0464i 0.112797 + 0.639706i
\(983\) −0.938898 0.222523i −0.0299462 0.00709738i 0.215615 0.976478i \(-0.430824\pi\)
−0.245562 + 0.969381i \(0.578972\pi\)
\(984\) 0 0
\(985\) −3.31405 + 2.17968i −0.105594 + 0.0694505i
\(986\) 2.11094 + 36.2434i 0.0672259 + 1.15422i
\(987\) 0 0
\(988\) 1.32447 + 4.42404i 0.0421370 + 0.140747i
\(989\) 22.2809 + 8.10960i 0.708493 + 0.257870i
\(990\) 0 0
\(991\) −50.9827 + 18.5562i −1.61952 + 0.589457i −0.983291 0.182043i \(-0.941729\pi\)
−0.636229 + 0.771500i \(0.719507\pi\)
\(992\) 3.05159 + 4.09900i 0.0968881 + 0.130143i
\(993\) 0 0
\(994\) −5.63307 + 1.33506i −0.178670 + 0.0423456i
\(995\) −10.5512 24.4604i −0.334496 0.775448i
\(996\) 0 0
\(997\) −12.5945 8.28354i −0.398872 0.262342i 0.334188 0.942507i \(-0.391538\pi\)
−0.733060 + 0.680164i \(0.761908\pi\)
\(998\) 0.587883 1.01824i 0.0186091 0.0322319i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 486.2.g.b.73.3 90
3.2 odd 2 162.2.g.b.25.5 yes 90
81.13 even 27 inner 486.2.g.b.253.3 90
81.68 odd 54 162.2.g.b.13.5 90
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
162.2.g.b.13.5 90 81.68 odd 54
162.2.g.b.25.5 yes 90 3.2 odd 2
486.2.g.b.73.3 90 1.1 even 1 trivial
486.2.g.b.253.3 90 81.13 even 27 inner