Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [486,2,Mod(19,486)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(486, base_ring=CyclotomicField(54))
chi = DirichletCharacter(H, H._module([52]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("486.19");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 486 = 2 \cdot 3^{5} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 486.g (of order \(27\), degree \(18\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.88072953823\) |
Analytic rank: | \(0\) |
Dimension: | \(90\) |
Relative dimension: | \(5\) over \(\Q(\zeta_{27})\) |
Twist minimal: | no (minimal twist has level 162) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{27}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
19.1 | 0.993238 | − | 0.116093i | 0 | 0.973045 | − | 0.230616i | −2.35524 | − | 1.18285i | 0 | −0.940572 | − | 3.14173i | 0.939693 | − | 0.342020i | 0 | −2.47663 | − | 0.901421i | ||||||
19.2 | 0.993238 | − | 0.116093i | 0 | 0.973045 | − | 0.230616i | −2.00838 | − | 1.00864i | 0 | −0.0359273 | − | 0.120006i | 0.939693 | − | 0.342020i | 0 | −2.11189 | − | 0.768666i | ||||||
19.3 | 0.993238 | − | 0.116093i | 0 | 0.973045 | − | 0.230616i | −0.917265 | − | 0.460668i | 0 | 1.32329 | + | 4.42009i | 0.939693 | − | 0.342020i | 0 | −0.964543 | − | 0.351065i | ||||||
19.4 | 0.993238 | − | 0.116093i | 0 | 0.973045 | − | 0.230616i | 1.81065 | + | 0.909345i | 0 | 0.911277 | + | 3.04388i | 0.939693 | − | 0.342020i | 0 | 1.90398 | + | 0.692992i | ||||||
19.5 | 0.993238 | − | 0.116093i | 0 | 0.973045 | − | 0.230616i | 3.08919 | + | 1.55145i | 0 | −1.35243 | − | 4.51743i | 0.939693 | − | 0.342020i | 0 | 3.24841 | + | 1.18232i | ||||||
37.1 | 0.286803 | − | 0.957990i | 0 | −0.835488 | − | 0.549509i | −1.28359 | + | 2.97570i | 0 | −0.0354946 | − | 0.609419i | −0.766044 | + | 0.642788i | 0 | 2.48255 | + | 2.08311i | ||||||
37.2 | 0.286803 | − | 0.957990i | 0 | −0.835488 | − | 0.549509i | −1.03338 | + | 2.39565i | 0 | −0.170360 | − | 2.92496i | −0.766044 | + | 0.642788i | 0 | 1.99863 | + | 1.67705i | ||||||
37.3 | 0.286803 | − | 0.957990i | 0 | −0.835488 | − | 0.549509i | −0.307130 | + | 0.712007i | 0 | 0.198033 | + | 3.40010i | −0.766044 | + | 0.642788i | 0 | 0.594009 | + | 0.498433i | ||||||
37.4 | 0.286803 | − | 0.957990i | 0 | −0.835488 | − | 0.549509i | 0.815630 | − | 1.89084i | 0 | 0.163018 | + | 2.79890i | −0.766044 | + | 0.642788i | 0 | −1.57748 | − | 1.32366i | ||||||
37.5 | 0.286803 | − | 0.957990i | 0 | −0.835488 | − | 0.549509i | 1.45845 | − | 3.38108i | 0 | −0.155983 | − | 2.67812i | −0.766044 | + | 0.642788i | 0 | −2.82075 | − | 2.36689i | ||||||
73.1 | −0.893633 | + | 0.448799i | 0 | 0.597159 | − | 0.802123i | −0.891212 | + | 2.97686i | 0 | 0.275210 | − | 0.638009i | −0.173648 | + | 0.984808i | 0 | −0.539594 | − | 3.06019i | ||||||
73.2 | −0.893633 | + | 0.448799i | 0 | 0.597159 | − | 0.802123i | −0.664151 | + | 2.21842i | 0 | −0.590051 | + | 1.36789i | −0.173648 | + | 0.984808i | 0 | −0.402118 | − | 2.28052i | ||||||
73.3 | −0.893633 | + | 0.448799i | 0 | 0.597159 | − | 0.802123i | 0.379535 | − | 1.26773i | 0 | −0.768169 | + | 1.78082i | −0.173648 | + | 0.984808i | 0 | 0.229793 | + | 1.30322i | ||||||
73.4 | −0.893633 | + | 0.448799i | 0 | 0.597159 | − | 0.802123i | 0.536865 | − | 1.79325i | 0 | 1.99514 | − | 4.62524i | −0.173648 | + | 0.984808i | 0 | 0.325051 | + | 1.84346i | ||||||
73.5 | −0.893633 | + | 0.448799i | 0 | 0.597159 | − | 0.802123i | 1.15296 | − | 3.85116i | 0 | −0.663579 | + | 1.53835i | −0.173648 | + | 0.984808i | 0 | 0.698073 | + | 3.95897i | ||||||
91.1 | 0.0581448 | + | 0.998308i | 0 | −0.993238 | + | 0.116093i | −3.33598 | − | 0.790641i | 0 | 1.21117 | − | 1.62688i | −0.173648 | − | 0.984808i | 0 | 0.595333 | − | 3.37630i | ||||||
91.2 | 0.0581448 | + | 0.998308i | 0 | −0.993238 | + | 0.116093i | −1.79878 | − | 0.426320i | 0 | −0.603713 | + | 0.810927i | −0.173648 | − | 0.984808i | 0 | 0.321008 | − | 1.82053i | ||||||
91.3 | 0.0581448 | + | 0.998308i | 0 | −0.993238 | + | 0.116093i | −0.597074 | − | 0.141509i | 0 | 1.82935 | − | 2.45725i | −0.173648 | − | 0.984808i | 0 | 0.106553 | − | 0.604292i | ||||||
91.4 | 0.0581448 | + | 0.998308i | 0 | −0.993238 | + | 0.116093i | 1.61859 | + | 0.383612i | 0 | −2.67915 | + | 3.59872i | −0.173648 | − | 0.984808i | 0 | −0.288850 | + | 1.63815i | ||||||
91.5 | 0.0581448 | + | 0.998308i | 0 | −0.993238 | + | 0.116093i | 1.97808 | + | 0.468813i | 0 | 1.09412 | − | 1.46966i | −0.173648 | − | 0.984808i | 0 | −0.353005 | + | 2.00199i | ||||||
See all 90 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
81.g | even | 27 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 486.2.g.b | 90 | |
3.b | odd | 2 | 1 | 162.2.g.b | ✓ | 90 | |
81.g | even | 27 | 1 | inner | 486.2.g.b | 90 | |
81.h | odd | 54 | 1 | 162.2.g.b | ✓ | 90 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
162.2.g.b | ✓ | 90 | 3.b | odd | 2 | 1 | |
162.2.g.b | ✓ | 90 | 81.h | odd | 54 | 1 | |
486.2.g.b | 90 | 1.a | even | 1 | 1 | trivial | |
486.2.g.b | 90 | 81.g | even | 27 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{90} + 9 T_{5}^{88} - 30 T_{5}^{87} + 45 T_{5}^{86} - 1377 T_{5}^{85} + 2673 T_{5}^{84} - 10341 T_{5}^{83} + 18657 T_{5}^{82} - 199554 T_{5}^{81} + 401679 T_{5}^{80} - 1119420 T_{5}^{79} + \cdots + 21\!\cdots\!84 \)
acting on \(S_{2}^{\mathrm{new}}(486, [\chi])\).