Properties

Label 475.2.bb.b.143.7
Level $475$
Weight $2$
Character 475.143
Analytic conductor $3.793$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(32,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bb (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 143.7
Character \(\chi\) \(=\) 475.143
Dual form 475.2.bb.b.382.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06046 - 1.51450i) q^{2} +(-0.101890 + 1.16461i) q^{3} +(-0.485079 - 1.33274i) q^{4} +(1.65575 + 1.38934i) q^{6} +(-1.17582 - 4.38823i) q^{7} +(1.03888 + 0.278366i) q^{8} +(1.60848 + 0.283619i) q^{9} +(-0.761040 - 1.31816i) q^{11} +(1.60156 - 0.429136i) q^{12} +(-0.138155 + 0.0120870i) q^{13} +(-7.89287 - 2.87277i) q^{14} +(3.69620 - 3.10148i) q^{16} +(4.15164 + 2.90701i) q^{17} +(2.13527 - 2.13527i) q^{18} +(4.14601 - 1.34559i) q^{19} +(5.23039 - 0.922259i) q^{21} +(-2.80340 - 0.245266i) q^{22} +(-6.70821 - 3.12809i) q^{23} +(-0.430040 + 1.18152i) q^{24} +(-0.128202 + 0.222052i) q^{26} +(-1.40192 + 5.23204i) q^{27} +(-5.27802 + 3.69571i) q^{28} +(0.346487 - 1.96502i) q^{29} +(-1.08369 - 0.625668i) q^{31} +(-0.590025 - 6.74402i) q^{32} +(1.61269 - 0.752009i) q^{33} +(8.80531 - 3.20487i) q^{34} +(-0.402250 - 2.28127i) q^{36} +(2.05676 + 2.05676i) q^{37} +(2.35879 - 7.70606i) q^{38} -0.162128i q^{39} +(1.05100 + 1.25253i) q^{41} +(4.14987 - 8.89943i) q^{42} +(0.373752 + 0.801514i) q^{43} +(-1.38761 + 1.65368i) q^{44} +(-11.8513 + 6.84234i) q^{46} +(-1.41793 - 2.02502i) q^{47} +(3.23541 + 4.62065i) q^{48} +(-11.8118 + 6.81954i) q^{49} +(-3.80855 + 4.53886i) q^{51} +(0.0831248 + 0.178262i) q^{52} +(-4.74246 + 10.1702i) q^{53} +(6.43722 + 7.67158i) q^{54} -4.88613i q^{56} +(1.14465 + 4.96560i) q^{57} +(-2.60859 - 2.60859i) q^{58} +(1.86831 + 10.5957i) q^{59} +(-2.79178 + 1.01612i) q^{61} +(-2.09678 + 0.977745i) q^{62} +(-0.646704 - 7.39187i) q^{63} +(-2.48226 - 1.43314i) q^{64} +(0.571280 - 3.23989i) q^{66} +(-11.6415 + 8.15144i) q^{67} +(1.86043 - 6.94321i) q^{68} +(4.32651 - 7.49374i) q^{69} +(-1.79203 + 4.92356i) q^{71} +(1.59206 + 0.742391i) q^{72} +(6.01690 + 0.526410i) q^{73} +(5.29607 - 0.933839i) q^{74} +(-3.80447 - 4.87285i) q^{76} +(-4.88954 + 4.88954i) q^{77} +(-0.245543 - 0.171931i) q^{78} +(-4.43572 + 3.72201i) q^{79} +(-1.34607 - 0.489931i) q^{81} +(3.01150 - 0.263472i) q^{82} +(-0.458159 + 0.122763i) q^{83} +(-3.76629 - 6.52341i) q^{84} +(1.61024 + 0.283929i) q^{86} +(2.25319 + 0.603740i) q^{87} +(-0.423695 - 1.58125i) q^{88} +(-1.43212 - 1.20169i) q^{89} +(0.215486 + 0.592042i) q^{91} +(-0.914930 + 10.4577i) q^{92} +(0.839078 - 1.19833i) q^{93} -4.57054 q^{94} +7.91429 q^{96} +(0.682796 - 0.975134i) q^{97} +(-2.19778 + 25.1208i) q^{98} +(-0.850264 - 2.33608i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{3} - 12 q^{6} + 18 q^{8} - 12 q^{11} + 18 q^{12} + 12 q^{13} + 12 q^{16} + 30 q^{17} + 24 q^{21} + 24 q^{22} - 48 q^{26} + 18 q^{27} - 36 q^{31} - 18 q^{32} - 90 q^{33} + 24 q^{36}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06046 1.51450i 0.749860 1.07091i −0.244988 0.969526i \(-0.578784\pi\)
0.994847 0.101384i \(-0.0323272\pi\)
\(3\) −0.101890 + 1.16461i −0.0588265 + 0.672390i 0.908338 + 0.418237i \(0.137352\pi\)
−0.967164 + 0.254152i \(0.918204\pi\)
\(4\) −0.485079 1.33274i −0.242540 0.666372i
\(5\) 0 0
\(6\) 1.65575 + 1.38934i 0.675957 + 0.567196i
\(7\) −1.17582 4.38823i −0.444419 1.65859i −0.717466 0.696593i \(-0.754698\pi\)
0.273048 0.962001i \(-0.411968\pi\)
\(8\) 1.03888 + 0.278366i 0.367298 + 0.0984172i
\(9\) 1.60848 + 0.283619i 0.536161 + 0.0945396i
\(10\) 0 0
\(11\) −0.761040 1.31816i −0.229462 0.397440i 0.728187 0.685379i \(-0.240363\pi\)
−0.957649 + 0.287939i \(0.907030\pi\)
\(12\) 1.60156 0.429136i 0.462330 0.123881i
\(13\) −0.138155 + 0.0120870i −0.0383172 + 0.00335232i −0.106298 0.994334i \(-0.533900\pi\)
0.0679810 + 0.997687i \(0.478344\pi\)
\(14\) −7.89287 2.87277i −2.10946 0.767780i
\(15\) 0 0
\(16\) 3.69620 3.10148i 0.924050 0.775370i
\(17\) 4.15164 + 2.90701i 1.00692 + 0.705054i 0.955915 0.293645i \(-0.0948683\pi\)
0.0510063 + 0.998698i \(0.483757\pi\)
\(18\) 2.13527 2.13527i 0.503289 0.503289i
\(19\) 4.14601 1.34559i 0.951160 0.308699i
\(20\) 0 0
\(21\) 5.23039 0.922259i 1.14136 0.201253i
\(22\) −2.80340 0.245266i −0.597687 0.0522909i
\(23\) −6.70821 3.12809i −1.39876 0.652252i −0.430589 0.902548i \(-0.641694\pi\)
−0.968169 + 0.250297i \(0.919472\pi\)
\(24\) −0.430040 + 1.18152i −0.0877815 + 0.241178i
\(25\) 0 0
\(26\) −0.128202 + 0.222052i −0.0251425 + 0.0435481i
\(27\) −1.40192 + 5.23204i −0.269800 + 1.00691i
\(28\) −5.27802 + 3.69571i −0.997452 + 0.698423i
\(29\) 0.346487 1.96502i 0.0643410 0.364896i −0.935589 0.353090i \(-0.885131\pi\)
0.999930 0.0118058i \(-0.00375798\pi\)
\(30\) 0 0
\(31\) −1.08369 0.625668i −0.194636 0.112373i 0.399515 0.916727i \(-0.369179\pi\)
−0.594151 + 0.804353i \(0.702512\pi\)
\(32\) −0.590025 6.74402i −0.104303 1.19218i
\(33\) 1.61269 0.752009i 0.280733 0.130908i
\(34\) 8.80531 3.20487i 1.51010 0.549631i
\(35\) 0 0
\(36\) −0.402250 2.28127i −0.0670417 0.380212i
\(37\) 2.05676 + 2.05676i 0.338129 + 0.338129i 0.855663 0.517534i \(-0.173150\pi\)
−0.517534 + 0.855663i \(0.673150\pi\)
\(38\) 2.35879 7.70606i 0.382647 1.25009i
\(39\) 0.162128i 0.0259613i
\(40\) 0 0
\(41\) 1.05100 + 1.25253i 0.164138 + 0.195613i 0.841844 0.539721i \(-0.181470\pi\)
−0.677706 + 0.735333i \(0.737026\pi\)
\(42\) 4.14987 8.89943i 0.640339 1.37321i
\(43\) 0.373752 + 0.801514i 0.0569966 + 0.122230i 0.932743 0.360541i \(-0.117408\pi\)
−0.875747 + 0.482771i \(0.839630\pi\)
\(44\) −1.38761 + 1.65368i −0.209190 + 0.249302i
\(45\) 0 0
\(46\) −11.8513 + 6.84234i −1.74738 + 1.00885i
\(47\) −1.41793 2.02502i −0.206827 0.295379i 0.702315 0.711866i \(-0.252150\pi\)
−0.909141 + 0.416488i \(0.863261\pi\)
\(48\) 3.23541 + 4.62065i 0.466992 + 0.666934i
\(49\) −11.8118 + 6.81954i −1.68740 + 0.974220i
\(50\) 0 0
\(51\) −3.80855 + 4.53886i −0.533304 + 0.635567i
\(52\) 0.0831248 + 0.178262i 0.0115273 + 0.0247205i
\(53\) −4.74246 + 10.1702i −0.651427 + 1.39699i 0.251780 + 0.967784i \(0.418984\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(54\) 6.43722 + 7.67158i 0.875995 + 1.04397i
\(55\) 0 0
\(56\) 4.88613i 0.652936i
\(57\) 1.14465 + 4.96560i 0.151613 + 0.657710i
\(58\) −2.60859 2.60859i −0.342524 0.342524i
\(59\) 1.86831 + 10.5957i 0.243233 + 1.37944i 0.824561 + 0.565773i \(0.191422\pi\)
−0.581328 + 0.813669i \(0.697467\pi\)
\(60\) 0 0
\(61\) −2.79178 + 1.01612i −0.357451 + 0.130101i −0.514502 0.857489i \(-0.672023\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(62\) −2.09678 + 0.977745i −0.266292 + 0.124174i
\(63\) −0.646704 7.39187i −0.0814771 0.931288i
\(64\) −2.48226 1.43314i −0.310283 0.179142i
\(65\) 0 0
\(66\) 0.571280 3.23989i 0.0703197 0.398803i
\(67\) −11.6415 + 8.15144i −1.42223 + 0.995857i −0.426411 + 0.904530i \(0.640222\pi\)
−0.995821 + 0.0913279i \(0.970889\pi\)
\(68\) 1.86043 6.94321i 0.225610 0.841988i
\(69\) 4.32651 7.49374i 0.520851 0.902141i
\(70\) 0 0
\(71\) −1.79203 + 4.92356i −0.212675 + 0.584319i −0.999458 0.0329100i \(-0.989523\pi\)
0.786784 + 0.617229i \(0.211745\pi\)
\(72\) 1.59206 + 0.742391i 0.187626 + 0.0874916i
\(73\) 6.01690 + 0.526410i 0.704225 + 0.0616117i 0.433642 0.901085i \(-0.357228\pi\)
0.270582 + 0.962697i \(0.412784\pi\)
\(74\) 5.29607 0.933839i 0.615655 0.108557i
\(75\) 0 0
\(76\) −3.80447 4.87285i −0.436403 0.558955i
\(77\) −4.88954 + 4.88954i −0.557215 + 0.557215i
\(78\) −0.245543 0.171931i −0.0278022 0.0194673i
\(79\) −4.43572 + 3.72201i −0.499058 + 0.418759i −0.857259 0.514885i \(-0.827835\pi\)
0.358201 + 0.933644i \(0.383390\pi\)
\(80\) 0 0
\(81\) −1.34607 0.489931i −0.149564 0.0544368i
\(82\) 3.01150 0.263472i 0.332564 0.0290956i
\(83\) −0.458159 + 0.122763i −0.0502895 + 0.0134750i −0.283876 0.958861i \(-0.591620\pi\)
0.233587 + 0.972336i \(0.424954\pi\)
\(84\) −3.76629 6.52341i −0.410936 0.711762i
\(85\) 0 0
\(86\) 1.61024 + 0.283929i 0.173636 + 0.0306168i
\(87\) 2.25319 + 0.603740i 0.241567 + 0.0647278i
\(88\) −0.423695 1.58125i −0.0451661 0.168562i
\(89\) −1.43212 1.20169i −0.151805 0.127379i 0.563722 0.825964i \(-0.309369\pi\)
−0.715527 + 0.698585i \(0.753813\pi\)
\(90\) 0 0
\(91\) 0.215486 + 0.592042i 0.0225890 + 0.0620628i
\(92\) −0.914930 + 10.4577i −0.0953881 + 1.09029i
\(93\) 0.839078 1.19833i 0.0870084 0.124261i
\(94\) −4.57054 −0.471415
\(95\) 0 0
\(96\) 7.91429 0.807749
\(97\) 0.682796 0.975134i 0.0693274 0.0990098i −0.782991 0.622033i \(-0.786307\pi\)
0.852318 + 0.523023i \(0.175196\pi\)
\(98\) −2.19778 + 25.1208i −0.222010 + 2.53758i
\(99\) −0.850264 2.33608i −0.0854548 0.234785i
\(100\) 0 0
\(101\) −0.589039 0.494263i −0.0586116 0.0491810i 0.613011 0.790074i \(-0.289958\pi\)
−0.671623 + 0.740893i \(0.734402\pi\)
\(102\) 2.83526 + 10.5813i 0.280732 + 1.04771i
\(103\) 3.83402 + 1.02732i 0.377777 + 0.101225i 0.442711 0.896665i \(-0.354017\pi\)
−0.0649337 + 0.997890i \(0.520684\pi\)
\(104\) −0.146890 0.0259007i −0.0144038 0.00253977i
\(105\) 0 0
\(106\) 10.3736 + 17.9676i 1.00757 + 1.74517i
\(107\) 14.6290 3.91983i 1.41424 0.378944i 0.530802 0.847496i \(-0.321891\pi\)
0.883436 + 0.468552i \(0.155224\pi\)
\(108\) 7.65302 0.669552i 0.736412 0.0644277i
\(109\) −8.35240 3.04003i −0.800015 0.291182i −0.0905223 0.995894i \(-0.528854\pi\)
−0.709493 + 0.704713i \(0.751076\pi\)
\(110\) 0 0
\(111\) −2.60489 + 2.18576i −0.247245 + 0.207464i
\(112\) −17.9561 12.5730i −1.69669 1.18803i
\(113\) −3.03272 + 3.03272i −0.285294 + 0.285294i −0.835216 0.549922i \(-0.814658\pi\)
0.549922 + 0.835216i \(0.314658\pi\)
\(114\) 8.73424 + 3.53226i 0.818036 + 0.330826i
\(115\) 0 0
\(116\) −2.78695 + 0.491414i −0.258762 + 0.0456267i
\(117\) −0.225647 0.0197416i −0.0208611 0.00182511i
\(118\) 18.0284 + 8.40679i 1.65965 + 0.773907i
\(119\) 7.87503 21.6365i 0.721903 1.98341i
\(120\) 0 0
\(121\) 4.34164 7.51993i 0.394694 0.683630i
\(122\) −1.42166 + 5.30570i −0.128711 + 0.480355i
\(123\) −1.56580 + 1.09639i −0.141184 + 0.0988578i
\(124\) −0.308181 + 1.74778i −0.0276754 + 0.156955i
\(125\) 0 0
\(126\) −11.8808 6.85936i −1.05842 0.611080i
\(127\) −1.16792 13.3493i −0.103636 1.18456i −0.852822 0.522202i \(-0.825111\pi\)
0.749186 0.662360i \(-0.230445\pi\)
\(128\) 7.46818 3.48247i 0.660100 0.307810i
\(129\) −0.971535 + 0.353610i −0.0855389 + 0.0311336i
\(130\) 0 0
\(131\) −1.85946 10.5455i −0.162462 0.921369i −0.951643 0.307207i \(-0.900605\pi\)
0.789180 0.614161i \(-0.210506\pi\)
\(132\) −1.78452 1.78452i −0.155322 0.155322i
\(133\) −10.7797 16.6115i −0.934720 1.44040i
\(134\) 26.2753i 2.26984i
\(135\) 0 0
\(136\) 3.50383 + 4.17570i 0.300451 + 0.358063i
\(137\) −8.82158 + 18.9179i −0.753679 + 1.61627i 0.0334197 + 0.999441i \(0.489360\pi\)
−0.787098 + 0.616828i \(0.788418\pi\)
\(138\) −6.76114 14.4993i −0.575547 1.23426i
\(139\) 4.32307 5.15204i 0.366678 0.436990i −0.550884 0.834582i \(-0.685709\pi\)
0.917562 + 0.397592i \(0.130154\pi\)
\(140\) 0 0
\(141\) 2.50283 1.44501i 0.210777 0.121692i
\(142\) 5.55633 + 7.93526i 0.466277 + 0.665913i
\(143\) 0.121074 + 0.172911i 0.0101247 + 0.0144596i
\(144\) 6.82490 3.94036i 0.568742 0.328363i
\(145\) 0 0
\(146\) 7.17794 8.55433i 0.594050 0.707961i
\(147\) −6.73862 14.4510i −0.555792 1.19190i
\(148\) 1.74344 3.73883i 0.143310 0.307330i
\(149\) 5.56213 + 6.62869i 0.455668 + 0.543043i 0.944144 0.329534i \(-0.106892\pi\)
−0.488476 + 0.872577i \(0.662447\pi\)
\(150\) 0 0
\(151\) 10.4228i 0.848193i −0.905617 0.424097i \(-0.860592\pi\)
0.905617 0.424097i \(-0.139408\pi\)
\(152\) 4.68175 0.243792i 0.379740 0.0197742i
\(153\) 5.85336 + 5.85336i 0.473216 + 0.473216i
\(154\) 2.22002 + 12.5904i 0.178894 + 1.01456i
\(155\) 0 0
\(156\) −0.216076 + 0.0786451i −0.0172999 + 0.00629665i
\(157\) 14.7648 6.88494i 1.17836 0.549478i 0.268049 0.963405i \(-0.413621\pi\)
0.910310 + 0.413927i \(0.135843\pi\)
\(158\) 0.933061 + 10.6649i 0.0742304 + 0.848457i
\(159\) −11.3612 6.55938i −0.901000 0.520193i
\(160\) 0 0
\(161\) −5.83910 + 33.1152i −0.460186 + 2.60984i
\(162\) −2.16946 + 1.51907i −0.170449 + 0.119350i
\(163\) −1.53732 + 5.73737i −0.120413 + 0.449386i −0.999635 0.0270262i \(-0.991396\pi\)
0.879222 + 0.476412i \(0.158063\pi\)
\(164\) 1.15949 2.00829i 0.0905407 0.156821i
\(165\) 0 0
\(166\) −0.299935 + 0.824066i −0.0232795 + 0.0639599i
\(167\) 13.5351 + 6.31154i 1.04738 + 0.488402i 0.868614 0.495490i \(-0.165011\pi\)
0.178767 + 0.983891i \(0.442789\pi\)
\(168\) 5.69045 + 0.497850i 0.439028 + 0.0384099i
\(169\) −12.7836 + 2.25409i −0.983351 + 0.173391i
\(170\) 0 0
\(171\) 7.05041 0.988470i 0.539159 0.0755902i
\(172\) 0.886914 0.886914i 0.0676265 0.0676265i
\(173\) 11.2602 + 7.88448i 0.856098 + 0.599446i 0.917085 0.398692i \(-0.130536\pi\)
−0.0609868 + 0.998139i \(0.519425\pi\)
\(174\) 3.30378 2.77220i 0.250459 0.210160i
\(175\) 0 0
\(176\) −6.90120 2.51183i −0.520198 0.189336i
\(177\) −12.5302 + 1.09625i −0.941831 + 0.0823995i
\(178\) −3.33867 + 0.894595i −0.250244 + 0.0670527i
\(179\) 2.00568 + 3.47394i 0.149912 + 0.259654i 0.931195 0.364523i \(-0.118768\pi\)
−0.781283 + 0.624177i \(0.785434\pi\)
\(180\) 0 0
\(181\) −22.2392 3.92137i −1.65303 0.291473i −0.732096 0.681202i \(-0.761458\pi\)
−0.920930 + 0.389729i \(0.872569\pi\)
\(182\) 1.12516 + 0.301485i 0.0834023 + 0.0223476i
\(183\) −0.898936 3.35487i −0.0664513 0.247999i
\(184\) −6.09824 5.11703i −0.449568 0.377232i
\(185\) 0 0
\(186\) −0.925053 2.54156i −0.0678282 0.186356i
\(187\) 0.672340 7.68488i 0.0491664 0.561974i
\(188\) −2.01102 + 2.87203i −0.146669 + 0.209465i
\(189\) 24.6078 1.78995
\(190\) 0 0
\(191\) 12.6937 0.918482 0.459241 0.888312i \(-0.348121\pi\)
0.459241 + 0.888312i \(0.348121\pi\)
\(192\) 1.92197 2.74485i 0.138706 0.198093i
\(193\) 1.30105 14.8711i 0.0936519 1.07045i −0.793376 0.608731i \(-0.791679\pi\)
0.887028 0.461715i \(-0.152766\pi\)
\(194\) −0.752757 2.06818i −0.0540448 0.148487i
\(195\) 0 0
\(196\) 14.8184 + 12.4341i 1.05845 + 0.888149i
\(197\) 1.63548 + 6.10369i 0.116523 + 0.434870i 0.999396 0.0347415i \(-0.0110608\pi\)
−0.882873 + 0.469611i \(0.844394\pi\)
\(198\) −4.43966 1.18960i −0.315513 0.0845414i
\(199\) −12.5304 2.20944i −0.888254 0.156623i −0.289140 0.957287i \(-0.593369\pi\)
−0.599114 + 0.800664i \(0.704480\pi\)
\(200\) 0 0
\(201\) −8.30712 14.3884i −0.585939 1.01488i
\(202\) −1.37321 + 0.367951i −0.0966189 + 0.0258890i
\(203\) −9.03038 + 0.790056i −0.633808 + 0.0554510i
\(204\) 7.89659 + 2.87412i 0.552872 + 0.201229i
\(205\) 0 0
\(206\) 5.62170 4.71717i 0.391683 0.328661i
\(207\) −9.90284 6.93405i −0.688295 0.481949i
\(208\) −0.473160 + 0.473160i −0.0328077 + 0.0328077i
\(209\) −4.92898 4.44106i −0.340945 0.307194i
\(210\) 0 0
\(211\) 16.9039 2.98061i 1.16371 0.205193i 0.441756 0.897135i \(-0.354356\pi\)
0.721953 + 0.691942i \(0.243245\pi\)
\(212\) 15.8548 + 1.38712i 1.08891 + 0.0952675i
\(213\) −5.55145 2.58868i −0.380379 0.177374i
\(214\) 9.57692 26.3124i 0.654665 1.79868i
\(215\) 0 0
\(216\) −2.91284 + 5.04519i −0.198194 + 0.343282i
\(217\) −1.47135 + 5.49114i −0.0998816 + 0.372763i
\(218\) −13.4615 + 9.42585i −0.911728 + 0.638399i
\(219\) −1.22613 + 6.95372i −0.0828541 + 0.469889i
\(220\) 0 0
\(221\) −0.608705 0.351436i −0.0409460 0.0236402i
\(222\) 0.547943 + 6.26302i 0.0367755 + 0.420346i
\(223\) −17.0209 + 7.93699i −1.13981 + 0.531500i −0.898511 0.438952i \(-0.855350\pi\)
−0.241295 + 0.970452i \(0.577572\pi\)
\(224\) −28.9005 + 10.5189i −1.93100 + 0.702825i
\(225\) 0 0
\(226\) 1.37696 + 7.80913i 0.0915940 + 0.519456i
\(227\) 0.0653385 + 0.0653385i 0.00433667 + 0.00433667i 0.709272 0.704935i \(-0.249024\pi\)
−0.704935 + 0.709272i \(0.749024\pi\)
\(228\) 6.06263 3.93424i 0.401507 0.260551i
\(229\) 10.2958i 0.680367i 0.940359 + 0.340184i \(0.110489\pi\)
−0.940359 + 0.340184i \(0.889511\pi\)
\(230\) 0 0
\(231\) −5.19622 6.19262i −0.341886 0.407444i
\(232\) 0.906952 1.94497i 0.0595443 0.127693i
\(233\) −9.16084 19.6455i −0.600146 1.28702i −0.938266 0.345915i \(-0.887569\pi\)
0.338119 0.941103i \(-0.390209\pi\)
\(234\) −0.269189 + 0.320807i −0.0175974 + 0.0209718i
\(235\) 0 0
\(236\) 13.2151 7.62973i 0.860229 0.496653i
\(237\) −3.88275 5.54514i −0.252212 0.360196i
\(238\) −24.4172 34.8713i −1.58273 2.26037i
\(239\) −8.88903 + 5.13208i −0.574984 + 0.331967i −0.759137 0.650931i \(-0.774379\pi\)
0.184154 + 0.982897i \(0.441046\pi\)
\(240\) 0 0
\(241\) −12.7247 + 15.1647i −0.819672 + 0.976847i −0.999977 0.00676413i \(-0.997847\pi\)
0.180306 + 0.983611i \(0.442291\pi\)
\(242\) −6.78477 14.5500i −0.436142 0.935309i
\(243\) −6.15974 + 13.2096i −0.395147 + 0.847396i
\(244\) 2.70847 + 3.22783i 0.173392 + 0.206640i
\(245\) 0 0
\(246\) 3.53408i 0.225324i
\(247\) −0.556526 + 0.236012i −0.0354109 + 0.0150171i
\(248\) −0.951653 0.951653i −0.0604300 0.0604300i
\(249\) −0.0962897 0.546086i −0.00610211 0.0346068i
\(250\) 0 0
\(251\) 5.76397 2.09791i 0.363819 0.132419i −0.153641 0.988127i \(-0.549100\pi\)
0.517460 + 0.855708i \(0.326878\pi\)
\(252\) −9.53777 + 4.44753i −0.600823 + 0.280168i
\(253\) 0.981894 + 11.2231i 0.0617311 + 0.705590i
\(254\) −21.4560 12.3877i −1.34627 0.777270i
\(255\) 0 0
\(256\) 3.64098 20.6490i 0.227561 1.29056i
\(257\) 19.0585 13.3449i 1.18883 0.832430i 0.199759 0.979845i \(-0.435984\pi\)
0.989075 + 0.147415i \(0.0470952\pi\)
\(258\) −0.494735 + 1.84638i −0.0308008 + 0.114950i
\(259\) 6.60714 11.4439i 0.410548 0.711090i
\(260\) 0 0
\(261\) 1.11464 3.06244i 0.0689942 0.189560i
\(262\) −17.9431 8.36700i −1.10853 0.516915i
\(263\) −12.5544 1.09837i −0.774140 0.0677285i −0.306762 0.951786i \(-0.599246\pi\)
−0.467378 + 0.884058i \(0.654801\pi\)
\(264\) 1.88472 0.332326i 0.115996 0.0204533i
\(265\) 0 0
\(266\) −36.5895 1.28997i −2.24344 0.0790930i
\(267\) 1.54543 1.54543i 0.0945787 0.0945787i
\(268\) 16.5108 + 11.5610i 1.00856 + 0.706201i
\(269\) 13.4512 11.2869i 0.820136 0.688176i −0.132868 0.991134i \(-0.542419\pi\)
0.953004 + 0.302958i \(0.0979742\pi\)
\(270\) 0 0
\(271\) −15.7503 5.73264i −0.956762 0.348233i −0.183998 0.982927i \(-0.558904\pi\)
−0.772764 + 0.634694i \(0.781126\pi\)
\(272\) 24.3613 2.13134i 1.47712 0.129231i
\(273\) −0.711455 + 0.190634i −0.0430592 + 0.0115377i
\(274\) 19.2962 + 33.4220i 1.16573 + 2.01910i
\(275\) 0 0
\(276\) −12.0859 2.13108i −0.727489 0.128276i
\(277\) −29.0963 7.79634i −1.74823 0.468437i −0.763982 0.645237i \(-0.776759\pi\)
−0.984247 + 0.176800i \(0.943425\pi\)
\(278\) −3.21829 12.0108i −0.193020 0.720361i
\(279\) −1.56564 1.31373i −0.0937325 0.0786509i
\(280\) 0 0
\(281\) 9.59450 + 26.3607i 0.572360 + 1.57255i 0.800764 + 0.598980i \(0.204427\pi\)
−0.228404 + 0.973566i \(0.573351\pi\)
\(282\) 0.465694 5.32291i 0.0277317 0.316975i
\(283\) 11.2068 16.0049i 0.666173 0.951394i −0.333789 0.942648i \(-0.608327\pi\)
0.999962 0.00874584i \(-0.00278392\pi\)
\(284\) 7.43112 0.440956
\(285\) 0 0
\(286\) 0.390268 0.0230770
\(287\) 4.26061 6.08478i 0.251496 0.359173i
\(288\) 0.963685 11.0150i 0.0567857 0.649063i
\(289\) 2.97107 + 8.16296i 0.174769 + 0.480174i
\(290\) 0 0
\(291\) 1.06608 + 0.894550i 0.0624949 + 0.0524394i
\(292\) −2.21710 8.27434i −0.129746 0.484219i
\(293\) 5.41159 + 1.45003i 0.316148 + 0.0847117i 0.413404 0.910548i \(-0.364340\pi\)
−0.0972556 + 0.995259i \(0.531006\pi\)
\(294\) −29.0321 5.11913i −1.69318 0.298554i
\(295\) 0 0
\(296\) 1.56418 + 2.70925i 0.0909164 + 0.157472i
\(297\) 7.96359 2.13384i 0.462094 0.123818i
\(298\) 15.9376 1.39436i 0.923238 0.0807728i
\(299\) 0.964579 + 0.351078i 0.0557831 + 0.0203034i
\(300\) 0 0
\(301\) 3.07776 2.58254i 0.177399 0.148855i
\(302\) −15.7853 11.0530i −0.908339 0.636026i
\(303\) 0.635642 0.635642i 0.0365167 0.0365167i
\(304\) 11.1512 17.8323i 0.639563 1.02275i
\(305\) 0 0
\(306\) 15.0721 2.65763i 0.861617 0.151926i
\(307\) 16.2726 + 1.42367i 0.928725 + 0.0812529i 0.541470 0.840720i \(-0.317868\pi\)
0.387255 + 0.921973i \(0.373423\pi\)
\(308\) 8.88832 + 4.14469i 0.506459 + 0.236166i
\(309\) −1.58708 + 4.36047i −0.0902859 + 0.248059i
\(310\) 0 0
\(311\) 0.890255 1.54197i 0.0504817 0.0874369i −0.839680 0.543081i \(-0.817258\pi\)
0.890162 + 0.455644i \(0.150591\pi\)
\(312\) 0.0451310 0.168431i 0.00255504 0.00953553i
\(313\) 3.59819 2.51948i 0.203382 0.142409i −0.467449 0.884020i \(-0.654827\pi\)
0.670830 + 0.741611i \(0.265938\pi\)
\(314\) 5.23029 29.6624i 0.295162 1.67395i
\(315\) 0 0
\(316\) 7.11217 + 4.10622i 0.400091 + 0.230993i
\(317\) −0.800161 9.14589i −0.0449415 0.513684i −0.984986 0.172633i \(-0.944773\pi\)
0.940045 0.341051i \(-0.110783\pi\)
\(318\) −21.9822 + 10.2505i −1.23270 + 0.574819i
\(319\) −2.85391 + 1.03874i −0.159788 + 0.0581581i
\(320\) 0 0
\(321\) 3.07453 + 17.4365i 0.171603 + 0.973211i
\(322\) 43.9607 + 43.9607i 2.44983 + 2.44983i
\(323\) 21.1244 + 6.46609i 1.17539 + 0.359783i
\(324\) 2.03163i 0.112868i
\(325\) 0 0
\(326\) 7.05896 + 8.41254i 0.390959 + 0.465927i
\(327\) 4.39148 9.41757i 0.242850 0.520793i
\(328\) 0.743195 + 1.59379i 0.0410361 + 0.0880021i
\(329\) −7.21899 + 8.60326i −0.397996 + 0.474313i
\(330\) 0 0
\(331\) 9.85862 5.69188i 0.541879 0.312854i −0.203961 0.978979i \(-0.565382\pi\)
0.745840 + 0.666125i \(0.232048\pi\)
\(332\) 0.385856 + 0.551059i 0.0211766 + 0.0302433i
\(333\) 2.72492 + 3.89159i 0.149325 + 0.213258i
\(334\) 23.9123 13.8058i 1.30842 0.755418i
\(335\) 0 0
\(336\) 16.4722 19.6308i 0.898632 1.07095i
\(337\) 6.59306 + 14.1389i 0.359147 + 0.770193i 0.999997 + 0.00252652i \(0.000804216\pi\)
−0.640850 + 0.767666i \(0.721418\pi\)
\(338\) −10.1427 + 21.7510i −0.551688 + 1.18310i
\(339\) −3.22294 3.84095i −0.175046 0.208612i
\(340\) 0 0
\(341\) 1.90463i 0.103142i
\(342\) 5.97966 11.7261i 0.323343 0.634073i
\(343\) 21.3274 + 21.3274i 1.15157 + 1.15157i
\(344\) 0.165168 + 0.936712i 0.00890524 + 0.0505041i
\(345\) 0 0
\(346\) 23.8820 8.69235i 1.28391 0.467304i
\(347\) −12.7342 + 5.93804i −0.683606 + 0.318770i −0.733214 0.679998i \(-0.761981\pi\)
0.0496082 + 0.998769i \(0.484203\pi\)
\(348\) −0.288344 3.29579i −0.0154569 0.176673i
\(349\) 20.6061 + 11.8969i 1.10302 + 0.636829i 0.937012 0.349296i \(-0.113579\pi\)
0.166007 + 0.986125i \(0.446913\pi\)
\(350\) 0 0
\(351\) 0.130442 0.739776i 0.00696250 0.0394863i
\(352\) −8.44066 + 5.91022i −0.449889 + 0.315016i
\(353\) −3.32012 + 12.3909i −0.176712 + 0.659499i 0.819542 + 0.573020i \(0.194228\pi\)
−0.996254 + 0.0864789i \(0.972438\pi\)
\(354\) −11.6276 + 20.1395i −0.617999 + 1.07040i
\(355\) 0 0
\(356\) −0.906858 + 2.49157i −0.0480634 + 0.132053i
\(357\) 24.3957 + 11.3759i 1.29116 + 0.602077i
\(358\) 7.38821 + 0.646385i 0.390479 + 0.0341625i
\(359\) −1.62390 + 0.286337i −0.0857062 + 0.0151123i −0.216337 0.976319i \(-0.569411\pi\)
0.130631 + 0.991431i \(0.458300\pi\)
\(360\) 0 0
\(361\) 15.3788 11.1576i 0.809409 0.587245i
\(362\) −29.5227 + 29.5227i −1.55168 + 1.55168i
\(363\) 8.31544 + 5.82253i 0.436447 + 0.305604i
\(364\) 0.684513 0.574375i 0.0358782 0.0301054i
\(365\) 0 0
\(366\) −6.03423 2.19628i −0.315414 0.114801i
\(367\) −17.6746 + 1.54633i −0.922606 + 0.0807176i −0.538551 0.842593i \(-0.681028\pi\)
−0.384055 + 0.923310i \(0.625473\pi\)
\(368\) −34.4966 + 9.24333i −1.79826 + 0.481842i
\(369\) 1.33527 + 2.31276i 0.0695114 + 0.120397i
\(370\) 0 0
\(371\) 50.2056 + 8.85260i 2.60654 + 0.459604i
\(372\) −2.00409 0.536993i −0.103907 0.0278418i
\(373\) 3.36965 + 12.5757i 0.174474 + 0.651145i 0.996641 + 0.0818983i \(0.0260983\pi\)
−0.822167 + 0.569246i \(0.807235\pi\)
\(374\) −10.9257 9.16778i −0.564956 0.474054i
\(375\) 0 0
\(376\) −0.909359 2.49844i −0.0468966 0.128847i
\(377\) −0.0241176 + 0.275665i −0.00124212 + 0.0141975i
\(378\) 26.0956 37.2684i 1.34221 1.91688i
\(379\) −19.2818 −0.990442 −0.495221 0.868767i \(-0.664913\pi\)
−0.495221 + 0.868767i \(0.664913\pi\)
\(380\) 0 0
\(381\) 15.6658 0.802583
\(382\) 13.4612 19.2245i 0.688733 0.983612i
\(383\) 1.30745 14.9442i 0.0668074 0.763612i −0.886720 0.462306i \(-0.847022\pi\)
0.953528 0.301305i \(-0.0974224\pi\)
\(384\) 3.29479 + 9.05237i 0.168137 + 0.461952i
\(385\) 0 0
\(386\) −21.1425 17.7407i −1.07613 0.902977i
\(387\) 0.373849 + 1.39522i 0.0190038 + 0.0709232i
\(388\) −1.63081 0.436975i −0.0827921 0.0221841i
\(389\) −13.3902 2.36105i −0.678909 0.119710i −0.176448 0.984310i \(-0.556461\pi\)
−0.502461 + 0.864600i \(0.667572\pi\)
\(390\) 0 0
\(391\) −18.7567 32.4875i −0.948566 1.64297i
\(392\) −14.1693 + 3.79666i −0.715658 + 0.191760i
\(393\) 12.4709 1.09107i 0.629076 0.0550370i
\(394\) 10.9784 + 3.99580i 0.553082 + 0.201306i
\(395\) 0 0
\(396\) −2.70095 + 2.26637i −0.135728 + 0.113889i
\(397\) 3.83927 + 2.68829i 0.192687 + 0.134921i 0.665939 0.746006i \(-0.268031\pi\)
−0.473252 + 0.880927i \(0.656920\pi\)
\(398\) −16.6342 + 16.6342i −0.833795 + 0.833795i
\(399\) 20.4443 10.8617i 1.02349 0.543763i
\(400\) 0 0
\(401\) −29.5512 + 5.21067i −1.47572 + 0.260209i −0.852865 0.522132i \(-0.825137\pi\)
−0.622851 + 0.782340i \(0.714026\pi\)
\(402\) −30.6005 2.67720i −1.52621 0.133526i
\(403\) 0.157279 + 0.0733404i 0.00783463 + 0.00365335i
\(404\) −0.372995 + 1.02480i −0.0185572 + 0.0509855i
\(405\) 0 0
\(406\) −8.37983 + 14.5143i −0.415884 + 0.720333i
\(407\) 1.14586 4.27641i 0.0567982 0.211974i
\(408\) −5.22008 + 3.65514i −0.258432 + 0.180956i
\(409\) 5.94508 33.7162i 0.293965 1.66716i −0.377414 0.926045i \(-0.623187\pi\)
0.671379 0.741114i \(-0.265702\pi\)
\(410\) 0 0
\(411\) −21.1332 12.2013i −1.04243 0.601845i
\(412\) −0.490645 5.60810i −0.0241723 0.276291i
\(413\) 44.2995 20.6572i 2.17984 1.01647i
\(414\) −21.0032 + 7.64453i −1.03225 + 0.375708i
\(415\) 0 0
\(416\) 0.163029 + 0.924586i 0.00799317 + 0.0453315i
\(417\) 5.55965 + 5.55965i 0.272257 + 0.272257i
\(418\) −11.9530 + 2.75535i −0.584638 + 0.134769i
\(419\) 7.01480i 0.342696i −0.985211 0.171348i \(-0.945188\pi\)
0.985211 0.171348i \(-0.0548122\pi\)
\(420\) 0 0
\(421\) −2.21994 2.64562i −0.108193 0.128939i 0.709230 0.704977i \(-0.249043\pi\)
−0.817423 + 0.576037i \(0.804598\pi\)
\(422\) 13.4118 28.7616i 0.652875 1.40009i
\(423\) −1.70638 3.65935i −0.0829672 0.177924i
\(424\) −7.75787 + 9.24547i −0.376755 + 0.449000i
\(425\) 0 0
\(426\) −9.80765 + 5.66245i −0.475182 + 0.274347i
\(427\) 7.74162 + 11.0562i 0.374643 + 0.535046i
\(428\) −12.3203 17.5953i −0.595526 0.850500i
\(429\) −0.213711 + 0.123386i −0.0103181 + 0.00595714i
\(430\) 0 0
\(431\) −6.73534 + 8.02687i −0.324430 + 0.386641i −0.903465 0.428662i \(-0.858985\pi\)
0.579035 + 0.815303i \(0.303429\pi\)
\(432\) 11.0453 + 23.6867i 0.531416 + 1.13963i
\(433\) 10.0690 21.5929i 0.483883 1.03769i −0.501156 0.865357i \(-0.667092\pi\)
0.985039 0.172333i \(-0.0551306\pi\)
\(434\) 6.75601 + 8.05150i 0.324299 + 0.386484i
\(435\) 0 0
\(436\) 12.6063i 0.603731i
\(437\) −32.0214 3.94259i −1.53179 0.188600i
\(438\) 9.23112 + 9.23112i 0.441080 + 0.441080i
\(439\) −0.100282 0.568729i −0.00478621 0.0271439i 0.982321 0.187204i \(-0.0599424\pi\)
−0.987107 + 0.160060i \(0.948831\pi\)
\(440\) 0 0
\(441\) −20.9332 + 7.61906i −0.996819 + 0.362813i
\(442\) −1.17776 + 0.549197i −0.0560202 + 0.0261227i
\(443\) 0.740596 + 8.46505i 0.0351868 + 0.402187i 0.993281 + 0.115732i \(0.0369213\pi\)
−0.958094 + 0.286455i \(0.907523\pi\)
\(444\) 4.17664 + 2.41139i 0.198215 + 0.114439i
\(445\) 0 0
\(446\) −6.02950 + 34.1950i −0.285505 + 1.61918i
\(447\) −8.28659 + 5.80233i −0.391942 + 0.274441i
\(448\) −3.37022 + 12.5778i −0.159228 + 0.594247i
\(449\) −4.27636 + 7.40687i −0.201814 + 0.349552i −0.949113 0.314936i \(-0.898017\pi\)
0.747299 + 0.664488i \(0.231350\pi\)
\(450\) 0 0
\(451\) 0.851185 2.33861i 0.0400807 0.110121i
\(452\) 5.51295 + 2.57073i 0.259308 + 0.120917i
\(453\) 12.1385 + 1.06198i 0.570316 + 0.0498962i
\(454\) 0.168244 0.0296659i 0.00789608 0.00139229i
\(455\) 0 0
\(456\) −0.193102 + 5.47727i −0.00904283 + 0.256497i
\(457\) −1.00342 + 1.00342i −0.0469379 + 0.0469379i −0.730186 0.683248i \(-0.760567\pi\)
0.683248 + 0.730186i \(0.260567\pi\)
\(458\) 15.5930 + 10.9183i 0.728612 + 0.510180i
\(459\) −21.0299 + 17.6462i −0.981590 + 0.823652i
\(460\) 0 0
\(461\) −0.708319 0.257807i −0.0329897 0.0120073i 0.325473 0.945551i \(-0.394477\pi\)
−0.358462 + 0.933544i \(0.616699\pi\)
\(462\) −14.8891 + 1.30263i −0.692703 + 0.0606037i
\(463\) −21.1144 + 5.65758i −0.981269 + 0.262930i −0.713579 0.700575i \(-0.752927\pi\)
−0.267690 + 0.963505i \(0.586260\pi\)
\(464\) −4.81380 8.33774i −0.223475 0.387070i
\(465\) 0 0
\(466\) −39.4677 6.95922i −1.82831 0.322380i
\(467\) −3.02917 0.811663i −0.140173 0.0375593i 0.188050 0.982159i \(-0.439783\pi\)
−0.328223 + 0.944600i \(0.606450\pi\)
\(468\) 0.0831464 + 0.310306i 0.00384344 + 0.0143439i
\(469\) 49.4587 + 41.5008i 2.28379 + 1.91633i
\(470\) 0 0
\(471\) 6.51390 + 17.8968i 0.300145 + 0.824640i
\(472\) −1.00854 + 11.5277i −0.0464219 + 0.530605i
\(473\) 0.772083 1.10265i 0.0355004 0.0506999i
\(474\) −12.5156 −0.574860
\(475\) 0 0
\(476\) −32.6559 −1.49678
\(477\) −10.5126 + 15.0136i −0.481340 + 0.687425i
\(478\) −1.65395 + 18.9048i −0.0756501 + 0.864684i
\(479\) 9.80127 + 26.9288i 0.447831 + 1.23041i 0.934230 + 0.356670i \(0.116088\pi\)
−0.486399 + 0.873737i \(0.661690\pi\)
\(480\) 0 0
\(481\) −0.309011 0.259291i −0.0140897 0.0118226i
\(482\) 9.47285 + 35.3532i 0.431477 + 1.61029i
\(483\) −37.9715 10.1744i −1.72776 0.462952i
\(484\) −12.1282 2.13853i −0.551281 0.0972058i
\(485\) 0 0
\(486\) 13.4737 + 23.3372i 0.611181 + 1.05860i
\(487\) 9.40703 2.52061i 0.426273 0.114220i −0.0393029 0.999227i \(-0.512514\pi\)
0.465576 + 0.885008i \(0.345847\pi\)
\(488\) −3.18316 + 0.278491i −0.144095 + 0.0126067i
\(489\) −6.52518 2.37497i −0.295079 0.107400i
\(490\) 0 0
\(491\) 6.63665 5.56881i 0.299508 0.251317i −0.480631 0.876923i \(-0.659593\pi\)
0.780139 + 0.625606i \(0.215148\pi\)
\(492\) 2.22074 + 1.55498i 0.100119 + 0.0701039i
\(493\) 7.15084 7.15084i 0.322057 0.322057i
\(494\) −0.232735 + 1.09314i −0.0104713 + 0.0491826i
\(495\) 0 0
\(496\) −5.94602 + 1.04844i −0.266984 + 0.0470765i
\(497\) 23.7128 + 2.07460i 1.06366 + 0.0930586i
\(498\) −0.929157 0.433273i −0.0416365 0.0194154i
\(499\) 0.511920 1.40649i 0.0229167 0.0629631i −0.927707 0.373310i \(-0.878223\pi\)
0.950623 + 0.310347i \(0.100445\pi\)
\(500\) 0 0
\(501\) −8.72960 + 15.1201i −0.390010 + 0.675517i
\(502\) 2.93519 10.9543i 0.131004 0.488913i
\(503\) −6.48967 + 4.54411i −0.289360 + 0.202612i −0.709239 0.704968i \(-0.750961\pi\)
0.419879 + 0.907580i \(0.362072\pi\)
\(504\) 1.38580 7.85925i 0.0617283 0.350079i
\(505\) 0 0
\(506\) 18.0386 + 10.4146i 0.801913 + 0.462985i
\(507\) −1.32262 15.1176i −0.0587394 0.671395i
\(508\) −17.2247 + 8.03202i −0.764223 + 0.356363i
\(509\) 31.2055 11.3579i 1.38316 0.503430i 0.460026 0.887905i \(-0.347840\pi\)
0.923135 + 0.384476i \(0.125618\pi\)
\(510\) 0 0
\(511\) −4.76479 27.0225i −0.210782 1.19540i
\(512\) −15.7583 15.7583i −0.696424 0.696424i
\(513\) 1.22780 + 23.5785i 0.0542087 + 1.04102i
\(514\) 43.0157i 1.89734i
\(515\) 0 0
\(516\) 0.942543 + 1.12328i 0.0414931 + 0.0494496i
\(517\) −1.59019 + 3.41018i −0.0699366 + 0.149979i
\(518\) −10.3251 22.1423i −0.453660 0.972877i
\(519\) −10.3297 + 12.3104i −0.453423 + 0.540368i
\(520\) 0 0
\(521\) 26.1470 15.0960i 1.14552 0.661367i 0.197729 0.980257i \(-0.436643\pi\)
0.947792 + 0.318890i \(0.103310\pi\)
\(522\) −3.45602 4.93571i −0.151266 0.216030i
\(523\) −4.88803 6.98083i −0.213739 0.305250i 0.697939 0.716158i \(-0.254101\pi\)
−0.911677 + 0.410907i \(0.865212\pi\)
\(524\) −13.1525 + 7.59362i −0.574571 + 0.331729i
\(525\) 0 0
\(526\) −14.9770 + 17.8489i −0.653028 + 0.778248i
\(527\) −2.68026 5.74784i −0.116754 0.250380i
\(528\) 3.62848 7.78130i 0.157909 0.338637i
\(529\) 20.4310 + 24.3487i 0.888304 + 1.05864i
\(530\) 0 0
\(531\) 17.5729i 0.762598i
\(532\) −16.9098 + 22.4245i −0.733133 + 0.972225i
\(533\) −0.160340 0.160340i −0.00694508 0.00694508i
\(534\) −0.701678 3.97941i −0.0303646 0.172206i
\(535\) 0 0
\(536\) −14.3631 + 5.22775i −0.620392 + 0.225804i
\(537\) −4.25015 + 1.98188i −0.183408 + 0.0855244i
\(538\) −2.82949 32.3412i −0.121988 1.39433i
\(539\) 17.9785 + 10.3799i 0.774389 + 0.447094i
\(540\) 0 0
\(541\) 3.84885 21.8279i 0.165475 0.938454i −0.783099 0.621897i \(-0.786362\pi\)
0.948574 0.316557i \(-0.102527\pi\)
\(542\) −25.3846 + 17.7745i −1.09036 + 0.763481i
\(543\) 6.83284 25.5005i 0.293225 1.09433i
\(544\) 17.1554 29.7139i 0.735530 1.27397i
\(545\) 0 0
\(546\) −0.465757 + 1.27966i −0.0199326 + 0.0547642i
\(547\) −28.6999 13.3830i −1.22712 0.572216i −0.302516 0.953144i \(-0.597827\pi\)
−0.924605 + 0.380928i \(0.875604\pi\)
\(548\) 29.4920 + 2.58021i 1.25983 + 0.110221i
\(549\) −4.77872 + 0.842616i −0.203951 + 0.0359620i
\(550\) 0 0
\(551\) −1.20758 8.61324i −0.0514446 0.366936i
\(552\) 6.58071 6.58071i 0.280094 0.280094i
\(553\) 21.5487 + 15.0885i 0.916342 + 0.641630i
\(554\) −42.6631 + 35.7986i −1.81258 + 1.52094i
\(555\) 0 0
\(556\) −8.96338 3.26240i −0.380132 0.138357i
\(557\) 0.255505 0.0223538i 0.0108261 0.000947162i −0.0817414 0.996654i \(-0.526048\pi\)
0.0925675 + 0.995706i \(0.470493\pi\)
\(558\) −3.64994 + 0.977999i −0.154514 + 0.0414020i
\(559\) −0.0613234 0.106215i −0.00259370 0.00449243i
\(560\) 0 0
\(561\) 8.88141 + 1.56603i 0.374973 + 0.0661179i
\(562\) 50.0978 + 13.4237i 2.11325 + 0.566243i
\(563\) 1.38026 + 5.15121i 0.0581711 + 0.217097i 0.988893 0.148631i \(-0.0474866\pi\)
−0.930722 + 0.365728i \(0.880820\pi\)
\(564\) −3.13990 2.63469i −0.132214 0.110941i
\(565\) 0 0
\(566\) −12.3550 33.9452i −0.519321 1.42682i
\(567\) −0.567185 + 6.48295i −0.0238195 + 0.272258i
\(568\) −3.23224 + 4.61612i −0.135622 + 0.193688i
\(569\) −20.8877 −0.875659 −0.437830 0.899058i \(-0.644253\pi\)
−0.437830 + 0.899058i \(0.644253\pi\)
\(570\) 0 0
\(571\) −14.0563 −0.588237 −0.294118 0.955769i \(-0.595026\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(572\) 0.171716 0.245236i 0.00717982 0.0102538i
\(573\) −1.29336 + 14.7832i −0.0540311 + 0.617578i
\(574\) −4.69716 12.9053i −0.196056 0.538659i
\(575\) 0 0
\(576\) −3.58621 3.00919i −0.149425 0.125383i
\(577\) 7.13342 + 26.6223i 0.296968 + 1.10830i 0.939642 + 0.342160i \(0.111159\pi\)
−0.642673 + 0.766140i \(0.722175\pi\)
\(578\) 15.5135 + 4.15682i 0.645275 + 0.172901i
\(579\) 17.1865 + 3.03045i 0.714248 + 0.125941i
\(580\) 0 0
\(581\) 1.07743 + 1.86616i 0.0446992 + 0.0774212i
\(582\) 2.48533 0.665943i 0.103020 0.0276042i
\(583\) 17.0152 1.48864i 0.704698 0.0616531i
\(584\) 6.10427 + 2.22177i 0.252597 + 0.0919376i
\(585\) 0 0
\(586\) 7.93484 6.65812i 0.327785 0.275045i
\(587\) 13.4922 + 9.44733i 0.556882 + 0.389933i 0.817865 0.575410i \(-0.195158\pi\)
−0.260983 + 0.965343i \(0.584047\pi\)
\(588\) −15.9907 + 15.9907i −0.659447 + 0.659447i
\(589\) −5.33487 1.13583i −0.219820 0.0468009i
\(590\) 0 0
\(591\) −7.27507 + 1.28279i −0.299256 + 0.0527670i
\(592\) 13.9812 + 1.22319i 0.574623 + 0.0502730i
\(593\) −17.2159 8.02791i −0.706972 0.329667i 0.0356619 0.999364i \(-0.488646\pi\)
−0.742634 + 0.669697i \(0.766424\pi\)
\(594\) 5.21339 14.3237i 0.213908 0.587707i
\(595\) 0 0
\(596\) 6.13628 10.6283i 0.251352 0.435354i
\(597\) 3.84987 14.3679i 0.157565 0.588039i
\(598\) 1.55461 1.08855i 0.0635726 0.0445140i
\(599\) −6.72471 + 38.1377i −0.274764 + 1.55826i 0.464946 + 0.885339i \(0.346074\pi\)
−0.739710 + 0.672926i \(0.765037\pi\)
\(600\) 0 0
\(601\) 24.2204 + 13.9836i 0.987970 + 0.570405i 0.904667 0.426120i \(-0.140120\pi\)
0.0833031 + 0.996524i \(0.473453\pi\)
\(602\) −0.647411 7.39994i −0.0263865 0.301599i
\(603\) −21.0370 + 9.80971i −0.856692 + 0.399482i
\(604\) −13.8909 + 5.05587i −0.565213 + 0.205721i
\(605\) 0 0
\(606\) −0.288603 1.63675i −0.0117237 0.0664885i
\(607\) −31.1811 31.1811i −1.26560 1.26560i −0.948338 0.317263i \(-0.897236\pi\)
−0.317263 0.948338i \(-0.602764\pi\)
\(608\) −11.5209 27.1668i −0.467235 1.10176i
\(609\) 10.5974i 0.429428i
\(610\) 0 0
\(611\) 0.220370 + 0.262627i 0.00891522 + 0.0106247i
\(612\) 4.96169 10.6404i 0.200564 0.430112i
\(613\) −6.16710 13.2254i −0.249087 0.534169i 0.741516 0.670935i \(-0.234107\pi\)
−0.990603 + 0.136766i \(0.956329\pi\)
\(614\) 19.4126 23.1350i 0.783428 0.933653i
\(615\) 0 0
\(616\) −6.44070 + 3.71854i −0.259503 + 0.149824i
\(617\) −3.52558 5.03505i −0.141935 0.202704i 0.741891 0.670521i \(-0.233929\pi\)
−0.883825 + 0.467817i \(0.845040\pi\)
\(618\) 4.92088 + 7.02774i 0.197947 + 0.282697i
\(619\) −19.4464 + 11.2274i −0.781618 + 0.451268i −0.837003 0.547198i \(-0.815695\pi\)
0.0553852 + 0.998465i \(0.482361\pi\)
\(620\) 0 0
\(621\) 25.7707 30.7123i 1.03414 1.23244i
\(622\) −1.39122 2.98348i −0.0557829 0.119627i
\(623\) −3.58938 + 7.69746i −0.143806 + 0.308392i
\(624\) −0.502837 0.599258i −0.0201296 0.0239895i
\(625\) 0 0
\(626\) 8.12126i 0.324591i
\(627\) 5.67433 5.28785i 0.226611 0.211177i
\(628\) −16.3380 16.3380i −0.651956 0.651956i
\(629\) 2.55990 + 14.5179i 0.102070 + 0.578868i
\(630\) 0 0
\(631\) 12.9935 4.72926i 0.517264 0.188269i −0.0701787 0.997534i \(-0.522357\pi\)
0.587443 + 0.809266i \(0.300135\pi\)
\(632\) −5.64425 + 2.63196i −0.224516 + 0.104694i
\(633\) 1.74891 + 19.9901i 0.0695130 + 0.794537i
\(634\) −14.7000 8.48702i −0.583810 0.337063i
\(635\) 0 0
\(636\) −3.23090 + 18.3234i −0.128114 + 0.726569i
\(637\) 1.54943 1.08492i 0.0613905 0.0429861i
\(638\) −1.45330 + 5.42377i −0.0575365 + 0.214729i
\(639\) −4.27886 + 7.41120i −0.169269 + 0.293183i
\(640\) 0 0
\(641\) 10.3038 28.3093i 0.406974 1.11815i −0.551799 0.833977i \(-0.686058\pi\)
0.958773 0.284174i \(-0.0917194\pi\)
\(642\) 29.6679 + 13.8344i 1.17090 + 0.546000i
\(643\) 25.5226 + 2.23293i 1.00651 + 0.0880584i 0.578473 0.815702i \(-0.303649\pi\)
0.428039 + 0.903760i \(0.359205\pi\)
\(644\) 46.9665 8.28147i 1.85074 0.326336i
\(645\) 0 0
\(646\) 32.1945 25.1358i 1.26667 0.988953i
\(647\) 5.87443 5.87443i 0.230948 0.230948i −0.582141 0.813088i \(-0.697785\pi\)
0.813088 + 0.582141i \(0.197785\pi\)
\(648\) −1.26202 0.883679i −0.0495770 0.0347142i
\(649\) 12.5450 10.5265i 0.492433 0.413200i
\(650\) 0 0
\(651\) −6.24514 2.27305i −0.244766 0.0890877i
\(652\) 8.39218 0.734220i 0.328663 0.0287543i
\(653\) 5.27313 1.41293i 0.206353 0.0552922i −0.154162 0.988046i \(-0.549268\pi\)
0.360515 + 0.932753i \(0.382601\pi\)
\(654\) −9.60587 16.6379i −0.375619 0.650591i
\(655\) 0 0
\(656\) 7.76940 + 1.36995i 0.303344 + 0.0534878i
\(657\) 9.52877 + 2.55323i 0.371753 + 0.0996108i
\(658\) 5.37414 + 20.0566i 0.209506 + 0.781886i
\(659\) −22.7331 19.0754i −0.885557 0.743071i 0.0817569 0.996652i \(-0.473947\pi\)
−0.967314 + 0.253582i \(0.918391\pi\)
\(660\) 0 0
\(661\) 8.70685 + 23.9219i 0.338657 + 0.930454i 0.985776 + 0.168064i \(0.0537516\pi\)
−0.647119 + 0.762389i \(0.724026\pi\)
\(662\) 1.83436 20.9669i 0.0712945 0.814900i
\(663\) 0.471309 0.673098i 0.0183041 0.0261410i
\(664\) −0.510143 −0.0197974
\(665\) 0 0
\(666\) 8.78348 0.340353
\(667\) −8.47108 + 12.0980i −0.328001 + 0.468435i
\(668\) 1.84605 21.1005i 0.0714259 0.816402i
\(669\) −7.50925 20.6315i −0.290324 0.797660i
\(670\) 0 0
\(671\) 3.46407 + 2.90670i 0.133729 + 0.112212i
\(672\) −9.30579 34.7297i −0.358979 1.33973i
\(673\) −37.3907 10.0188i −1.44131 0.386197i −0.548315 0.836272i \(-0.684731\pi\)
−0.892991 + 0.450075i \(0.851397\pi\)
\(674\) 28.4049 + 5.00855i 1.09412 + 0.192922i
\(675\) 0 0
\(676\) 9.20516 + 15.9438i 0.354045 + 0.613224i
\(677\) 13.0692 3.50187i 0.502289 0.134588i 0.00122697 0.999999i \(-0.499609\pi\)
0.501062 + 0.865411i \(0.332943\pi\)
\(678\) −9.23491 + 0.807950i −0.354665 + 0.0310291i
\(679\) −5.08195 1.84968i −0.195027 0.0709842i
\(680\) 0 0
\(681\) −0.0827514 + 0.0694367i −0.00317104 + 0.00266082i
\(682\) 2.88456 + 2.01979i 0.110456 + 0.0773418i
\(683\) 8.52271 8.52271i 0.326112 0.326112i −0.524994 0.851106i \(-0.675932\pi\)
0.851106 + 0.524994i \(0.175932\pi\)
\(684\) −4.73739 8.91691i −0.181139 0.340947i
\(685\) 0 0
\(686\) 54.9172 9.68339i 2.09675 0.369714i
\(687\) −11.9906 1.04905i −0.457472 0.0400236i
\(688\) 3.86734 + 1.80337i 0.147441 + 0.0687528i
\(689\) 0.532265 1.46239i 0.0202777 0.0557125i
\(690\) 0 0
\(691\) −26.0866 + 45.1834i −0.992383 + 1.71886i −0.389504 + 0.921025i \(0.627354\pi\)
−0.602878 + 0.797833i \(0.705980\pi\)
\(692\) 5.04591 18.8316i 0.191817 0.715869i
\(693\) −9.25150 + 6.47797i −0.351435 + 0.246078i
\(694\) −4.51095 + 25.5829i −0.171233 + 0.971113i
\(695\) 0 0
\(696\) 2.17272 + 1.25442i 0.0823568 + 0.0475487i
\(697\) 0.722248 + 8.25533i 0.0273571 + 0.312693i
\(698\) 39.8698 18.5916i 1.50910 0.703703i
\(699\) 23.8128 8.66714i 0.900682 0.327822i
\(700\) 0 0
\(701\) −4.07872 23.1316i −0.154051 0.873668i −0.959648 0.281204i \(-0.909266\pi\)
0.805597 0.592464i \(-0.201845\pi\)
\(702\) −0.982058 0.982058i −0.0370654 0.0370654i
\(703\) 11.2949 + 5.75979i 0.425995 + 0.217234i
\(704\) 4.36270i 0.164425i
\(705\) 0 0
\(706\) 15.2450 + 18.1683i 0.573755 + 0.683774i
\(707\) −1.47633 + 3.16600i −0.0555232 + 0.119070i
\(708\) 7.53919 + 16.1679i 0.283340 + 0.607625i
\(709\) 8.49230 10.1207i 0.318935 0.380092i −0.582629 0.812739i \(-0.697976\pi\)
0.901564 + 0.432647i \(0.142420\pi\)
\(710\) 0 0
\(711\) −8.19041 + 4.72874i −0.307164 + 0.177341i
\(712\) −1.15329 1.64706i −0.0432213 0.0617264i
\(713\) 5.31246 + 7.58698i 0.198953 + 0.284135i
\(714\) 43.0995 24.8835i 1.61296 0.931242i
\(715\) 0 0
\(716\) 3.65696 4.35819i 0.136667 0.162873i
\(717\) −5.07118 10.8752i −0.189387 0.406141i
\(718\) −1.28843 + 2.76304i −0.0480837 + 0.103116i
\(719\) −30.9997 36.9440i −1.15609 1.37778i −0.913092 0.407753i \(-0.866313\pi\)
−0.243001 0.970026i \(-0.578132\pi\)
\(720\) 0 0
\(721\) 18.0325i 0.671565i
\(722\) −0.589612 35.1234i −0.0219431 1.30716i
\(723\) −16.3645 16.3645i −0.608603 0.608603i
\(724\) 5.56159 + 31.5413i 0.206695 + 1.17222i
\(725\) 0 0
\(726\) 17.6364 6.41913i 0.654549 0.238236i
\(727\) 5.18618 2.41835i 0.192345 0.0896918i −0.324060 0.946037i \(-0.605048\pi\)
0.516404 + 0.856345i \(0.327270\pi\)
\(728\) 0.0590585 + 0.675041i 0.00218885 + 0.0250187i
\(729\) −18.4781 10.6683i −0.684374 0.395124i
\(730\) 0 0
\(731\) −0.778324 + 4.41410i −0.0287874 + 0.163261i
\(732\) −4.03514 + 2.82543i −0.149143 + 0.104431i
\(733\) 3.88782 14.5096i 0.143600 0.535923i −0.856214 0.516622i \(-0.827189\pi\)
0.999814 0.0193008i \(-0.00614401\pi\)
\(734\) −16.4013 + 28.4079i −0.605384 + 1.04856i
\(735\) 0 0
\(736\) −17.1379 + 47.0859i −0.631710 + 1.73561i
\(737\) 19.6045 + 9.14175i 0.722142 + 0.336741i
\(738\) 4.91867 + 0.430327i 0.181059 + 0.0158406i
\(739\) 37.0848 6.53906i 1.36419 0.240543i 0.556840 0.830620i \(-0.312014\pi\)
0.807347 + 0.590077i \(0.200902\pi\)
\(740\) 0 0
\(741\) −0.218158 0.672185i −0.00801423 0.0246933i
\(742\) 66.6483 66.6483i 2.44674 2.44674i
\(743\) −5.49028 3.84433i −0.201419 0.141035i 0.468516 0.883455i \(-0.344789\pi\)
−0.669934 + 0.742420i \(0.733678\pi\)
\(744\) 1.20527 1.01134i 0.0441874 0.0370776i
\(745\) 0 0
\(746\) 22.6192 + 8.23272i 0.828148 + 0.301421i
\(747\) −0.771758 + 0.0675201i −0.0282372 + 0.00247043i
\(748\) −10.5681 + 2.83172i −0.386409 + 0.103538i
\(749\) −34.4022 59.5863i −1.25703 2.17724i
\(750\) 0 0
\(751\) 16.8825 + 2.97683i 0.616050 + 0.108626i 0.472960 0.881084i \(-0.343185\pi\)
0.143089 + 0.989710i \(0.454296\pi\)
\(752\) −11.5215 3.08718i −0.420146 0.112578i
\(753\) 1.85596 + 6.92655i 0.0676351 + 0.252418i
\(754\) 0.391918 + 0.328858i 0.0142728 + 0.0119763i
\(755\) 0 0
\(756\) −11.9367 32.7959i −0.434135 1.19278i
\(757\) −0.579501 + 6.62372i −0.0210623 + 0.240743i 0.978364 + 0.206889i \(0.0663338\pi\)
−0.999427 + 0.0338545i \(0.989222\pi\)
\(758\) −20.4477 + 29.2023i −0.742692 + 1.06067i
\(759\) −13.1706 −0.478063
\(760\) 0 0
\(761\) −46.7690 −1.69538 −0.847688 0.530495i \(-0.822006\pi\)
−0.847688 + 0.530495i \(0.822006\pi\)
\(762\) 16.6130 23.7258i 0.601825 0.859495i
\(763\) −3.51938 + 40.2268i −0.127410 + 1.45631i
\(764\) −6.15744 16.9174i −0.222768 0.612051i
\(765\) 0 0
\(766\) −21.2464 17.8278i −0.767664 0.644146i
\(767\) −0.386185 1.44126i −0.0139443 0.0520410i
\(768\) 23.6771 + 6.34427i 0.854375 + 0.228929i
\(769\) −48.7943 8.60376i −1.75957 0.310259i −0.801756 0.597652i \(-0.796101\pi\)
−0.957813 + 0.287392i \(0.907212\pi\)
\(770\) 0 0
\(771\) 13.5997 + 23.5554i 0.489783 + 0.848328i
\(772\) −20.4505 + 5.47970i −0.736030 + 0.197219i
\(773\) 14.1733 1.24000i 0.509778 0.0445998i 0.170634 0.985334i \(-0.445418\pi\)
0.339144 + 0.940735i \(0.389863\pi\)
\(774\) 2.50951 + 0.913388i 0.0902025 + 0.0328310i
\(775\) 0 0
\(776\) 0.980784 0.822975i 0.0352081 0.0295431i
\(777\) 12.6545 + 8.86079i 0.453978 + 0.317879i
\(778\) −17.7756 + 17.7756i −0.637285 + 0.637285i
\(779\) 6.04284 + 3.77880i 0.216507 + 0.135389i
\(780\) 0 0
\(781\) 7.85385 1.38484i 0.281033 0.0495536i
\(782\) −69.0930 6.04485i −2.47076 0.216163i
\(783\) 9.79534 + 4.56764i 0.350057 + 0.163234i
\(784\) −22.5081 + 61.8404i −0.803860 + 2.20859i
\(785\) 0 0
\(786\) 11.5725 20.0442i 0.412779 0.714954i
\(787\) 5.51072 20.5663i 0.196436 0.733110i −0.795454 0.606014i \(-0.792768\pi\)
0.991890 0.127096i \(-0.0405656\pi\)
\(788\) 7.34132 5.14045i 0.261524 0.183121i
\(789\) 2.55836 14.5092i 0.0910799 0.516540i
\(790\) 0 0
\(791\) 16.8742 + 9.74233i 0.599978 + 0.346397i
\(792\) −0.233033 2.66358i −0.00828048 0.0946463i
\(793\) 0.373415 0.174126i 0.0132604 0.00618341i
\(794\) 8.14280 2.96374i 0.288977 0.105179i
\(795\) 0 0
\(796\) 3.13360 + 17.7715i 0.111068 + 0.629895i
\(797\) 2.03401 + 2.03401i 0.0720484 + 0.0720484i 0.742213 0.670164i \(-0.233776\pi\)
−0.670164 + 0.742213i \(0.733776\pi\)
\(798\) 5.23043 42.4811i 0.185155 1.50382i
\(799\) 12.5291i 0.443247i
\(800\) 0 0
\(801\) −1.96272 2.33908i −0.0693493 0.0826473i
\(802\) −23.4464 + 50.2809i −0.827920 + 1.77548i
\(803\) −3.88521 8.33186i −0.137106 0.294025i
\(804\) −15.1464 + 18.0508i −0.534172 + 0.636602i
\(805\) 0 0
\(806\) 0.277862 0.160424i 0.00978728 0.00565069i
\(807\) 11.7743 + 16.8155i 0.414476 + 0.591934i
\(808\) −0.474353 0.677446i −0.0166877 0.0238325i
\(809\) 8.61084 4.97147i 0.302741 0.174788i −0.340932 0.940088i \(-0.610743\pi\)
0.643674 + 0.765300i \(0.277409\pi\)
\(810\) 0 0
\(811\) 4.70296 5.60477i 0.165143 0.196810i −0.677126 0.735867i \(-0.736775\pi\)
0.842269 + 0.539057i \(0.181219\pi\)
\(812\) 5.43339 + 11.6520i 0.190675 + 0.408903i
\(813\) 8.28111 17.7589i 0.290431 0.622831i
\(814\) −5.26147 6.27038i −0.184414 0.219777i
\(815\) 0 0
\(816\) 28.5887i 1.00080i
\(817\) 2.62809 + 2.82017i 0.0919451 + 0.0986651i
\(818\) −44.7585 44.7585i −1.56495 1.56495i
\(819\) 0.178690 + 1.01340i 0.00624395 + 0.0354112i
\(820\) 0 0
\(821\) −42.9758 + 15.6419i −1.49986 + 0.545906i −0.956025 0.293284i \(-0.905252\pi\)
−0.543839 + 0.839190i \(0.683030\pi\)
\(822\) −40.8898 + 19.0672i −1.42620 + 0.665046i
\(823\) −4.37934 50.0561i −0.152654 1.74485i −0.557245 0.830348i \(-0.688142\pi\)
0.404591 0.914498i \(-0.367414\pi\)
\(824\) 3.69709 + 2.13452i 0.128794 + 0.0743595i
\(825\) 0 0
\(826\) 15.6927 88.9976i 0.546018 3.09662i
\(827\) 40.0530 28.0454i 1.39278 0.975234i 0.394364 0.918954i \(-0.370965\pi\)
0.998415 0.0562800i \(-0.0179240\pi\)
\(828\) −4.43765 + 16.5615i −0.154219 + 0.575553i
\(829\) −17.1185 + 29.6501i −0.594549 + 1.02979i 0.399061 + 0.916924i \(0.369336\pi\)
−0.993610 + 0.112865i \(0.963997\pi\)
\(830\) 0 0
\(831\) 12.0444 33.0916i 0.417814 1.14793i
\(832\) 0.360259 + 0.167991i 0.0124897 + 0.00582405i
\(833\) −68.8628 6.02472i −2.38596 0.208744i
\(834\) 14.3159 2.52427i 0.495718 0.0874084i
\(835\) 0 0
\(836\) −3.52785 + 8.72334i −0.122013 + 0.301703i
\(837\) 4.79277 4.79277i 0.165662 0.165662i
\(838\) −10.6239 7.43893i −0.366996 0.256974i
\(839\) 20.4137 17.1291i 0.704758 0.591362i −0.218365 0.975867i \(-0.570072\pi\)
0.923123 + 0.384505i \(0.125628\pi\)
\(840\) 0 0
\(841\) 23.5098 + 8.55687i 0.810683 + 0.295065i
\(842\) −6.36093 + 0.556510i −0.219212 + 0.0191786i
\(843\) −31.6776 + 8.48798i −1.09103 + 0.292342i
\(844\) −12.1721 21.0827i −0.418981 0.725696i
\(845\) 0 0
\(846\) −7.35163 1.29629i −0.252754 0.0445674i
\(847\) −38.1042 10.2100i −1.30927 0.350819i
\(848\) 14.0137 + 52.2998i 0.481232 + 1.79598i
\(849\) 17.4977 + 14.6823i 0.600519 + 0.503895i
\(850\) 0 0
\(851\) −7.36344 20.2309i −0.252415 0.693506i
\(852\) −0.757160 + 8.65438i −0.0259399 + 0.296494i
\(853\) 8.83275 12.6145i 0.302427 0.431911i −0.638959 0.769241i \(-0.720635\pi\)
0.941387 + 0.337329i \(0.109524\pi\)
\(854\) 24.9542 0.853916
\(855\) 0 0
\(856\) 16.2888 0.556741
\(857\) 20.1332 28.7532i 0.687737 0.982191i −0.311750 0.950164i \(-0.600915\pi\)
0.999487 0.0320266i \(-0.0101961\pi\)
\(858\) −0.0397645 + 0.454511i −0.00135754 + 0.0155167i
\(859\) −13.2030 36.2749i −0.450480 1.23768i −0.932387 0.361462i \(-0.882278\pi\)
0.481907 0.876223i \(-0.339944\pi\)
\(860\) 0 0
\(861\) 6.65229 + 5.58194i 0.226710 + 0.190232i
\(862\) 5.01409 + 18.7128i 0.170781 + 0.637362i
\(863\) 31.9550 + 8.56232i 1.08776 + 0.291465i 0.757772 0.652520i \(-0.226288\pi\)
0.329989 + 0.943985i \(0.392955\pi\)
\(864\) 36.1121 + 6.36754i 1.22856 + 0.216628i
\(865\) 0 0
\(866\) −22.0247 38.1479i −0.748429 1.29632i
\(867\) −9.80941 + 2.62842i −0.333145 + 0.0892659i
\(868\) 8.03201 0.702710i 0.272624 0.0238515i
\(869\) 8.28198 + 3.01439i 0.280947 + 0.102256i
\(870\) 0 0
\(871\) 1.50980 1.26687i 0.0511575 0.0429263i
\(872\) −7.83086 5.48323i −0.265187 0.185686i
\(873\) 1.37483 1.37483i 0.0465310 0.0465310i
\(874\) −39.9285 + 44.3153i −1.35060 + 1.49899i
\(875\) 0 0
\(876\) 9.86230 1.73899i 0.333216 0.0587550i
\(877\) 34.7538 + 3.04056i 1.17355 + 0.102672i 0.657208 0.753709i \(-0.271737\pi\)
0.516343 + 0.856382i \(0.327293\pi\)
\(878\) −0.967683 0.451238i −0.0326577 0.0152285i
\(879\) −2.24011 + 6.15466i −0.0755571 + 0.207591i
\(880\) 0 0
\(881\) −4.01849 + 6.96024i −0.135387 + 0.234496i −0.925745 0.378148i \(-0.876561\pi\)
0.790359 + 0.612645i \(0.209894\pi\)
\(882\) −10.6598 + 39.7830i −0.358935 + 1.33956i
\(883\) −5.32719 + 3.73014i −0.179274 + 0.125529i −0.659769 0.751468i \(-0.729346\pi\)
0.480495 + 0.876997i \(0.340457\pi\)
\(884\) −0.173104 + 0.981724i −0.00582213 + 0.0330189i
\(885\) 0 0
\(886\) 13.6057 + 7.85523i 0.457091 + 0.263902i
\(887\) 4.17511 + 47.7217i 0.140186 + 1.60234i 0.662151 + 0.749370i \(0.269644\pi\)
−0.521965 + 0.852967i \(0.674801\pi\)
\(888\) −3.31460 + 1.54562i −0.111231 + 0.0518677i
\(889\) −57.2066 + 20.8215i −1.91865 + 0.698331i
\(890\) 0 0
\(891\) 0.378609 + 2.14720i 0.0126839 + 0.0719339i
\(892\) 18.8345 + 18.8345i 0.630625 + 0.630625i
\(893\) −8.60359 6.48778i −0.287908 0.217105i
\(894\) 18.7032i 0.625527i
\(895\) 0 0
\(896\) −24.0631 28.6773i −0.803892 0.958041i
\(897\) −0.507152 + 1.08759i −0.0169333 + 0.0363136i
\(898\) 6.68276 + 14.3312i 0.223007 + 0.478239i
\(899\) −1.60494 + 1.91269i −0.0535276 + 0.0637918i
\(900\) 0 0
\(901\) −49.2540 + 28.4368i −1.64089 + 0.947367i
\(902\) −2.63917 3.76913i −0.0878747 0.125498i
\(903\) 2.69407 + 3.84753i 0.0896531 + 0.128038i
\(904\) −3.99483 + 2.30641i −0.132866 + 0.0767102i
\(905\) 0 0
\(906\) 14.4808 17.2575i 0.481092 0.573343i
\(907\) −11.6361 24.9537i −0.386370 0.828574i −0.999262 0.0384071i \(-0.987772\pi\)
0.612892 0.790167i \(-0.290006\pi\)
\(908\) 0.0553852 0.118774i 0.00183802 0.00394165i
\(909\) −0.807277 0.962075i −0.0267757 0.0319100i
\(910\) 0 0
\(911\) 50.4735i 1.67226i 0.548529 + 0.836132i \(0.315188\pi\)
−0.548529 + 0.836132i \(0.684812\pi\)
\(912\) 19.6316 + 14.8037i 0.650066 + 0.490200i
\(913\) 0.510499 + 0.510499i 0.0168951 + 0.0168951i
\(914\) 0.455586 + 2.58376i 0.0150694 + 0.0854631i
\(915\) 0 0
\(916\) 13.7217 4.99429i 0.453378 0.165016i
\(917\) −44.0898 + 20.5594i −1.45598 + 0.678932i
\(918\) 4.42367 + 50.5627i 0.146003 + 1.66882i
\(919\) −22.3948 12.9296i −0.738736 0.426510i 0.0828733 0.996560i \(-0.473590\pi\)
−0.821610 + 0.570050i \(0.806924\pi\)
\(920\) 0 0
\(921\) −3.31604 + 18.8062i −0.109267 + 0.619685i
\(922\) −1.14159 + 0.799352i −0.0375964 + 0.0263252i
\(923\) 0.188066 0.701873i 0.00619027 0.0231024i
\(924\) −5.73260 + 9.92915i −0.188589 + 0.326645i
\(925\) 0 0
\(926\) −13.8226 + 37.9773i −0.454239 + 1.24801i
\(927\) 5.87558 + 2.73983i 0.192979 + 0.0899877i
\(928\) −13.4566 1.17730i −0.441734 0.0386467i
\(929\) 49.5361 8.73454i 1.62523 0.286571i 0.714516 0.699619i \(-0.246647\pi\)
0.910709 + 0.413048i \(0.135536\pi\)
\(930\) 0 0
\(931\) −39.7955 + 44.1677i −1.30424 + 1.44754i
\(932\) −21.7387 + 21.7387i −0.712074 + 0.712074i
\(933\) 1.70509 + 1.19391i 0.0558220 + 0.0390870i
\(934\) −4.44157 + 3.72692i −0.145333 + 0.121949i
\(935\) 0 0
\(936\) −0.228924 0.0833215i −0.00748262 0.00272345i
\(937\) −33.6752 + 2.94620i −1.10012 + 0.0962482i −0.622726 0.782440i \(-0.713975\pi\)
−0.477396 + 0.878688i \(0.658419\pi\)
\(938\) 115.302 30.8950i 3.76474 1.00876i
\(939\) 2.56760 + 4.44721i 0.0837904 + 0.145129i
\(940\) 0 0
\(941\) −20.3861 3.59461i −0.664567 0.117181i −0.168818 0.985647i \(-0.553995\pi\)
−0.495748 + 0.868466i \(0.665106\pi\)
\(942\) 34.0124 + 9.11358i 1.10818 + 0.296937i
\(943\) −3.13229 11.6899i −0.102001 0.380674i
\(944\) 39.7680 + 33.3693i 1.29434 + 1.08608i
\(945\) 0 0
\(946\) −0.851193 2.33863i −0.0276747 0.0760355i
\(947\) 3.20227 36.6021i 0.104060 1.18941i −0.747177 0.664625i \(-0.768591\pi\)
0.851237 0.524782i \(-0.175853\pi\)
\(948\) −5.50681 + 7.86455i −0.178853 + 0.255429i
\(949\) −0.837625 −0.0271905
\(950\) 0 0
\(951\) 10.7329 0.348040
\(952\) 14.2040 20.2855i 0.460355 0.657455i
\(953\) −1.19399 + 13.6473i −0.0386770 + 0.442080i 0.952024 + 0.306023i \(0.0989986\pi\)
−0.990701 + 0.136057i \(0.956557\pi\)
\(954\) 11.5898 + 31.8427i 0.375233 + 1.03094i
\(955\) 0 0
\(956\) 11.1516 + 9.35734i 0.360670 + 0.302638i
\(957\) −0.918941 3.42954i −0.0297052 0.110861i
\(958\) 51.1774 + 13.7129i 1.65347 + 0.443045i
\(959\) 93.3888 + 16.4670i 3.01568 + 0.531746i
\(960\) 0 0
\(961\) −14.7171 25.4907i −0.474744 0.822282i
\(962\) −0.720389 + 0.193028i −0.0232263 + 0.00622346i
\(963\) 24.6422 2.15591i 0.794083 0.0694733i
\(964\) 26.3832 + 9.60271i 0.849746 + 0.309282i
\(965\) 0 0
\(966\) −55.6764 + 46.7180i −1.79136 + 1.50313i
\(967\) −0.256099 0.179322i −0.00823557 0.00576661i 0.569451 0.822025i \(-0.307156\pi\)
−0.577687 + 0.816258i \(0.696045\pi\)
\(968\) 6.60371 6.60371i 0.212251 0.212251i
\(969\) −9.68286 + 23.9429i −0.311058 + 0.769157i
\(970\) 0 0
\(971\) −38.3652 + 6.76482i −1.23120 + 0.217093i −0.751140 0.660143i \(-0.770496\pi\)
−0.480058 + 0.877237i \(0.659384\pi\)
\(972\) 20.5930 + 1.80165i 0.660521 + 0.0577881i
\(973\) −27.6915 12.9127i −0.887748 0.413963i
\(974\) 6.15835 16.9199i 0.197326 0.542149i
\(975\) 0 0
\(976\) −7.16748 + 12.4144i −0.229425 + 0.397376i
\(977\) −4.32385 + 16.1368i −0.138332 + 0.516262i 0.861630 + 0.507537i \(0.169444\pi\)
−0.999962 + 0.00872521i \(0.997223\pi\)
\(978\) −10.5166 + 7.36379i −0.336283 + 0.235468i
\(979\) −0.494122 + 2.80231i −0.0157922 + 0.0895621i
\(980\) 0 0
\(981\) −12.5725 7.25872i −0.401408 0.231753i
\(982\) −1.39603 15.9567i −0.0445491 0.509199i
\(983\) −19.8575 + 9.25970i −0.633355 + 0.295338i −0.712657 0.701512i \(-0.752509\pi\)
0.0793022 + 0.996851i \(0.474731\pi\)
\(984\) −1.93187 + 0.703143i −0.0615857 + 0.0224154i
\(985\) 0 0
\(986\) −3.24673 18.4131i −0.103397 0.586393i
\(987\) −9.28392 9.28392i −0.295510 0.295510i
\(988\) 0.584503 + 0.627223i 0.0185955 + 0.0199546i
\(989\) 6.54585i 0.208146i
\(990\) 0 0
\(991\) 20.3243 + 24.2215i 0.645622 + 0.769422i 0.985247 0.171139i \(-0.0547446\pi\)
−0.339625 + 0.940561i \(0.610300\pi\)
\(992\) −3.58011 + 7.67757i −0.113669 + 0.243763i
\(993\) 5.62433 + 12.0614i 0.178483 + 0.382758i
\(994\) 28.2885 33.7129i 0.897256 1.06931i
\(995\) 0 0
\(996\) −0.681085 + 0.393225i −0.0215810 + 0.0124598i
\(997\) 20.1485 + 28.7750i 0.638109 + 0.911314i 0.999780 0.0209919i \(-0.00668241\pi\)
−0.361671 + 0.932306i \(0.617794\pi\)
\(998\) −1.58725 2.26683i −0.0502436 0.0717553i
\(999\) −13.6445 + 7.87763i −0.431692 + 0.249237i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.bb.b.143.7 96
5.2 odd 4 inner 475.2.bb.b.257.7 96
5.3 odd 4 95.2.r.a.67.2 yes 96
5.4 even 2 95.2.r.a.48.2 yes 96
15.8 even 4 855.2.dl.a.352.7 96
15.14 odd 2 855.2.dl.a.523.7 96
19.2 odd 18 inner 475.2.bb.b.268.7 96
95.2 even 36 inner 475.2.bb.b.382.7 96
95.59 odd 18 95.2.r.a.78.2 yes 96
95.78 even 36 95.2.r.a.2.2 96
285.59 even 18 855.2.dl.a.838.7 96
285.173 odd 36 855.2.dl.a.667.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.2 96 95.78 even 36
95.2.r.a.48.2 yes 96 5.4 even 2
95.2.r.a.67.2 yes 96 5.3 odd 4
95.2.r.a.78.2 yes 96 95.59 odd 18
475.2.bb.b.143.7 96 1.1 even 1 trivial
475.2.bb.b.257.7 96 5.2 odd 4 inner
475.2.bb.b.268.7 96 19.2 odd 18 inner
475.2.bb.b.382.7 96 95.2 even 36 inner
855.2.dl.a.352.7 96 15.8 even 4
855.2.dl.a.523.7 96 15.14 odd 2
855.2.dl.a.667.7 96 285.173 odd 36
855.2.dl.a.838.7 96 285.59 even 18