gp: [N,k,chi] = [475,2,Mod(32,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([9, 10]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.32");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [96]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{96} - 12 T_{2}^{95} + 72 T_{2}^{94} - 294 T_{2}^{93} + 897 T_{2}^{92} - 1962 T_{2}^{91} + \cdots + 531441 \)
T2^96 - 12*T2^95 + 72*T2^94 - 294*T2^93 + 897*T2^92 - 1962*T2^91 + 2178*T2^90 + 4656*T2^89 - 36672*T2^88 + 130878*T2^87 - 327960*T2^86 + 592032*T2^85 - 686693*T2^84 + 232236*T2^83 + 705924*T2^82 - 616578*T2^81 - 1838889*T2^80 - 7056612*T2^79 + 99187092*T2^78 - 479206080*T2^77 + 1612707633*T2^76 - 4470739068*T2^75 + 10754407422*T2^74 - 22298508180*T2^73 + 39490791480*T2^72 - 64119611814*T2^71 + 120523299588*T2^70 - 313877809026*T2^69 + 909035753589*T2^68 - 2243311140624*T2^67 + 4032701119638*T2^66 - 3811112880924*T2^65 - 4743629751249*T2^64 + 31337921247186*T2^63 - 82323876184254*T2^62 + 142816707501084*T2^61 - 150929267622708*T2^60 - 8732041389156*T2^59 + 445759689254346*T2^58 - 1104563617300290*T2^57 + 1555695336194013*T2^56 - 982266801733434*T2^55 - 1266016271328630*T2^54 + 4600277667636624*T2^53 - 6471916716646497*T2^52 + 3254407703626146*T2^51 + 6823365793910964*T2^50 - 20246144350548810*T2^49 + 27578899627430327*T2^48 - 18123695221624386*T2^47 - 13303525007105784*T2^46 + 59811497871763350*T2^45 - 96832365900700656*T2^44 + 87916510021799136*T2^43 - 18470071422345132*T2^42 - 71256032377756290*T2^41 + 103059532917161562*T2^40 - 40521148168336296*T2^39 - 29131661593951758*T2^38 - 3332888131098714*T2^37 + 146408322378655418*T2^36 - 247970596613191704*T2^35 + 184441503074245218*T2^34 - 92939721616696962*T2^33 + 214118788663989603*T2^32 - 316406840904438594*T2^31 + 294146309511903402*T2^30 - 116020918090699176*T2^29 + 27203534402735880*T2^28 - 114208830659115684*T2^27 + 202673818647454950*T2^26 - 245992328452564308*T2^25 + 179231317600923658*T2^24 - 67092925443239928*T2^23 - 10670177126551500*T2^22 + 9218320428939510*T2^21 + 19223332131355380*T2^20 - 21674956447674432*T2^19 + 9079697694015846*T2^18 - 697544312527278*T2^17 + 1816081363279746*T2^16 - 1272910828152600*T2^15 + 842904539702820*T2^14 + 5305513077018*T2^13 + 69524313685524*T2^12 - 70478301813930*T2^11 + 8123600392956*T2^10 - 5110034471406*T2^9 + 2354833543860*T2^8 - 124465441752*T2^7 + 49172595480*T2^6 - 25397683488*T2^5 - 1903916907*T2^4 + 395510202*T2^3 + 128608722*T2^2 + 11691702*T2 + 531441
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).