Properties

Label 475.2.bb.b
Level $475$
Weight $2$
Character orbit 475.bb
Analytic conductor $3.793$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [475,2,Mod(32,475)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(475, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("475.32"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.bb (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 96 q + 12 q^{2} + 12 q^{3} - 12 q^{6} + 18 q^{8} - 12 q^{11} + 18 q^{12} + 12 q^{13} + 12 q^{16} + 30 q^{17} + 24 q^{21} + 24 q^{22} - 48 q^{26} + 18 q^{27} - 36 q^{31} - 18 q^{32} - 90 q^{33} + 24 q^{36}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1 −0.215520 + 2.46340i −0.236608 0.507407i −4.05227 0.714525i 0 1.30094 0.473503i 2.99058 0.801323i 1.35349 5.05128i 1.72688 2.05802i 0
32.2 −0.184204 + 2.10547i 1.05623 + 2.26510i −2.42944 0.428375i 0 −4.96365 + 1.80662i −2.23442 + 0.598711i 0.255410 0.953204i −2.08669 + 2.48682i 0
32.3 −0.148765 + 1.70039i −1.25242 2.68582i −0.899578 0.158620i 0 4.75325 1.73004i −2.71511 + 0.727512i −0.480007 + 1.79141i −3.71671 + 4.42940i 0
32.4 −0.0741107 + 0.847089i −0.344068 0.737855i 1.25755 + 0.221740i 0 0.650528 0.236773i 3.83889 1.02863i −0.721192 + 2.69152i 1.50231 1.79039i 0
32.5 −0.0260387 + 0.297624i 0.818952 + 1.75625i 1.88171 + 0.331797i 0 −0.544026 + 0.198009i 0.323332 0.0866366i −0.302398 + 1.12856i −0.485360 + 0.578430i 0
32.6 0.119667 1.36780i 0.753423 + 1.61572i 0.113072 + 0.0199376i 0 2.30013 0.837180i 0.254507 0.0681949i 0.751529 2.80474i −0.114542 + 0.136506i 0
32.7 0.140400 1.60478i −0.303112 0.650026i −0.585979 0.103324i 0 −1.08570 + 0.395164i −1.05988 + 0.283994i 0.585783 2.18617i 1.59771 1.90407i 0
32.8 0.230116 2.63024i −0.901235 1.93270i −4.89558 0.863222i 0 −5.29086 + 1.92571i −1.39789 + 0.374564i −2.03032 + 7.57725i −0.994759 + 1.18551i 0
143.1 −1.31842 + 1.88289i −0.0291608 + 0.333309i −1.12303 3.08549i 0 −0.589140 0.494347i −0.282738 1.05519i 2.84973 + 0.763583i 2.84418 + 0.501505i 0
143.2 −0.583359 + 0.833123i 0.155202 1.77397i 0.330254 + 0.907365i 0 1.38740 + 1.16417i −0.267922 0.999898i −2.91340 0.780644i −0.168464 0.0297048i 0
143.3 −0.259809 + 0.371046i −0.264820 + 3.02691i 0.613866 + 1.68658i 0 −1.05432 0.884679i −0.508516 1.89781i −1.66034 0.444888i −6.13763 1.08223i 0
143.4 −0.0545146 + 0.0778549i −0.111718 + 1.27695i 0.680951 + 1.87090i 0 −0.0933263 0.0783101i 0.883627 + 3.29774i −0.366390 0.0981738i 1.33631 + 0.235628i 0
143.5 0.425033 0.607009i 0.144020 1.64615i 0.496232 + 1.36339i 0 −0.938018 0.787091i 0.706367 + 2.63620i 2.47005 + 0.661847i 0.265340 + 0.0467866i 0
143.6 0.983828 1.40505i 0.215709 2.46557i −0.322212 0.885271i 0 −3.25203 2.72877i −0.0743036 0.277305i 1.75276 + 0.469650i −3.07806 0.542745i 0
143.7 1.06046 1.51450i −0.101890 + 1.16461i −0.485079 1.33274i 0 1.65575 + 1.38934i −1.17582 4.38823i 1.03888 + 0.278366i 1.60848 + 0.283619i 0
143.8 1.34445 1.92007i −0.165797 + 1.89507i −1.19510 3.28350i 0 3.41577 + 2.86617i 0.719307 + 2.68449i −3.38309 0.906496i −0.609382 0.107451i 0
193.1 −0.215520 2.46340i −0.236608 + 0.507407i −4.05227 + 0.714525i 0 1.30094 + 0.473503i 2.99058 + 0.801323i 1.35349 + 5.05128i 1.72688 + 2.05802i 0
193.2 −0.184204 2.10547i 1.05623 2.26510i −2.42944 + 0.428375i 0 −4.96365 1.80662i −2.23442 0.598711i 0.255410 + 0.953204i −2.08669 2.48682i 0
193.3 −0.148765 1.70039i −1.25242 + 2.68582i −0.899578 + 0.158620i 0 4.75325 + 1.73004i −2.71511 0.727512i −0.480007 1.79141i −3.71671 4.42940i 0
193.4 −0.0741107 0.847089i −0.344068 + 0.737855i 1.25755 0.221740i 0 0.650528 + 0.236773i 3.83889 + 1.02863i −0.721192 2.69152i 1.50231 + 1.79039i 0
See all 96 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 32.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
19.f odd 18 1 inner
95.r even 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.bb.b 96
5.b even 2 1 95.2.r.a 96
5.c odd 4 1 95.2.r.a 96
5.c odd 4 1 inner 475.2.bb.b 96
15.d odd 2 1 855.2.dl.a 96
15.e even 4 1 855.2.dl.a 96
19.f odd 18 1 inner 475.2.bb.b 96
95.o odd 18 1 95.2.r.a 96
95.r even 36 1 95.2.r.a 96
95.r even 36 1 inner 475.2.bb.b 96
285.bf even 18 1 855.2.dl.a 96
285.bj odd 36 1 855.2.dl.a 96
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
95.2.r.a 96 5.b even 2 1
95.2.r.a 96 5.c odd 4 1
95.2.r.a 96 95.o odd 18 1
95.2.r.a 96 95.r even 36 1
475.2.bb.b 96 1.a even 1 1 trivial
475.2.bb.b 96 5.c odd 4 1 inner
475.2.bb.b 96 19.f odd 18 1 inner
475.2.bb.b 96 95.r even 36 1 inner
855.2.dl.a 96 15.d odd 2 1
855.2.dl.a 96 15.e even 4 1
855.2.dl.a 96 285.bf even 18 1
855.2.dl.a 96 285.bj odd 36 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{96} - 12 T_{2}^{95} + 72 T_{2}^{94} - 294 T_{2}^{93} + 897 T_{2}^{92} - 1962 T_{2}^{91} + \cdots + 531441 \) acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\). Copy content Toggle raw display