Newspace parameters
Level: | \( N \) | \(=\) | \( 95 = 5 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 95.r (of order \(36\), degree \(12\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.758578819202\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −1.34445 | − | 1.92007i | 0.165797 | + | 1.89507i | −1.19510 | + | 3.28350i | 0.624382 | + | 2.14713i | 3.41577 | − | 2.86617i | −0.719307 | + | 2.68449i | 3.38309 | − | 0.906496i | −0.609382 | + | 0.107451i | 3.28319 | − | 4.08556i |
2.2 | −1.06046 | − | 1.51450i | 0.101890 | + | 1.16461i | −0.485079 | + | 1.33274i | −0.767519 | − | 2.10022i | 1.65575 | − | 1.38934i | 1.17582 | − | 4.38823i | −1.03888 | + | 0.278366i | 1.60848 | − | 0.283619i | −2.36685 | + | 3.38961i |
2.3 | −0.983828 | − | 1.40505i | −0.215709 | − | 2.46557i | −0.322212 | + | 0.885271i | 2.19633 | + | 0.419667i | −3.25203 | + | 2.72877i | 0.0743036 | − | 0.277305i | −1.75276 | + | 0.469650i | −3.07806 | + | 0.542745i | −1.57116 | − | 3.49884i |
2.4 | −0.425033 | − | 0.607009i | −0.144020 | − | 1.64615i | 0.496232 | − | 1.36339i | −2.21638 | − | 0.296102i | −0.938018 | + | 0.787091i | −0.706367 | + | 2.63620i | −2.47005 | + | 0.661847i | 0.265340 | − | 0.0467866i | 0.762295 | + | 1.47121i |
2.5 | 0.0545146 | + | 0.0778549i | 0.111718 | + | 1.27695i | 0.680951 | − | 1.87090i | 1.20455 | − | 1.88389i | −0.0933263 | + | 0.0783101i | −0.883627 | + | 3.29774i | 0.366390 | − | 0.0981738i | 1.33631 | − | 0.235628i | 0.212336 | − | 0.00891912i |
2.6 | 0.259809 | + | 0.371046i | 0.264820 | + | 3.02691i | 0.613866 | − | 1.68658i | −1.63140 | + | 1.52922i | −1.05432 | + | 0.884679i | 0.508516 | − | 1.89781i | 1.66034 | − | 0.444888i | −6.13763 | + | 1.08223i | −0.991264 | − | 0.208020i |
2.7 | 0.583359 | + | 0.833123i | −0.155202 | − | 1.77397i | 0.330254 | − | 0.907365i | −0.148012 | + | 2.23116i | 1.38740 | − | 1.16417i | 0.267922 | − | 0.999898i | 2.91340 | − | 0.780644i | −0.168464 | + | 0.0297048i | −1.94518 | + | 1.17826i |
2.8 | 1.31842 | + | 1.88289i | 0.0291608 | + | 0.333309i | −1.12303 | + | 3.08549i | −1.96769 | − | 1.06216i | −0.589140 | + | 0.494347i | 0.282738 | − | 1.05519i | −2.84973 | + | 0.763583i | 2.84418 | − | 0.501505i | −0.594310 | − | 5.10532i |
3.1 | −0.230116 | − | 2.63024i | 0.901235 | − | 1.93270i | −4.89558 | + | 0.863222i | 1.62989 | + | 1.53084i | −5.29086 | − | 1.92571i | 1.39789 | + | 0.374564i | 2.03032 | + | 7.57725i | −0.994759 | − | 1.18551i | 3.65140 | − | 4.63926i |
3.2 | −0.140400 | − | 1.60478i | 0.303112 | − | 0.650026i | −0.585979 | + | 0.103324i | −1.97659 | − | 1.04551i | −1.08570 | − | 0.395164i | 1.05988 | + | 0.283994i | −0.585783 | − | 2.18617i | 1.59771 | + | 1.90407i | −1.40029 | + | 3.31878i |
3.3 | −0.119667 | − | 1.36780i | −0.753423 | + | 1.61572i | 0.113072 | − | 0.0199376i | 2.23461 | − | 0.0806865i | 2.30013 | + | 0.837180i | −0.254507 | − | 0.0681949i | −0.751529 | − | 2.80474i | −0.114542 | − | 0.136506i | −0.377771 | − | 3.04684i |
3.4 | 0.0260387 | + | 0.297624i | −0.818952 | + | 1.75625i | 1.88171 | − | 0.331797i | −1.72736 | + | 1.41994i | −0.544026 | − | 0.198009i | −0.323332 | − | 0.0866366i | 0.302398 | + | 1.12856i | −0.485360 | − | 0.578430i | −0.467587 | − | 0.477130i |
3.5 | 0.0741107 | + | 0.847089i | 0.344068 | − | 0.737855i | 1.25755 | − | 0.221740i | 0.654653 | − | 2.13809i | 0.650528 | + | 0.236773i | −3.83889 | − | 1.02863i | 0.721192 | + | 2.69152i | 1.50231 | + | 1.79039i | 1.85967 | + | 0.396094i |
3.6 | 0.148765 | + | 1.70039i | 1.25242 | − | 2.68582i | −0.899578 | + | 0.158620i | −2.22976 | + | 0.167893i | 4.75325 | + | 1.73004i | 2.71511 | + | 0.727512i | 0.480007 | + | 1.79141i | −3.71671 | − | 4.42940i | −0.617193 | − | 3.76648i |
3.7 | 0.184204 | + | 2.10547i | −1.05623 | + | 2.26510i | −2.42944 | + | 0.428375i | 0.118240 | − | 2.23294i | −4.96365 | − | 1.80662i | 2.23442 | + | 0.598711i | −0.255410 | − | 0.953204i | −2.08669 | − | 2.48682i | 4.72316 | − | 0.162367i |
3.8 | 0.215520 | + | 2.46340i | 0.236608 | − | 0.507407i | −4.05227 | + | 0.714525i | 1.40966 | + | 1.73576i | 1.30094 | + | 0.473503i | −2.99058 | − | 0.801323i | −1.35349 | − | 5.05128i | 1.72688 | + | 2.05802i | −3.97207 | + | 3.84663i |
13.1 | −2.46340 | − | 0.215520i | −0.507407 | + | 0.236608i | 4.05227 | + | 0.714525i | −1.91831 | − | 1.14895i | 1.30094 | − | 0.473503i | 0.801323 | + | 2.99058i | −5.05128 | − | 1.35349i | −1.72688 | + | 2.05802i | 4.47794 | + | 3.24376i |
13.2 | −2.10547 | − | 0.184204i | 2.26510 | − | 1.05623i | 2.42944 | + | 0.428375i | 0.652601 | + | 2.13872i | −4.96365 | + | 1.80662i | −0.598711 | − | 2.23442i | −0.953204 | − | 0.255410i | 2.08669 | − | 2.48682i | −0.980068 | − | 4.62321i |
13.3 | −1.70039 | − | 0.148765i | −2.68582 | + | 1.25242i | 0.899578 | + | 0.158620i | 2.03786 | − | 0.920389i | 4.75325 | − | 1.73004i | −0.727512 | − | 2.71511i | 1.79141 | + | 0.480007i | 3.71671 | − | 4.42940i | −3.60208 | + | 1.26186i |
13.4 | −0.847089 | − | 0.0741107i | −0.737855 | + | 0.344068i | −1.25755 | − | 0.221740i | 0.116098 | + | 2.23305i | 0.650528 | − | 0.236773i | 1.02863 | + | 3.83889i | 2.69152 | + | 0.721192i | −1.50231 | + | 1.79039i | 0.0671479 | − | 1.90020i |
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
19.f | odd | 18 | 1 | inner |
95.r | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 95.2.r.a | ✓ | 96 |
3.b | odd | 2 | 1 | 855.2.dl.a | 96 | ||
5.b | even | 2 | 1 | 475.2.bb.b | 96 | ||
5.c | odd | 4 | 1 | inner | 95.2.r.a | ✓ | 96 |
5.c | odd | 4 | 1 | 475.2.bb.b | 96 | ||
15.e | even | 4 | 1 | 855.2.dl.a | 96 | ||
19.f | odd | 18 | 1 | inner | 95.2.r.a | ✓ | 96 |
57.j | even | 18 | 1 | 855.2.dl.a | 96 | ||
95.o | odd | 18 | 1 | 475.2.bb.b | 96 | ||
95.r | even | 36 | 1 | inner | 95.2.r.a | ✓ | 96 |
95.r | even | 36 | 1 | 475.2.bb.b | 96 | ||
285.bj | odd | 36 | 1 | 855.2.dl.a | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.r.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
95.2.r.a | ✓ | 96 | 5.c | odd | 4 | 1 | inner |
95.2.r.a | ✓ | 96 | 19.f | odd | 18 | 1 | inner |
95.2.r.a | ✓ | 96 | 95.r | even | 36 | 1 | inner |
475.2.bb.b | 96 | 5.b | even | 2 | 1 | ||
475.2.bb.b | 96 | 5.c | odd | 4 | 1 | ||
475.2.bb.b | 96 | 95.o | odd | 18 | 1 | ||
475.2.bb.b | 96 | 95.r | even | 36 | 1 | ||
855.2.dl.a | 96 | 3.b | odd | 2 | 1 | ||
855.2.dl.a | 96 | 15.e | even | 4 | 1 | ||
855.2.dl.a | 96 | 57.j | even | 18 | 1 | ||
855.2.dl.a | 96 | 285.bj | odd | 36 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(95, [\chi])\).