Properties

Label 855.2.dl.a.523.7
Level $855$
Weight $2$
Character 855.523
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 523.7
Character \(\chi\) \(=\) 855.523
Dual form 855.2.dl.a.667.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06046 - 1.51450i) q^{2} +(-0.485079 - 1.33274i) q^{4} +(0.767519 - 2.10022i) q^{5} +(1.17582 + 4.38823i) q^{7} +(1.03888 + 0.278366i) q^{8} +(-2.36685 - 3.38961i) q^{10} +(0.761040 + 1.31816i) q^{11} +(0.138155 - 0.0120870i) q^{13} +(7.89287 + 2.87277i) q^{14} +(3.69620 - 3.10148i) q^{16} +(4.15164 + 2.90701i) q^{17} +(4.14601 - 1.34559i) q^{19} +(-3.17136 - 0.00413488i) q^{20} +(2.80340 + 0.245266i) q^{22} +(-6.70821 - 3.12809i) q^{23} +(-3.82183 - 3.22391i) q^{25} +(0.128202 - 0.222052i) q^{26} +(5.27802 - 3.69571i) q^{28} +(-0.346487 + 1.96502i) q^{29} +(-1.08369 - 0.625668i) q^{31} +(-0.590025 - 6.74402i) q^{32} +(8.80531 - 3.20487i) q^{34} +(10.1187 + 0.898567i) q^{35} +(-2.05676 - 2.05676i) q^{37} +(2.35879 - 7.70606i) q^{38} +(1.38199 - 1.96821i) q^{40} +(-1.05100 - 1.25253i) q^{41} +(-0.373752 - 0.801514i) q^{43} +(1.38761 - 1.65368i) q^{44} +(-11.8513 + 6.84234i) q^{46} +(-1.41793 - 2.02502i) q^{47} +(-11.8118 + 6.81954i) q^{49} +(-8.93551 + 2.36931i) q^{50} +(-0.0831248 - 0.178262i) q^{52} +(-4.74246 + 10.1702i) q^{53} +(3.35254 - 0.586637i) q^{55} +4.88613i q^{56} +(2.60859 + 2.60859i) q^{58} +(-1.86831 - 10.5957i) q^{59} +(-2.79178 + 1.01612i) q^{61} +(-2.09678 + 0.977745i) q^{62} +(-2.48226 - 1.43314i) q^{64} +(0.0806511 - 0.299432i) q^{65} +(11.6415 - 8.15144i) q^{67} +(1.86043 - 6.94321i) q^{68} +(12.0914 - 14.3718i) q^{70} +(1.79203 - 4.92356i) q^{71} +(-6.01690 - 0.526410i) q^{73} +(-5.29607 + 0.933839i) q^{74} +(-3.80447 - 4.87285i) q^{76} +(-4.88954 + 4.88954i) q^{77} +(-4.43572 + 3.72201i) q^{79} +(-3.67688 - 10.1433i) q^{80} +(-3.01150 + 0.263472i) q^{82} +(-0.458159 + 0.122763i) q^{83} +(9.29182 - 6.48816i) q^{85} +(-1.61024 - 0.283929i) q^{86} +(0.423695 + 1.58125i) q^{88} +(1.43212 + 1.20169i) q^{89} +(0.215486 + 0.592042i) q^{91} +(-0.914930 + 10.4577i) q^{92} -4.57054 q^{94} +(0.356111 - 9.74029i) q^{95} +(-0.682796 + 0.975134i) q^{97} +(-2.19778 + 25.1208i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06046 1.51450i 0.749860 1.07091i −0.244988 0.969526i \(-0.578784\pi\)
0.994847 0.101384i \(-0.0323272\pi\)
\(3\) 0 0
\(4\) −0.485079 1.33274i −0.242540 0.666372i
\(5\) 0.767519 2.10022i 0.343245 0.939246i
\(6\) 0 0
\(7\) 1.17582 + 4.38823i 0.444419 + 1.65859i 0.717466 + 0.696593i \(0.245302\pi\)
−0.273048 + 0.962001i \(0.588032\pi\)
\(8\) 1.03888 + 0.278366i 0.367298 + 0.0984172i
\(9\) 0 0
\(10\) −2.36685 3.38961i −0.748463 1.07189i
\(11\) 0.761040 + 1.31816i 0.229462 + 0.397440i 0.957649 0.287939i \(-0.0929699\pi\)
−0.728187 + 0.685379i \(0.759637\pi\)
\(12\) 0 0
\(13\) 0.138155 0.0120870i 0.0383172 0.00335232i −0.0679810 0.997687i \(-0.521656\pi\)
0.106298 + 0.994334i \(0.466100\pi\)
\(14\) 7.89287 + 2.87277i 2.10946 + 0.767780i
\(15\) 0 0
\(16\) 3.69620 3.10148i 0.924050 0.775370i
\(17\) 4.15164 + 2.90701i 1.00692 + 0.705054i 0.955915 0.293645i \(-0.0948683\pi\)
0.0510063 + 0.998698i \(0.483757\pi\)
\(18\) 0 0
\(19\) 4.14601 1.34559i 0.951160 0.308699i
\(20\) −3.17136 0.00413488i −0.709138 0.000924588i
\(21\) 0 0
\(22\) 2.80340 + 0.245266i 0.597687 + 0.0522909i
\(23\) −6.70821 3.12809i −1.39876 0.652252i −0.430589 0.902548i \(-0.641694\pi\)
−0.968169 + 0.250297i \(0.919472\pi\)
\(24\) 0 0
\(25\) −3.82183 3.22391i −0.764366 0.644783i
\(26\) 0.128202 0.222052i 0.0251425 0.0435481i
\(27\) 0 0
\(28\) 5.27802 3.69571i 0.997452 0.698423i
\(29\) −0.346487 + 1.96502i −0.0643410 + 0.364896i 0.935589 + 0.353090i \(0.114869\pi\)
−0.999930 + 0.0118058i \(0.996242\pi\)
\(30\) 0 0
\(31\) −1.08369 0.625668i −0.194636 0.112373i 0.399515 0.916727i \(-0.369179\pi\)
−0.594151 + 0.804353i \(0.702512\pi\)
\(32\) −0.590025 6.74402i −0.104303 1.19218i
\(33\) 0 0
\(34\) 8.80531 3.20487i 1.51010 0.549631i
\(35\) 10.1187 + 0.898567i 1.71037 + 0.151885i
\(36\) 0 0
\(37\) −2.05676 2.05676i −0.338129 0.338129i 0.517534 0.855663i \(-0.326850\pi\)
−0.855663 + 0.517534i \(0.826850\pi\)
\(38\) 2.35879 7.70606i 0.382647 1.25009i
\(39\) 0 0
\(40\) 1.38199 1.96821i 0.218511 0.311202i
\(41\) −1.05100 1.25253i −0.164138 0.195613i 0.677706 0.735333i \(-0.262974\pi\)
−0.841844 + 0.539721i \(0.818530\pi\)
\(42\) 0 0
\(43\) −0.373752 0.801514i −0.0569966 0.122230i 0.875747 0.482771i \(-0.160370\pi\)
−0.932743 + 0.360541i \(0.882592\pi\)
\(44\) 1.38761 1.65368i 0.209190 0.249302i
\(45\) 0 0
\(46\) −11.8513 + 6.84234i −1.74738 + 1.00885i
\(47\) −1.41793 2.02502i −0.206827 0.295379i 0.702315 0.711866i \(-0.252150\pi\)
−0.909141 + 0.416488i \(0.863261\pi\)
\(48\) 0 0
\(49\) −11.8118 + 6.81954i −1.68740 + 0.974220i
\(50\) −8.93551 + 2.36931i −1.26367 + 0.335071i
\(51\) 0 0
\(52\) −0.0831248 0.178262i −0.0115273 0.0247205i
\(53\) −4.74246 + 10.1702i −0.651427 + 1.39699i 0.251780 + 0.967784i \(0.418984\pi\)
−0.903207 + 0.429205i \(0.858794\pi\)
\(54\) 0 0
\(55\) 3.35254 0.586637i 0.452056 0.0791021i
\(56\) 4.88613i 0.652936i
\(57\) 0 0
\(58\) 2.60859 + 2.60859i 0.342524 + 0.342524i
\(59\) −1.86831 10.5957i −0.243233 1.37944i −0.824561 0.565773i \(-0.808578\pi\)
0.581328 0.813669i \(-0.302533\pi\)
\(60\) 0 0
\(61\) −2.79178 + 1.01612i −0.357451 + 0.130101i −0.514502 0.857489i \(-0.672023\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(62\) −2.09678 + 0.977745i −0.266292 + 0.124174i
\(63\) 0 0
\(64\) −2.48226 1.43314i −0.310283 0.179142i
\(65\) 0.0806511 0.299432i 0.0100035 0.0371399i
\(66\) 0 0
\(67\) 11.6415 8.15144i 1.42223 0.995857i 0.426411 0.904530i \(-0.359778\pi\)
0.995821 0.0913279i \(-0.0291111\pi\)
\(68\) 1.86043 6.94321i 0.225610 0.841988i
\(69\) 0 0
\(70\) 12.0914 14.3718i 1.44519 1.71776i
\(71\) 1.79203 4.92356i 0.212675 0.584319i −0.786784 0.617229i \(-0.788255\pi\)
0.999458 + 0.0329100i \(0.0104775\pi\)
\(72\) 0 0
\(73\) −6.01690 0.526410i −0.704225 0.0616117i −0.270582 0.962697i \(-0.587216\pi\)
−0.433642 + 0.901085i \(0.642772\pi\)
\(74\) −5.29607 + 0.933839i −0.615655 + 0.108557i
\(75\) 0 0
\(76\) −3.80447 4.87285i −0.436403 0.558955i
\(77\) −4.88954 + 4.88954i −0.557215 + 0.557215i
\(78\) 0 0
\(79\) −4.43572 + 3.72201i −0.499058 + 0.418759i −0.857259 0.514885i \(-0.827835\pi\)
0.358201 + 0.933644i \(0.383390\pi\)
\(80\) −3.67688 10.1433i −0.411087 1.13405i
\(81\) 0 0
\(82\) −3.01150 + 0.263472i −0.332564 + 0.0290956i
\(83\) −0.458159 + 0.122763i −0.0502895 + 0.0134750i −0.283876 0.958861i \(-0.591620\pi\)
0.233587 + 0.972336i \(0.424954\pi\)
\(84\) 0 0
\(85\) 9.29182 6.48816i 1.00784 0.703740i
\(86\) −1.61024 0.283929i −0.173636 0.0306168i
\(87\) 0 0
\(88\) 0.423695 + 1.58125i 0.0451661 + 0.168562i
\(89\) 1.43212 + 1.20169i 0.151805 + 0.127379i 0.715527 0.698585i \(-0.246187\pi\)
−0.563722 + 0.825964i \(0.690631\pi\)
\(90\) 0 0
\(91\) 0.215486 + 0.592042i 0.0225890 + 0.0620628i
\(92\) −0.914930 + 10.4577i −0.0953881 + 1.09029i
\(93\) 0 0
\(94\) −4.57054 −0.471415
\(95\) 0.356111 9.74029i 0.0365363 0.999332i
\(96\) 0 0
\(97\) −0.682796 + 0.975134i −0.0693274 + 0.0990098i −0.852318 0.523023i \(-0.824804\pi\)
0.782991 + 0.622033i \(0.213693\pi\)
\(98\) −2.19778 + 25.1208i −0.222010 + 2.53758i
\(99\) 0 0
\(100\) −2.44277 + 6.65738i −0.244277 + 0.665738i
\(101\) 0.589039 + 0.494263i 0.0586116 + 0.0491810i 0.671623 0.740893i \(-0.265598\pi\)
−0.613011 + 0.790074i \(0.710042\pi\)
\(102\) 0 0
\(103\) −3.83402 1.02732i −0.377777 0.101225i 0.0649337 0.997890i \(-0.479316\pi\)
−0.442711 + 0.896665i \(0.645983\pi\)
\(104\) 0.146890 + 0.0259007i 0.0144038 + 0.00253977i
\(105\) 0 0
\(106\) 10.3736 + 17.9676i 1.00757 + 1.74517i
\(107\) 14.6290 3.91983i 1.41424 0.378944i 0.530802 0.847496i \(-0.321891\pi\)
0.883436 + 0.468552i \(0.155224\pi\)
\(108\) 0 0
\(109\) −8.35240 3.04003i −0.800015 0.291182i −0.0905223 0.995894i \(-0.528854\pi\)
−0.709493 + 0.704713i \(0.751076\pi\)
\(110\) 2.66678 5.69951i 0.254267 0.543427i
\(111\) 0 0
\(112\) 17.9561 + 12.5730i 1.69669 + 1.18803i
\(113\) −3.03272 + 3.03272i −0.285294 + 0.285294i −0.835216 0.549922i \(-0.814658\pi\)
0.549922 + 0.835216i \(0.314658\pi\)
\(114\) 0 0
\(115\) −11.7183 + 11.6878i −1.09274 + 1.08990i
\(116\) 2.78695 0.491414i 0.258762 0.0456267i
\(117\) 0 0
\(118\) −18.0284 8.40679i −1.65965 0.773907i
\(119\) −7.87503 + 21.6365i −0.721903 + 1.98341i
\(120\) 0 0
\(121\) 4.34164 7.51993i 0.394694 0.683630i
\(122\) −1.42166 + 5.30570i −0.128711 + 0.480355i
\(123\) 0 0
\(124\) −0.308181 + 1.74778i −0.0276754 + 0.156955i
\(125\) −9.70425 + 5.55225i −0.867975 + 0.496609i
\(126\) 0 0
\(127\) 1.16792 + 13.3493i 0.103636 + 1.18456i 0.852822 + 0.522202i \(0.174889\pi\)
−0.749186 + 0.662360i \(0.769555\pi\)
\(128\) 7.46818 3.48247i 0.660100 0.307810i
\(129\) 0 0
\(130\) −0.367961 0.439682i −0.0322723 0.0385626i
\(131\) 1.85946 + 10.5455i 0.162462 + 0.921369i 0.951643 + 0.307207i \(0.0993945\pi\)
−0.789180 + 0.614161i \(0.789494\pi\)
\(132\) 0 0
\(133\) 10.7797 + 16.6115i 0.934720 + 1.44040i
\(134\) 26.2753i 2.26984i
\(135\) 0 0
\(136\) 3.50383 + 4.17570i 0.300451 + 0.358063i
\(137\) −8.82158 + 18.9179i −0.753679 + 1.61627i 0.0334197 + 0.999441i \(0.489360\pi\)
−0.787098 + 0.616828i \(0.788418\pi\)
\(138\) 0 0
\(139\) 4.32307 5.15204i 0.366678 0.436990i −0.550884 0.834582i \(-0.685709\pi\)
0.917562 + 0.397592i \(0.130154\pi\)
\(140\) −3.71081 13.9215i −0.313621 1.17658i
\(141\) 0 0
\(142\) −5.55633 7.93526i −0.466277 0.665913i
\(143\) 0.121074 + 0.172911i 0.0101247 + 0.0144596i
\(144\) 0 0
\(145\) 3.86104 + 2.23589i 0.320642 + 0.185681i
\(146\) −7.17794 + 8.55433i −0.594050 + 0.707961i
\(147\) 0 0
\(148\) −1.74344 + 3.73883i −0.143310 + 0.307330i
\(149\) −5.56213 6.62869i −0.455668 0.543043i 0.488476 0.872577i \(-0.337553\pi\)
−0.944144 + 0.329534i \(0.893108\pi\)
\(150\) 0 0
\(151\) 10.4228i 0.848193i −0.905617 0.424097i \(-0.860592\pi\)
0.905617 0.424097i \(-0.139408\pi\)
\(152\) 4.68175 0.243792i 0.379740 0.0197742i
\(153\) 0 0
\(154\) 2.22002 + 12.5904i 0.178894 + 1.01456i
\(155\) −2.14579 + 1.79577i −0.172354 + 0.144240i
\(156\) 0 0
\(157\) −14.7648 + 6.88494i −1.17836 + 0.549478i −0.910310 0.413927i \(-0.864157\pi\)
−0.268049 + 0.963405i \(0.586379\pi\)
\(158\) 0.933061 + 10.6649i 0.0742304 + 0.848457i
\(159\) 0 0
\(160\) −14.6168 3.93698i −1.15556 0.311246i
\(161\) 5.83910 33.1152i 0.460186 2.60984i
\(162\) 0 0
\(163\) 1.53732 5.73737i 0.120413 0.449386i −0.879222 0.476412i \(-0.841937\pi\)
0.999635 + 0.0270262i \(0.00860377\pi\)
\(164\) −1.15949 + 2.00829i −0.0905407 + 0.156821i
\(165\) 0 0
\(166\) −0.299935 + 0.824066i −0.0232795 + 0.0639599i
\(167\) 13.5351 + 6.31154i 1.04738 + 0.488402i 0.868614 0.495490i \(-0.165011\pi\)
0.178767 + 0.983891i \(0.442789\pi\)
\(168\) 0 0
\(169\) −12.7836 + 2.25409i −0.983351 + 0.173391i
\(170\) 0.0273188 20.9529i 0.00209525 1.60701i
\(171\) 0 0
\(172\) −0.886914 + 0.886914i −0.0676265 + 0.0676265i
\(173\) 11.2602 + 7.88448i 0.856098 + 0.599446i 0.917085 0.398692i \(-0.130536\pi\)
−0.0609868 + 0.998139i \(0.519425\pi\)
\(174\) 0 0
\(175\) 9.65348 20.5618i 0.729734 1.55433i
\(176\) 6.90120 + 2.51183i 0.520198 + 0.189336i
\(177\) 0 0
\(178\) 3.33867 0.894595i 0.250244 0.0670527i
\(179\) −2.00568 3.47394i −0.149912 0.259654i 0.781283 0.624177i \(-0.214566\pi\)
−0.931195 + 0.364523i \(0.881232\pi\)
\(180\) 0 0
\(181\) −22.2392 3.92137i −1.65303 0.291473i −0.732096 0.681202i \(-0.761458\pi\)
−0.920930 + 0.389729i \(0.872569\pi\)
\(182\) 1.12516 + 0.301485i 0.0834023 + 0.0223476i
\(183\) 0 0
\(184\) −6.09824 5.11703i −0.449568 0.377232i
\(185\) −5.89824 + 2.74104i −0.433647 + 0.201525i
\(186\) 0 0
\(187\) −0.672340 + 7.68488i −0.0491664 + 0.561974i
\(188\) −2.01102 + 2.87203i −0.146669 + 0.209465i
\(189\) 0 0
\(190\) −14.3740 10.8685i −1.04280 0.788486i
\(191\) −12.6937 −0.918482 −0.459241 0.888312i \(-0.651879\pi\)
−0.459241 + 0.888312i \(0.651879\pi\)
\(192\) 0 0
\(193\) −1.30105 + 14.8711i −0.0936519 + 1.07045i 0.793376 + 0.608731i \(0.208321\pi\)
−0.887028 + 0.461715i \(0.847234\pi\)
\(194\) 0.752757 + 2.06818i 0.0540448 + 0.148487i
\(195\) 0 0
\(196\) 14.8184 + 12.4341i 1.05845 + 0.888149i
\(197\) 1.63548 + 6.10369i 0.116523 + 0.434870i 0.999396 0.0347415i \(-0.0110608\pi\)
−0.882873 + 0.469611i \(0.844394\pi\)
\(198\) 0 0
\(199\) −12.5304 2.20944i −0.888254 0.156623i −0.289140 0.957287i \(-0.593369\pi\)
−0.599114 + 0.800664i \(0.704480\pi\)
\(200\) −3.07298 4.41311i −0.217292 0.312054i
\(201\) 0 0
\(202\) 1.37321 0.367951i 0.0966189 0.0258890i
\(203\) −9.03038 + 0.790056i −0.633808 + 0.0554510i
\(204\) 0 0
\(205\) −3.43725 + 1.24598i −0.240068 + 0.0870233i
\(206\) −5.62170 + 4.71717i −0.391683 + 0.328661i
\(207\) 0 0
\(208\) 0.473160 0.473160i 0.0328077 0.0328077i
\(209\) 4.92898 + 4.44106i 0.340945 + 0.307194i
\(210\) 0 0
\(211\) 16.9039 2.98061i 1.16371 0.205193i 0.441756 0.897135i \(-0.354356\pi\)
0.721953 + 0.691942i \(0.243245\pi\)
\(212\) 15.8548 + 1.38712i 1.08891 + 0.0952675i
\(213\) 0 0
\(214\) 9.57692 26.3124i 0.654665 1.79868i
\(215\) −1.97021 + 0.169783i −0.134368 + 0.0115791i
\(216\) 0 0
\(217\) 1.47135 5.49114i 0.0998816 0.372763i
\(218\) −13.4615 + 9.42585i −0.911728 + 0.638399i
\(219\) 0 0
\(220\) −2.40808 4.18351i −0.162353 0.282052i
\(221\) 0.608705 + 0.351436i 0.0409460 + 0.0236402i
\(222\) 0 0
\(223\) 17.0209 7.93699i 1.13981 0.531500i 0.241295 0.970452i \(-0.422428\pi\)
0.898511 + 0.438952i \(0.144650\pi\)
\(224\) 28.9005 10.5189i 1.93100 0.702825i
\(225\) 0 0
\(226\) 1.37696 + 7.80913i 0.0915940 + 0.519456i
\(227\) 0.0653385 + 0.0653385i 0.00433667 + 0.00433667i 0.709272 0.704935i \(-0.249024\pi\)
−0.704935 + 0.709272i \(0.749024\pi\)
\(228\) 0 0
\(229\) 10.2958i 0.680367i 0.940359 + 0.340184i \(0.110489\pi\)
−0.940359 + 0.340184i \(0.889511\pi\)
\(230\) 5.27431 + 30.1419i 0.347778 + 1.98750i
\(231\) 0 0
\(232\) −0.906952 + 1.94497i −0.0595443 + 0.127693i
\(233\) −9.16084 19.6455i −0.600146 1.28702i −0.938266 0.345915i \(-0.887569\pi\)
0.338119 0.941103i \(-0.390209\pi\)
\(234\) 0 0
\(235\) −5.34126 + 1.42373i −0.348426 + 0.0928736i
\(236\) −13.2151 + 7.62973i −0.860229 + 0.496653i
\(237\) 0 0
\(238\) 24.4172 + 34.8713i 1.58273 + 2.26037i
\(239\) 8.88903 5.13208i 0.574984 0.331967i −0.184154 0.982897i \(-0.558954\pi\)
0.759137 + 0.650931i \(0.225621\pi\)
\(240\) 0 0
\(241\) −12.7247 + 15.1647i −0.819672 + 0.976847i −0.999977 0.00676413i \(-0.997847\pi\)
0.180306 + 0.983611i \(0.442291\pi\)
\(242\) −6.78477 14.5500i −0.436142 0.935309i
\(243\) 0 0
\(244\) 2.70847 + 3.22783i 0.173392 + 0.206640i
\(245\) 5.25674 + 30.0415i 0.335841 + 1.91928i
\(246\) 0 0
\(247\) 0.556526 0.236012i 0.0354109 0.0150171i
\(248\) −0.951653 0.951653i −0.0604300 0.0604300i
\(249\) 0 0
\(250\) −1.88212 + 20.5850i −0.119035 + 1.30191i
\(251\) −5.76397 + 2.09791i −0.363819 + 0.132419i −0.517460 0.855708i \(-0.673122\pi\)
0.153641 + 0.988127i \(0.450900\pi\)
\(252\) 0 0
\(253\) −0.981894 11.2231i −0.0617311 0.705590i
\(254\) 21.4560 + 12.3877i 1.34627 + 0.777270i
\(255\) 0 0
\(256\) 3.64098 20.6490i 0.227561 1.29056i
\(257\) 19.0585 13.3449i 1.18883 0.832430i 0.199759 0.979845i \(-0.435984\pi\)
0.989075 + 0.147415i \(0.0470952\pi\)
\(258\) 0 0
\(259\) 6.60714 11.4439i 0.410548 0.711090i
\(260\) −0.438188 + 0.0377609i −0.0271753 + 0.00234183i
\(261\) 0 0
\(262\) 17.9431 + 8.36700i 1.10853 + 0.516915i
\(263\) −12.5544 1.09837i −0.774140 0.0677285i −0.306762 0.951786i \(-0.599246\pi\)
−0.467378 + 0.884058i \(0.654801\pi\)
\(264\) 0 0
\(265\) 17.7198 + 17.7660i 1.08852 + 1.09136i
\(266\) 36.5895 + 1.28997i 2.24344 + 0.0790930i
\(267\) 0 0
\(268\) −16.5108 11.5610i −1.00856 0.706201i
\(269\) −13.4512 + 11.2869i −0.820136 + 0.688176i −0.953004 0.302958i \(-0.902026\pi\)
0.132868 + 0.991134i \(0.457581\pi\)
\(270\) 0 0
\(271\) −15.7503 5.73264i −0.956762 0.348233i −0.183998 0.982927i \(-0.558904\pi\)
−0.772764 + 0.634694i \(0.781126\pi\)
\(272\) 24.3613 2.13134i 1.47712 0.129231i
\(273\) 0 0
\(274\) 19.2962 + 33.4220i 1.16573 + 2.01910i
\(275\) 1.34107 7.49131i 0.0808697 0.451743i
\(276\) 0 0
\(277\) 29.0963 + 7.79634i 1.74823 + 0.468437i 0.984247 0.176800i \(-0.0565747\pi\)
0.763982 + 0.645237i \(0.223241\pi\)
\(278\) −3.21829 12.0108i −0.193020 0.720361i
\(279\) 0 0
\(280\) 10.2619 + 3.75020i 0.613268 + 0.224117i
\(281\) −9.59450 26.3607i −0.572360 1.57255i −0.800764 0.598980i \(-0.795573\pi\)
0.228404 0.973566i \(-0.426649\pi\)
\(282\) 0 0
\(283\) −11.2068 + 16.0049i −0.666173 + 0.951394i 0.333789 + 0.942648i \(0.391673\pi\)
−0.999962 + 0.00874584i \(0.997216\pi\)
\(284\) −7.43112 −0.440956
\(285\) 0 0
\(286\) 0.390268 0.0230770
\(287\) 4.26061 6.08478i 0.251496 0.359173i
\(288\) 0 0
\(289\) 2.97107 + 8.16296i 0.174769 + 0.480174i
\(290\) 7.48074 3.47646i 0.439284 0.204145i
\(291\) 0 0
\(292\) 2.21710 + 8.27434i 0.129746 + 0.484219i
\(293\) 5.41159 + 1.45003i 0.316148 + 0.0847117i 0.413404 0.910548i \(-0.364340\pi\)
−0.0972556 + 0.995259i \(0.531006\pi\)
\(294\) 0 0
\(295\) −23.6872 4.20855i −1.37912 0.245031i
\(296\) −1.56418 2.70925i −0.0909164 0.157472i
\(297\) 0 0
\(298\) −15.9376 + 1.39436i −0.923238 + 0.0807728i
\(299\) −0.964579 0.351078i −0.0557831 0.0203034i
\(300\) 0 0
\(301\) 3.07776 2.58254i 0.177399 0.148855i
\(302\) −15.7853 11.0530i −0.908339 0.636026i
\(303\) 0 0
\(304\) 11.1512 17.8323i 0.639563 1.02275i
\(305\) −0.00866158 + 6.64324i −0.000495961 + 0.380391i
\(306\) 0 0
\(307\) −16.2726 1.42367i −0.928725 0.0812529i −0.387255 0.921973i \(-0.626577\pi\)
−0.541470 + 0.840720i \(0.682132\pi\)
\(308\) 8.88832 + 4.14469i 0.506459 + 0.236166i
\(309\) 0 0
\(310\) 0.444158 + 5.15414i 0.0252265 + 0.292735i
\(311\) −0.890255 + 1.54197i −0.0504817 + 0.0874369i −0.890162 0.455644i \(-0.849409\pi\)
0.839680 + 0.543081i \(0.182742\pi\)
\(312\) 0 0
\(313\) −3.59819 + 2.51948i −0.203382 + 0.142409i −0.670830 0.741611i \(-0.734062\pi\)
0.467449 + 0.884020i \(0.345173\pi\)
\(314\) −5.23029 + 29.6624i −0.295162 + 1.67395i
\(315\) 0 0
\(316\) 7.11217 + 4.10622i 0.400091 + 0.230993i
\(317\) −0.800161 9.14589i −0.0449415 0.513684i −0.984986 0.172633i \(-0.944773\pi\)
0.940045 0.341051i \(-0.110783\pi\)
\(318\) 0 0
\(319\) −2.85391 + 1.03874i −0.159788 + 0.0581581i
\(320\) −4.91508 + 4.11334i −0.274761 + 0.229942i
\(321\) 0 0
\(322\) −43.9607 43.9607i −2.44983 2.44983i
\(323\) 21.1244 + 6.46609i 1.17539 + 0.359783i
\(324\) 0 0
\(325\) −0.566971 0.399205i −0.0314499 0.0221439i
\(326\) −7.05896 8.41254i −0.390959 0.465927i
\(327\) 0 0
\(328\) −0.743195 1.59379i −0.0410361 0.0880021i
\(329\) 7.21899 8.60326i 0.397996 0.474313i
\(330\) 0 0
\(331\) 9.85862 5.69188i 0.541879 0.312854i −0.203961 0.978979i \(-0.565382\pi\)
0.745840 + 0.666125i \(0.232048\pi\)
\(332\) 0.385856 + 0.551059i 0.0211766 + 0.0302433i
\(333\) 0 0
\(334\) 23.9123 13.8058i 1.30842 0.755418i
\(335\) −8.18476 30.7060i −0.447181 1.67765i
\(336\) 0 0
\(337\) −6.59306 14.1389i −0.359147 0.770193i −0.999997 0.00252652i \(-0.999196\pi\)
0.640850 0.767666i \(-0.278582\pi\)
\(338\) −10.1427 + 21.7510i −0.551688 + 1.18310i
\(339\) 0 0
\(340\) −13.1543 9.23635i −0.713394 0.500911i
\(341\) 1.90463i 0.103142i
\(342\) 0 0
\(343\) −21.3274 21.3274i −1.15157 1.15157i
\(344\) −0.165168 0.936712i −0.00890524 0.0505041i
\(345\) 0 0
\(346\) 23.8820 8.69235i 1.28391 0.467304i
\(347\) −12.7342 + 5.93804i −0.683606 + 0.318770i −0.733214 0.679998i \(-0.761981\pi\)
0.0496082 + 0.998769i \(0.484203\pi\)
\(348\) 0 0
\(349\) 20.6061 + 11.8969i 1.10302 + 0.636829i 0.937012 0.349296i \(-0.113579\pi\)
0.166007 + 0.986125i \(0.446913\pi\)
\(350\) −20.9036 36.4252i −1.11735 1.94701i
\(351\) 0 0
\(352\) 8.44066 5.91022i 0.449889 0.315016i
\(353\) −3.32012 + 12.3909i −0.176712 + 0.659499i 0.819542 + 0.573020i \(0.194228\pi\)
−0.996254 + 0.0864789i \(0.972438\pi\)
\(354\) 0 0
\(355\) −8.96513 7.54258i −0.475820 0.400318i
\(356\) 0.906858 2.49157i 0.0480634 0.132053i
\(357\) 0 0
\(358\) −7.38821 0.646385i −0.390479 0.0341625i
\(359\) 1.62390 0.286337i 0.0857062 0.0151123i −0.130631 0.991431i \(-0.541700\pi\)
0.216337 + 0.976319i \(0.430589\pi\)
\(360\) 0 0
\(361\) 15.3788 11.1576i 0.809409 0.587245i
\(362\) −29.5227 + 29.5227i −1.55168 + 1.55168i
\(363\) 0 0
\(364\) 0.684513 0.574375i 0.0358782 0.0301054i
\(365\) −5.72366 + 12.2328i −0.299590 + 0.640292i
\(366\) 0 0
\(367\) 17.6746 1.54633i 0.922606 0.0807176i 0.384055 0.923310i \(-0.374527\pi\)
0.538551 + 0.842593i \(0.318972\pi\)
\(368\) −34.4966 + 9.24333i −1.79826 + 0.481842i
\(369\) 0 0
\(370\) −2.10357 + 11.8396i −0.109359 + 0.615513i
\(371\) −50.2056 8.85260i −2.60654 0.459604i
\(372\) 0 0
\(373\) −3.36965 12.5757i −0.174474 0.651145i −0.996641 0.0818983i \(-0.973902\pi\)
0.822167 0.569246i \(-0.192765\pi\)
\(374\) 10.9257 + 9.16778i 0.564956 + 0.474054i
\(375\) 0 0
\(376\) −0.909359 2.49844i −0.0468966 0.128847i
\(377\) −0.0241176 + 0.275665i −0.00124212 + 0.0141975i
\(378\) 0 0
\(379\) −19.2818 −0.990442 −0.495221 0.868767i \(-0.664913\pi\)
−0.495221 + 0.868767i \(0.664913\pi\)
\(380\) −13.1541 + 4.25021i −0.674789 + 0.218031i
\(381\) 0 0
\(382\) −13.4612 + 19.2245i −0.688733 + 0.983612i
\(383\) 1.30745 14.9442i 0.0668074 0.763612i −0.886720 0.462306i \(-0.847022\pi\)
0.953528 0.301305i \(-0.0974224\pi\)
\(384\) 0 0
\(385\) 6.51628 + 14.0219i 0.332100 + 0.714623i
\(386\) 21.1425 + 17.7407i 1.07613 + 0.902977i
\(387\) 0 0
\(388\) 1.63081 + 0.436975i 0.0827921 + 0.0221841i
\(389\) 13.3902 + 2.36105i 0.678909 + 0.119710i 0.502461 0.864600i \(-0.332428\pi\)
0.176448 + 0.984310i \(0.443539\pi\)
\(390\) 0 0
\(391\) −18.7567 32.4875i −0.948566 1.64297i
\(392\) −14.1693 + 3.79666i −0.715658 + 0.191760i
\(393\) 0 0
\(394\) 10.9784 + 3.99580i 0.553082 + 0.201306i
\(395\) 4.41254 + 12.1727i 0.222019 + 0.612475i
\(396\) 0 0
\(397\) −3.83927 2.68829i −0.192687 0.134921i 0.473252 0.880927i \(-0.343080\pi\)
−0.665939 + 0.746006i \(0.731969\pi\)
\(398\) −16.6342 + 16.6342i −0.833795 + 0.833795i
\(399\) 0 0
\(400\) −24.1251 0.0629097i −1.20626 0.00314549i
\(401\) 29.5512 5.21067i 1.47572 0.260209i 0.622851 0.782340i \(-0.285974\pi\)
0.852865 + 0.522132i \(0.174863\pi\)
\(402\) 0 0
\(403\) −0.157279 0.0733404i −0.00783463 0.00365335i
\(404\) 0.372995 1.02480i 0.0185572 0.0509855i
\(405\) 0 0
\(406\) −8.37983 + 14.5143i −0.415884 + 0.720333i
\(407\) 1.14586 4.27641i 0.0567982 0.211974i
\(408\) 0 0
\(409\) 5.94508 33.7162i 0.293965 1.66716i −0.377414 0.926045i \(-0.623187\pi\)
0.671379 0.741114i \(-0.265702\pi\)
\(410\) −1.75803 + 6.52702i −0.0868231 + 0.322347i
\(411\) 0 0
\(412\) 0.490645 + 5.60810i 0.0241723 + 0.276291i
\(413\) 44.2995 20.6572i 2.17984 1.01647i
\(414\) 0 0
\(415\) −0.0938161 + 1.05646i −0.00460525 + 0.0518594i
\(416\) −0.163029 0.924586i −0.00799317 0.0453315i
\(417\) 0 0
\(418\) 11.9530 2.75535i 0.584638 0.134769i
\(419\) 7.01480i 0.342696i 0.985211 + 0.171348i \(0.0548122\pi\)
−0.985211 + 0.171348i \(0.945188\pi\)
\(420\) 0 0
\(421\) −2.21994 2.64562i −0.108193 0.128939i 0.709230 0.704977i \(-0.249043\pi\)
−0.817423 + 0.576037i \(0.804598\pi\)
\(422\) 13.4118 28.7616i 0.652875 1.40009i
\(423\) 0 0
\(424\) −7.75787 + 9.24547i −0.376755 + 0.449000i
\(425\) −6.49491 24.4946i −0.315049 1.18816i
\(426\) 0 0
\(427\) −7.74162 11.0562i −0.374643 0.535046i
\(428\) −12.3203 17.5953i −0.595526 0.850500i
\(429\) 0 0
\(430\) −1.83220 + 3.16393i −0.0883566 + 0.152578i
\(431\) 6.73534 8.02687i 0.324430 0.386641i −0.579035 0.815303i \(-0.696571\pi\)
0.903465 + 0.428662i \(0.141015\pi\)
\(432\) 0 0
\(433\) −10.0690 + 21.5929i −0.483883 + 1.03769i 0.501156 + 0.865357i \(0.332908\pi\)
−0.985039 + 0.172333i \(0.944869\pi\)
\(434\) −6.75601 8.05150i −0.324299 0.386484i
\(435\) 0 0
\(436\) 12.6063i 0.603731i
\(437\) −32.0214 3.94259i −1.53179 0.188600i
\(438\) 0 0
\(439\) −0.100282 0.568729i −0.00478621 0.0271439i 0.982321 0.187204i \(-0.0599424\pi\)
−0.987107 + 0.160060i \(0.948831\pi\)
\(440\) 3.64617 + 0.323789i 0.173824 + 0.0154360i
\(441\) 0 0
\(442\) 1.17776 0.549197i 0.0560202 0.0261227i
\(443\) 0.740596 + 8.46505i 0.0351868 + 0.402187i 0.993281 + 0.115732i \(0.0369213\pi\)
−0.958094 + 0.286455i \(0.907523\pi\)
\(444\) 0 0
\(445\) 3.62300 2.08545i 0.171747 0.0988597i
\(446\) 6.02950 34.1950i 0.285505 1.61918i
\(447\) 0 0
\(448\) 3.37022 12.5778i 0.159228 0.594247i
\(449\) 4.27636 7.40687i 0.201814 0.349552i −0.747299 0.664488i \(-0.768650\pi\)
0.949113 + 0.314936i \(0.101983\pi\)
\(450\) 0 0
\(451\) 0.851185 2.33861i 0.0400807 0.110121i
\(452\) 5.51295 + 2.57073i 0.259308 + 0.120917i
\(453\) 0 0
\(454\) 0.168244 0.0296659i 0.00789608 0.00139229i
\(455\) 1.40881 + 0.00183683i 0.0660458 + 8.61118e-5i
\(456\) 0 0
\(457\) 1.00342 1.00342i 0.0469379 0.0469379i −0.683248 0.730186i \(-0.739433\pi\)
0.730186 + 0.683248i \(0.239433\pi\)
\(458\) 15.5930 + 10.9183i 0.728612 + 0.510180i
\(459\) 0 0
\(460\) 21.2612 + 9.94804i 0.991309 + 0.463830i
\(461\) 0.708319 + 0.257807i 0.0329897 + 0.0120073i 0.358462 0.933544i \(-0.383301\pi\)
−0.325473 + 0.945551i \(0.605523\pi\)
\(462\) 0 0
\(463\) 21.1144 5.65758i 0.981269 0.262930i 0.267690 0.963505i \(-0.413740\pi\)
0.713579 + 0.700575i \(0.247073\pi\)
\(464\) 4.81380 + 8.33774i 0.223475 + 0.387070i
\(465\) 0 0
\(466\) −39.4677 6.95922i −1.82831 0.322380i
\(467\) −3.02917 0.811663i −0.140173 0.0375593i 0.188050 0.982159i \(-0.439783\pi\)
−0.328223 + 0.944600i \(0.606450\pi\)
\(468\) 0 0
\(469\) 49.4587 + 41.5008i 2.28379 + 1.91633i
\(470\) −3.50798 + 9.59913i −0.161811 + 0.442775i
\(471\) 0 0
\(472\) 1.00854 11.5277i 0.0464219 0.530605i
\(473\) 0.772083 1.10265i 0.0355004 0.0506999i
\(474\) 0 0
\(475\) −20.1834 8.22377i −0.926078 0.377332i
\(476\) 32.6559 1.49678
\(477\) 0 0
\(478\) 1.65395 18.9048i 0.0756501 0.864684i
\(479\) −9.80127 26.9288i −0.447831 1.23041i −0.934230 0.356670i \(-0.883912\pi\)
0.486399 0.873737i \(-0.338310\pi\)
\(480\) 0 0
\(481\) −0.309011 0.259291i −0.0140897 0.0118226i
\(482\) 9.47285 + 35.3532i 0.431477 + 1.61029i
\(483\) 0 0
\(484\) −12.1282 2.13853i −0.551281 0.0972058i
\(485\) 1.52393 + 2.18245i 0.0691983 + 0.0991001i
\(486\) 0 0
\(487\) −9.40703 + 2.52061i −0.426273 + 0.114220i −0.465576 0.885008i \(-0.654153\pi\)
0.0393029 + 0.999227i \(0.487486\pi\)
\(488\) −3.18316 + 0.278491i −0.144095 + 0.0126067i
\(489\) 0 0
\(490\) 51.0723 + 23.8965i 2.30721 + 1.07953i
\(491\) −6.63665 + 5.56881i −0.299508 + 0.251317i −0.780139 0.625606i \(-0.784852\pi\)
0.480631 + 0.876923i \(0.340407\pi\)
\(492\) 0 0
\(493\) −7.15084 + 7.15084i −0.322057 + 0.322057i
\(494\) 0.232735 1.09314i 0.0104713 0.0491826i
\(495\) 0 0
\(496\) −5.94602 + 1.04844i −0.266984 + 0.0470765i
\(497\) 23.7128 + 2.07460i 1.06366 + 0.0930586i
\(498\) 0 0
\(499\) 0.511920 1.40649i 0.0229167 0.0629631i −0.927707 0.373310i \(-0.878223\pi\)
0.950623 + 0.310347i \(0.100445\pi\)
\(500\) 12.1071 + 10.2400i 0.541445 + 0.457947i
\(501\) 0 0
\(502\) −2.93519 + 10.9543i −0.131004 + 0.488913i
\(503\) −6.48967 + 4.54411i −0.289360 + 0.202612i −0.709239 0.704968i \(-0.750961\pi\)
0.419879 + 0.907580i \(0.362072\pi\)
\(504\) 0 0
\(505\) 1.49016 0.857755i 0.0663112 0.0381696i
\(506\) −18.0386 10.4146i −0.801913 0.462985i
\(507\) 0 0
\(508\) 17.2247 8.03202i 0.764223 0.356363i
\(509\) −31.2055 + 11.3579i −1.38316 + 0.503430i −0.923135 0.384476i \(-0.874382\pi\)
−0.460026 + 0.887905i \(0.652160\pi\)
\(510\) 0 0
\(511\) −4.76479 27.0225i −0.210782 1.19540i
\(512\) −15.7583 15.7583i −0.696424 0.696424i
\(513\) 0 0
\(514\) 43.0157i 1.89734i
\(515\) −5.10028 + 7.26378i −0.224745 + 0.320080i
\(516\) 0 0
\(517\) 1.59019 3.41018i 0.0699366 0.149979i
\(518\) −10.3251 22.1423i −0.453660 0.972877i
\(519\) 0 0
\(520\) 0.167138 0.288622i 0.00732949 0.0126569i
\(521\) −26.1470 + 15.0960i −1.14552 + 0.661367i −0.947792 0.318890i \(-0.896690\pi\)
−0.197729 + 0.980257i \(0.563357\pi\)
\(522\) 0 0
\(523\) 4.88803 + 6.98083i 0.213739 + 0.305250i 0.911677 0.410907i \(-0.134788\pi\)
−0.697939 + 0.716158i \(0.745899\pi\)
\(524\) 13.1525 7.59362i 0.574571 0.331729i
\(525\) 0 0
\(526\) −14.9770 + 17.8489i −0.653028 + 0.778248i
\(527\) −2.68026 5.74784i −0.116754 0.250380i
\(528\) 0 0
\(529\) 20.4310 + 24.3487i 0.888304 + 1.05864i
\(530\) 45.6978 7.99633i 1.98498 0.347338i
\(531\) 0 0
\(532\) 16.9098 22.4245i 0.733133 0.972225i
\(533\) −0.160340 0.160340i −0.00694508 0.00694508i
\(534\) 0 0
\(535\) 2.99554 33.7326i 0.129509 1.45839i
\(536\) 14.3631 5.22775i 0.620392 0.225804i
\(537\) 0 0
\(538\) 2.82949 + 32.3412i 0.121988 + 1.39433i
\(539\) −17.9785 10.3799i −0.774389 0.447094i
\(540\) 0 0
\(541\) 3.84885 21.8279i 0.165475 0.938454i −0.783099 0.621897i \(-0.786362\pi\)
0.948574 0.316557i \(-0.102527\pi\)
\(542\) −25.3846 + 17.7745i −1.09036 + 0.763481i
\(543\) 0 0
\(544\) 17.1554 29.7139i 0.735530 1.27397i
\(545\) −12.7953 + 15.2086i −0.548092 + 0.651464i
\(546\) 0 0
\(547\) 28.6999 + 13.3830i 1.22712 + 0.572216i 0.924605 0.380928i \(-0.124396\pi\)
0.302516 + 0.953144i \(0.402173\pi\)
\(548\) 29.4920 + 2.58021i 1.25983 + 0.110221i
\(549\) 0 0
\(550\) −9.92341 9.97530i −0.423136 0.425348i
\(551\) 1.20758 + 8.61324i 0.0514446 + 0.366936i
\(552\) 0 0
\(553\) −21.5487 15.0885i −0.916342 0.641630i
\(554\) 42.6631 35.7986i 1.81258 1.52094i
\(555\) 0 0
\(556\) −8.96338 3.26240i −0.380132 0.138357i
\(557\) 0.255505 0.0223538i 0.0108261 0.000947162i −0.0817414 0.996654i \(-0.526048\pi\)
0.0925675 + 0.995706i \(0.470493\pi\)
\(558\) 0 0
\(559\) −0.0613234 0.106215i −0.00259370 0.00449243i
\(560\) 40.1876 28.0616i 1.69824 1.18582i
\(561\) 0 0
\(562\) −50.0978 13.4237i −2.11325 0.566243i
\(563\) 1.38026 + 5.15121i 0.0581711 + 0.217097i 0.988893 0.148631i \(-0.0474866\pi\)
−0.930722 + 0.365728i \(0.880820\pi\)
\(564\) 0 0
\(565\) 4.04170 + 8.69705i 0.170036 + 0.365888i
\(566\) 12.3550 + 33.9452i 0.519321 + 1.42682i
\(567\) 0 0
\(568\) 3.23224 4.61612i 0.135622 0.193688i
\(569\) 20.8877 0.875659 0.437830 0.899058i \(-0.355747\pi\)
0.437830 + 0.899058i \(0.355747\pi\)
\(570\) 0 0
\(571\) −14.0563 −0.588237 −0.294118 0.955769i \(-0.595026\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(572\) 0.171716 0.245236i 0.00717982 0.0102538i
\(573\) 0 0
\(574\) −4.69716 12.9053i −0.196056 0.538659i
\(575\) 15.5529 + 33.5817i 0.648602 + 1.40045i
\(576\) 0 0
\(577\) −7.13342 26.6223i −0.296968 1.10830i −0.939642 0.342160i \(-0.888841\pi\)
0.642673 0.766140i \(-0.277825\pi\)
\(578\) 15.5135 + 4.15682i 0.645275 + 0.172901i
\(579\) 0 0
\(580\) 1.10696 6.23037i 0.0459640 0.258702i
\(581\) −1.07743 1.86616i −0.0446992 0.0774212i
\(582\) 0 0
\(583\) −17.0152 + 1.48864i −0.704698 + 0.0616531i
\(584\) −6.10427 2.22177i −0.252597 0.0919376i
\(585\) 0 0
\(586\) 7.93484 6.65812i 0.327785 0.275045i
\(587\) 13.4922 + 9.44733i 0.556882 + 0.389933i 0.817865 0.575410i \(-0.195158\pi\)
−0.260983 + 0.965343i \(0.584047\pi\)
\(588\) 0 0
\(589\) −5.33487 1.13583i −0.219820 0.0468009i
\(590\) −31.4932 + 31.4112i −1.29656 + 1.29318i
\(591\) 0 0
\(592\) −13.9812 1.22319i −0.574623 0.0502730i
\(593\) −17.2159 8.02791i −0.706972 0.329667i 0.0356619 0.999364i \(-0.488646\pi\)
−0.742634 + 0.669697i \(0.766424\pi\)
\(594\) 0 0
\(595\) 39.3971 + 33.1457i 1.61512 + 1.35884i
\(596\) −6.13628 + 10.6283i −0.251352 + 0.435354i
\(597\) 0 0
\(598\) −1.55461 + 1.08855i −0.0635726 + 0.0445140i
\(599\) 6.72471 38.1377i 0.274764 1.55826i −0.464946 0.885339i \(-0.653926\pi\)
0.739710 0.672926i \(-0.234963\pi\)
\(600\) 0 0
\(601\) 24.2204 + 13.9836i 0.987970 + 0.570405i 0.904667 0.426120i \(-0.140120\pi\)
0.0833031 + 0.996524i \(0.473453\pi\)
\(602\) −0.647411 7.39994i −0.0263865 0.301599i
\(603\) 0 0
\(604\) −13.8909 + 5.05587i −0.565213 + 0.205721i
\(605\) −12.4612 14.8901i −0.506620 0.605368i
\(606\) 0 0
\(607\) 31.1811 + 31.1811i 1.26560 + 1.26560i 0.948338 + 0.317263i \(0.102764\pi\)
0.317263 + 0.948338i \(0.397236\pi\)
\(608\) −11.5209 27.1668i −0.467235 1.10176i
\(609\) 0 0
\(610\) 10.0520 + 7.05802i 0.406992 + 0.285771i
\(611\) −0.220370 0.262627i −0.00891522 0.0106247i
\(612\) 0 0
\(613\) 6.16710 + 13.2254i 0.249087 + 0.534169i 0.990603 0.136766i \(-0.0436709\pi\)
−0.741516 + 0.670935i \(0.765893\pi\)
\(614\) −19.4126 + 23.1350i −0.783428 + 0.933653i
\(615\) 0 0
\(616\) −6.44070 + 3.71854i −0.259503 + 0.149824i
\(617\) −3.52558 5.03505i −0.141935 0.202704i 0.741891 0.670521i \(-0.233929\pi\)
−0.883825 + 0.467817i \(0.845040\pi\)
\(618\) 0 0
\(619\) −19.4464 + 11.2274i −0.781618 + 0.451268i −0.837003 0.547198i \(-0.815695\pi\)
0.0553852 + 0.998465i \(0.482361\pi\)
\(620\) 3.43418 + 1.98870i 0.137920 + 0.0798681i
\(621\) 0 0
\(622\) 1.39122 + 2.98348i 0.0557829 + 0.119627i
\(623\) −3.58938 + 7.69746i −0.143806 + 0.308392i
\(624\) 0 0
\(625\) 4.21274 + 24.6425i 0.168510 + 0.985700i
\(626\) 8.12126i 0.324591i
\(627\) 0 0
\(628\) 16.3380 + 16.3380i 0.651956 + 0.651956i
\(629\) −2.55990 14.5179i −0.102070 0.578868i
\(630\) 0 0
\(631\) 12.9935 4.72926i 0.517264 0.188269i −0.0701787 0.997534i \(-0.522357\pi\)
0.587443 + 0.809266i \(0.300135\pi\)
\(632\) −5.64425 + 2.63196i −0.224516 + 0.104694i
\(633\) 0 0
\(634\) −14.7000 8.48702i −0.583810 0.337063i
\(635\) 28.9329 + 7.79299i 1.14817 + 0.309255i
\(636\) 0 0
\(637\) −1.54943 + 1.08492i −0.0613905 + 0.0429861i
\(638\) −1.45330 + 5.42377i −0.0575365 + 0.214729i
\(639\) 0 0
\(640\) −1.58197 18.3577i −0.0625329 0.725650i
\(641\) −10.3038 + 28.3093i −0.406974 + 1.11815i 0.551799 + 0.833977i \(0.313942\pi\)
−0.958773 + 0.284174i \(0.908281\pi\)
\(642\) 0 0
\(643\) −25.5226 2.23293i −1.00651 0.0880584i −0.428039 0.903760i \(-0.640795\pi\)
−0.578473 + 0.815702i \(0.696351\pi\)
\(644\) −46.9665 + 8.28147i −1.85074 + 0.326336i
\(645\) 0 0
\(646\) 32.1945 25.1358i 1.26667 0.988953i
\(647\) 5.87443 5.87443i 0.230948 0.230948i −0.582141 0.813088i \(-0.697785\pi\)
0.813088 + 0.582141i \(0.197785\pi\)
\(648\) 0 0
\(649\) 12.5450 10.5265i 0.492433 0.413200i
\(650\) −1.20584 + 0.435334i −0.0472971 + 0.0170752i
\(651\) 0 0
\(652\) −8.39218 + 0.734220i −0.328663 + 0.0287543i
\(653\) 5.27313 1.41293i 0.206353 0.0552922i −0.154162 0.988046i \(-0.549268\pi\)
0.360515 + 0.932753i \(0.382601\pi\)
\(654\) 0 0
\(655\) 23.5751 + 4.18863i 0.921156 + 0.163663i
\(656\) −7.76940 1.36995i −0.303344 0.0534878i
\(657\) 0 0
\(658\) −5.37414 20.0566i −0.209506 0.781886i
\(659\) 22.7331 + 19.0754i 0.885557 + 0.743071i 0.967314 0.253582i \(-0.0816087\pi\)
−0.0817569 + 0.996652i \(0.526053\pi\)
\(660\) 0 0
\(661\) 8.70685 + 23.9219i 0.338657 + 0.930454i 0.985776 + 0.168064i \(0.0537516\pi\)
−0.647119 + 0.762389i \(0.724026\pi\)
\(662\) 1.83436 20.9669i 0.0712945 0.814900i
\(663\) 0 0
\(664\) −0.510143 −0.0197974
\(665\) 43.1613 9.89014i 1.67372 0.383523i
\(666\) 0 0
\(667\) 8.47108 12.0980i 0.328001 0.468435i
\(668\) 1.84605 21.1005i 0.0714259 0.816402i
\(669\) 0 0
\(670\) −55.1838 20.1668i −2.13193 0.779110i
\(671\) −3.46407 2.90670i −0.133729 0.112212i
\(672\) 0 0
\(673\) 37.3907 + 10.0188i 1.44131 + 0.386197i 0.892991 0.450075i \(-0.148603\pi\)
0.548315 + 0.836272i \(0.315269\pi\)
\(674\) −28.4049 5.00855i −1.09412 0.192922i
\(675\) 0 0
\(676\) 9.20516 + 15.9438i 0.354045 + 0.613224i
\(677\) 13.0692 3.50187i 0.502289 0.134588i 0.00122697 0.999999i \(-0.499609\pi\)
0.501062 + 0.865411i \(0.332943\pi\)
\(678\) 0 0
\(679\) −5.08195 1.84968i −0.195027 0.0709842i
\(680\) 11.4591 4.15387i 0.439437 0.159294i
\(681\) 0 0
\(682\) −2.88456 2.01979i −0.110456 0.0773418i
\(683\) 8.52271 8.52271i 0.326112 0.326112i −0.524994 0.851106i \(-0.675932\pi\)
0.851106 + 0.524994i \(0.175932\pi\)
\(684\) 0 0
\(685\) 32.9611 + 33.0471i 1.25938 + 1.26267i
\(686\) −54.9172 + 9.68339i −2.09675 + 0.369714i
\(687\) 0 0
\(688\) −3.86734 1.80337i −0.147441 0.0687528i
\(689\) −0.532265 + 1.46239i −0.0202777 + 0.0557125i
\(690\) 0 0
\(691\) −26.0866 + 45.1834i −0.992383 + 1.71886i −0.389504 + 0.921025i \(0.627354\pi\)
−0.602878 + 0.797833i \(0.705980\pi\)
\(692\) 5.04591 18.8316i 0.191817 0.715869i
\(693\) 0 0
\(694\) −4.51095 + 25.5829i −0.171233 + 0.971113i
\(695\) −7.50236 13.0337i −0.284581 0.494396i
\(696\) 0 0
\(697\) −0.722248 8.25533i −0.0273571 0.312693i
\(698\) 39.8698 18.5916i 1.50910 0.703703i
\(699\) 0 0
\(700\) −32.0863 2.89152i −1.21275 0.109289i
\(701\) 4.07872 + 23.1316i 0.154051 + 0.873668i 0.959648 + 0.281204i \(0.0907337\pi\)
−0.805597 + 0.592464i \(0.798155\pi\)
\(702\) 0 0
\(703\) −11.2949 5.75979i −0.425995 0.217234i
\(704\) 4.36270i 0.164425i
\(705\) 0 0
\(706\) 15.2450 + 18.1683i 0.573755 + 0.683774i
\(707\) −1.47633 + 3.16600i −0.0555232 + 0.119070i
\(708\) 0 0
\(709\) 8.49230 10.1207i 0.318935 0.380092i −0.582629 0.812739i \(-0.697976\pi\)
0.901564 + 0.432647i \(0.142420\pi\)
\(710\) −20.9304 + 5.57904i −0.785503 + 0.209378i
\(711\) 0 0
\(712\) 1.15329 + 1.64706i 0.0432213 + 0.0617264i
\(713\) 5.31246 + 7.58698i 0.198953 + 0.284135i
\(714\) 0 0
\(715\) 0.456078 0.121569i 0.0170563 0.00454641i
\(716\) −3.65696 + 4.35819i −0.136667 + 0.162873i
\(717\) 0 0
\(718\) 1.28843 2.76304i 0.0480837 0.103116i
\(719\) 30.9997 + 36.9440i 1.15609 + 1.37778i 0.913092 + 0.407753i \(0.133687\pi\)
0.243001 + 0.970026i \(0.421868\pi\)
\(720\) 0 0
\(721\) 18.0325i 0.671565i
\(722\) −0.589612 35.1234i −0.0219431 1.30716i
\(723\) 0 0
\(724\) 5.56159 + 31.5413i 0.206695 + 1.17222i
\(725\) 7.65929 6.39294i 0.284459 0.237428i
\(726\) 0 0
\(727\) −5.18618 + 2.41835i −0.192345 + 0.0896918i −0.516404 0.856345i \(-0.672730\pi\)
0.324060 + 0.946037i \(0.394952\pi\)
\(728\) 0.0590585 + 0.675041i 0.00218885 + 0.0250187i
\(729\) 0 0
\(730\) 12.4568 + 21.6408i 0.461045 + 0.800963i
\(731\) 0.778324 4.41410i 0.0287874 0.163261i
\(732\) 0 0
\(733\) −3.88782 + 14.5096i −0.143600 + 0.535923i 0.856214 + 0.516622i \(0.172811\pi\)
−0.999814 + 0.0193008i \(0.993856\pi\)
\(734\) 16.4013 28.4079i 0.605384 1.04856i
\(735\) 0 0
\(736\) −17.1379 + 47.0859i −0.631710 + 1.73561i
\(737\) 19.6045 + 9.14175i 0.722142 + 0.336741i
\(738\) 0 0
\(739\) 37.0848 6.53906i 1.36419 0.240543i 0.556840 0.830620i \(-0.312014\pi\)
0.807347 + 0.590077i \(0.200902\pi\)
\(740\) 6.51422 + 6.53123i 0.239468 + 0.240093i
\(741\) 0 0
\(742\) −66.6483 + 66.6483i −2.44674 + 2.44674i
\(743\) −5.49028 3.84433i −0.201419 0.141035i 0.468516 0.883455i \(-0.344789\pi\)
−0.669934 + 0.742420i \(0.733678\pi\)
\(744\) 0 0
\(745\) −18.1907 + 6.59404i −0.666457 + 0.241587i
\(746\) −22.6192 8.23272i −0.828148 0.301421i
\(747\) 0 0
\(748\) 10.5681 2.83172i 0.386409 0.103538i
\(749\) 34.4022 + 59.5863i 1.25703 + 2.17724i
\(750\) 0 0
\(751\) 16.8825 + 2.97683i 0.616050 + 0.108626i 0.472960 0.881084i \(-0.343185\pi\)
0.143089 + 0.989710i \(0.454296\pi\)
\(752\) −11.5215 3.08718i −0.420146 0.112578i
\(753\) 0 0
\(754\) 0.391918 + 0.328858i 0.0142728 + 0.0119763i
\(755\) −21.8901 7.99968i −0.796662 0.291138i
\(756\) 0 0
\(757\) 0.579501 6.62372i 0.0210623 0.240743i −0.978364 0.206889i \(-0.933666\pi\)
0.999427 0.0338545i \(-0.0107783\pi\)
\(758\) −20.4477 + 29.2023i −0.742692 + 1.06067i
\(759\) 0 0
\(760\) 3.08132 10.0198i 0.111771 0.363457i
\(761\) 46.7690 1.69538 0.847688 0.530495i \(-0.177994\pi\)
0.847688 + 0.530495i \(0.177994\pi\)
\(762\) 0 0
\(763\) 3.51938 40.2268i 0.127410 1.45631i
\(764\) 6.15744 + 16.9174i 0.222768 + 0.612051i
\(765\) 0 0
\(766\) −21.2464 17.8278i −0.767664 0.644146i
\(767\) −0.386185 1.44126i −0.0139443 0.0520410i
\(768\) 0 0
\(769\) −48.7943 8.60376i −1.75957 0.310259i −0.801756 0.597652i \(-0.796101\pi\)
−0.957813 + 0.287392i \(0.907212\pi\)
\(770\) 28.1464 + 5.00082i 1.01433 + 0.180217i
\(771\) 0 0
\(772\) 20.4505 5.47970i 0.736030 0.197219i
\(773\) 14.1733 1.24000i 0.509778 0.0445998i 0.170634 0.985334i \(-0.445418\pi\)
0.339144 + 0.940735i \(0.389863\pi\)
\(774\) 0 0
\(775\) 2.12457 + 5.88492i 0.0763169 + 0.211392i
\(776\) −0.980784 + 0.822975i −0.0352081 + 0.0295431i
\(777\) 0 0
\(778\) 17.7756 17.7756i 0.637285 0.637285i
\(779\) −6.04284 3.77880i −0.216507 0.135389i
\(780\) 0 0
\(781\) 7.85385 1.38484i 0.281033 0.0495536i
\(782\) −69.0930 6.04485i −2.47076 0.216163i
\(783\) 0 0
\(784\) −22.5081 + 61.8404i −0.803860 + 2.20859i
\(785\) 3.12760 + 36.2936i 0.111629 + 1.29537i
\(786\) 0 0
\(787\) −5.51072 + 20.5663i −0.196436 + 0.733110i 0.795454 + 0.606014i \(0.207232\pi\)
−0.991890 + 0.127096i \(0.959434\pi\)
\(788\) 7.34132 5.14045i 0.261524 0.183121i
\(789\) 0 0
\(790\) 23.1148 + 6.22591i 0.822389 + 0.221508i
\(791\) −16.8742 9.74233i −0.599978 0.346397i
\(792\) 0 0
\(793\) −0.373415 + 0.174126i −0.0132604 + 0.00618341i
\(794\) −8.14280 + 2.96374i −0.288977 + 0.105179i
\(795\) 0 0
\(796\) 3.13360 + 17.7715i 0.111068 + 0.629895i
\(797\) 2.03401 + 2.03401i 0.0720484 + 0.0720484i 0.742213 0.670164i \(-0.233776\pi\)
−0.670164 + 0.742213i \(0.733776\pi\)
\(798\) 0 0
\(799\) 12.5291i 0.443247i
\(800\) −19.4872 + 27.6767i −0.688975 + 0.978518i
\(801\) 0 0
\(802\) 23.4464 50.2809i 0.827920 1.77548i
\(803\) −3.88521 8.33186i −0.137106 0.294025i
\(804\) 0 0
\(805\) −65.0675 37.6799i −2.29333 1.32804i
\(806\) −0.277862 + 0.160424i −0.00978728 + 0.00565069i
\(807\) 0 0
\(808\) 0.474353 + 0.677446i 0.0166877 + 0.0238325i
\(809\) −8.61084 + 4.97147i −0.302741 + 0.174788i −0.643674 0.765300i \(-0.722591\pi\)
0.340932 + 0.940088i \(0.389257\pi\)
\(810\) 0 0
\(811\) 4.70296 5.60477i 0.165143 0.196810i −0.677126 0.735867i \(-0.736775\pi\)
0.842269 + 0.539057i \(0.181219\pi\)
\(812\) 5.43339 + 11.6520i 0.190675 + 0.408903i
\(813\) 0 0
\(814\) −5.26147 6.27038i −0.184414 0.219777i
\(815\) −10.8698 7.63226i −0.380753 0.267346i
\(816\) 0 0
\(817\) −2.62809 2.82017i −0.0919451 0.0986651i
\(818\) −44.7585 44.7585i −1.56495 1.56495i
\(819\) 0 0
\(820\) 3.32792 + 3.97658i 0.116216 + 0.138868i
\(821\) 42.9758 15.6419i 1.49986 0.545906i 0.543839 0.839190i \(-0.316970\pi\)
0.956025 + 0.293284i \(0.0947481\pi\)
\(822\) 0 0
\(823\) 4.37934 + 50.0561i 0.152654 + 1.74485i 0.557245 + 0.830348i \(0.311858\pi\)
−0.404591 + 0.914498i \(0.632586\pi\)
\(824\) −3.69709 2.13452i −0.128794 0.0743595i
\(825\) 0 0
\(826\) 15.6927 88.9976i 0.546018 3.09662i
\(827\) 40.0530 28.0454i 1.39278 0.975234i 0.394364 0.918954i \(-0.370965\pi\)
0.998415 0.0562800i \(-0.0179240\pi\)
\(828\) 0 0
\(829\) −17.1185 + 29.6501i −0.594549 + 1.02979i 0.399061 + 0.916924i \(0.369336\pi\)
−0.993610 + 0.112865i \(0.963997\pi\)
\(830\) 1.50051 + 1.26242i 0.0520835 + 0.0438191i
\(831\) 0 0
\(832\) −0.360259 0.167991i −0.0124897 0.00582405i
\(833\) −68.8628 6.02472i −2.38596 0.208744i
\(834\) 0 0
\(835\) 23.6441 23.5825i 0.818237 0.816107i
\(836\) 3.52785 8.72334i 0.122013 0.301703i
\(837\) 0 0
\(838\) 10.6239 + 7.43893i 0.366996 + 0.256974i
\(839\) −20.4137 + 17.1291i −0.704758 + 0.591362i −0.923123 0.384505i \(-0.874372\pi\)
0.218365 + 0.975867i \(0.429928\pi\)
\(840\) 0 0
\(841\) 23.5098 + 8.55687i 0.810683 + 0.295065i
\(842\) −6.36093 + 0.556510i −0.219212 + 0.0191786i
\(843\) 0 0
\(844\) −12.1721 21.0827i −0.418981 0.725696i
\(845\) −5.07756 + 28.5783i −0.174673 + 0.983124i
\(846\) 0 0
\(847\) 38.1042 + 10.2100i 1.30927 + 0.350819i
\(848\) 14.0137 + 52.2998i 0.481232 + 1.79598i
\(849\) 0 0
\(850\) −43.9846 16.1391i −1.50866 0.553567i
\(851\) 7.36344 + 20.2309i 0.252415 + 0.693506i
\(852\) 0 0
\(853\) −8.83275 + 12.6145i −0.302427 + 0.431911i −0.941387 0.337329i \(-0.890476\pi\)
0.638959 + 0.769241i \(0.279365\pi\)
\(854\) −24.9542 −0.853916
\(855\) 0 0
\(856\) 16.2888 0.556741
\(857\) 20.1332 28.7532i 0.687737 0.982191i −0.311750 0.950164i \(-0.600915\pi\)
0.999487 0.0320266i \(-0.0101961\pi\)
\(858\) 0 0
\(859\) −13.2030 36.2749i −0.450480 1.23768i −0.932387 0.361462i \(-0.882278\pi\)
0.481907 0.876223i \(-0.339944\pi\)
\(860\) 1.18199 + 2.54343i 0.0403055 + 0.0867304i
\(861\) 0 0
\(862\) −5.01409 18.7128i −0.170781 0.637362i
\(863\) 31.9550 + 8.56232i 1.08776 + 0.291465i 0.757772 0.652520i \(-0.226288\pi\)
0.329989 + 0.943985i \(0.392955\pi\)
\(864\) 0 0
\(865\) 25.2016 17.5974i 0.856879 0.598329i
\(866\) 22.0247 + 38.1479i 0.748429 + 1.29632i
\(867\) 0 0
\(868\) −8.03201 + 0.702710i −0.272624 + 0.0238515i
\(869\) −8.28198 3.01439i −0.280947 0.102256i
\(870\) 0 0
\(871\) 1.50980 1.26687i 0.0511575 0.0429263i
\(872\) −7.83086 5.48323i −0.265187 0.185686i
\(873\) 0 0
\(874\) −39.9285 + 44.3153i −1.35060 + 1.49899i
\(875\) −35.7750 36.0560i −1.20942 1.21891i
\(876\) 0 0
\(877\) −34.7538 3.04056i −1.17355 0.102672i −0.516343 0.856382i \(-0.672707\pi\)
−0.657208 + 0.753709i \(0.728263\pi\)
\(878\) −0.967683 0.451238i −0.0326577 0.0152285i
\(879\) 0 0
\(880\) 10.5722 12.5661i 0.356389 0.423605i
\(881\) 4.01849 6.96024i 0.135387 0.234496i −0.790359 0.612645i \(-0.790106\pi\)
0.925745 + 0.378148i \(0.123439\pi\)
\(882\) 0 0
\(883\) 5.32719 3.73014i 0.179274 0.125529i −0.480495 0.876997i \(-0.659543\pi\)
0.659769 + 0.751468i \(0.270654\pi\)
\(884\) 0.173104 0.981724i 0.00582213 0.0330189i
\(885\) 0 0
\(886\) 13.6057 + 7.85523i 0.457091 + 0.263902i
\(887\) 4.17511 + 47.7217i 0.140186 + 1.60234i 0.662151 + 0.749370i \(0.269644\pi\)
−0.521965 + 0.852967i \(0.674801\pi\)
\(888\) 0 0
\(889\) −57.2066 + 20.8215i −1.91865 + 0.698331i
\(890\) 0.683652 7.69856i 0.0229161 0.258056i
\(891\) 0 0
\(892\) −18.8345 18.8345i −0.630625 0.630625i
\(893\) −8.60359 6.48778i −0.287908 0.217105i
\(894\) 0 0
\(895\) −8.83543 + 1.54605i −0.295336 + 0.0516787i
\(896\) 24.0631 + 28.6773i 0.803892 + 0.958041i
\(897\) 0 0
\(898\) −6.68276 14.3312i −0.223007 0.478239i
\(899\) 1.60494 1.91269i 0.0535276 0.0637918i
\(900\) 0 0
\(901\) −49.2540 + 28.4368i −1.64089 + 0.947367i
\(902\) −2.63917 3.76913i −0.0878747 0.125498i
\(903\) 0 0
\(904\) −3.99483 + 2.30641i −0.132866 + 0.0767102i
\(905\) −25.3047 + 43.6974i −0.841158 + 1.45255i
\(906\) 0 0
\(907\) 11.6361 + 24.9537i 0.386370 + 0.828574i 0.999262 + 0.0384071i \(0.0122284\pi\)
−0.612892 + 0.790167i \(0.709994\pi\)
\(908\) 0.0553852 0.118774i 0.00183802 0.00394165i
\(909\) 0 0
\(910\) 1.49677 2.13168i 0.0496173 0.0706646i
\(911\) 50.4735i 1.67226i −0.548529 0.836132i \(-0.684812\pi\)
0.548529 0.836132i \(-0.315188\pi\)
\(912\) 0 0
\(913\) −0.510499 0.510499i −0.0168951 0.0168951i
\(914\) −0.455586 2.58376i −0.0150694 0.0854631i
\(915\) 0 0
\(916\) 13.7217 4.99429i 0.453378 0.165016i
\(917\) −44.0898 + 20.5594i −1.45598 + 0.678932i
\(918\) 0 0
\(919\) −22.3948 12.9296i −0.738736 0.426510i 0.0828733 0.996560i \(-0.473590\pi\)
−0.821610 + 0.570050i \(0.806924\pi\)
\(920\) −15.4274 + 8.88021i −0.508626 + 0.292772i
\(921\) 0 0
\(922\) 1.14159 0.799352i 0.0375964 0.0263252i
\(923\) 0.188066 0.701873i 0.00619027 0.0231024i
\(924\) 0 0
\(925\) 1.22976 + 14.4914i 0.0404344 + 0.476474i
\(926\) 13.8226 37.9773i 0.454239 1.24801i
\(927\) 0 0
\(928\) 13.4566 + 1.17730i 0.441734 + 0.0386467i
\(929\) −49.5361 + 8.73454i −1.62523 + 0.286571i −0.910709 0.413048i \(-0.864464\pi\)
−0.714516 + 0.699619i \(0.753353\pi\)
\(930\) 0 0
\(931\) −39.7955 + 44.1677i −1.30424 + 1.44754i
\(932\) −21.7387 + 21.7387i −0.712074 + 0.712074i
\(933\) 0 0
\(934\) −4.44157 + 3.72692i −0.145333 + 0.121949i
\(935\) 15.6239 + 7.31035i 0.510956 + 0.239074i
\(936\) 0 0
\(937\) 33.6752 2.94620i 1.10012 0.0962482i 0.477396 0.878688i \(-0.341581\pi\)
0.622726 + 0.782440i \(0.286025\pi\)
\(938\) 115.302 30.8950i 3.76474 1.00876i
\(939\) 0 0
\(940\) 4.48840 + 6.42792i 0.146395 + 0.209656i
\(941\) 20.3861 + 3.59461i 0.664567 + 0.117181i 0.495748 0.868466i \(-0.334894\pi\)
0.168818 + 0.985647i \(0.446005\pi\)
\(942\) 0 0
\(943\) 3.13229 + 11.6899i 0.102001 + 0.380674i
\(944\) −39.7680 33.3693i −1.29434 1.08608i
\(945\) 0 0
\(946\) −0.851193 2.33863i −0.0276747 0.0760355i
\(947\) 3.20227 36.6021i 0.104060 1.18941i −0.747177 0.664625i \(-0.768591\pi\)
0.851237 0.524782i \(-0.175853\pi\)
\(948\) 0 0
\(949\) −0.837625 −0.0271905
\(950\) −33.8586 + 21.8467i −1.09852 + 0.708800i
\(951\) 0 0
\(952\) −14.2040 + 20.2855i −0.460355 + 0.657455i
\(953\) −1.19399 + 13.6473i −0.0386770 + 0.442080i 0.952024 + 0.306023i \(0.0989986\pi\)
−0.990701 + 0.136057i \(0.956557\pi\)
\(954\) 0 0
\(955\) −9.74264 + 26.6595i −0.315265 + 0.862681i
\(956\) −11.1516 9.35734i −0.360670 0.302638i
\(957\) 0 0
\(958\) −51.1774 13.7129i −1.65347 0.443045i
\(959\) −93.3888 16.4670i −3.01568 0.531746i
\(960\) 0 0
\(961\) −14.7171 25.4907i −0.474744 0.822282i
\(962\) −0.720389 + 0.193028i −0.0232263 + 0.00622346i
\(963\) 0 0
\(964\) 26.3832 + 9.60271i 0.849746 + 0.309282i
\(965\) 30.2340 + 14.1464i 0.973267 + 0.455388i
\(966\) 0 0
\(967\) 0.256099 + 0.179322i 0.00823557 + 0.00576661i 0.577687 0.816258i \(-0.303955\pi\)
−0.569451 + 0.822025i \(0.692844\pi\)
\(968\) 6.60371 6.60371i 0.212251 0.212251i
\(969\) 0 0
\(970\) 4.92139 + 0.00641660i 0.158016 + 0.000206025i
\(971\) 38.3652 6.76482i 1.23120 0.217093i 0.480058 0.877237i \(-0.340616\pi\)
0.751140 + 0.660143i \(0.229504\pi\)
\(972\) 0 0
\(973\) 27.6915 + 12.9127i 0.887748 + 0.413963i
\(974\) −6.15835 + 16.9199i −0.197326 + 0.542149i
\(975\) 0 0
\(976\) −7.16748 + 12.4144i −0.229425 + 0.397376i
\(977\) −4.32385 + 16.1368i −0.138332 + 0.516262i 0.861630 + 0.507537i \(0.169444\pi\)
−0.999962 + 0.00872521i \(0.997223\pi\)
\(978\) 0 0
\(979\) −0.494122 + 2.80231i −0.0157922 + 0.0895621i
\(980\) 37.4877 21.5784i 1.19750 0.689297i
\(981\) 0 0
\(982\) 1.39603 + 15.9567i 0.0445491 + 0.509199i
\(983\) −19.8575 + 9.25970i −0.633355 + 0.295338i −0.712657 0.701512i \(-0.752509\pi\)
0.0793022 + 0.996851i \(0.474731\pi\)
\(984\) 0 0
\(985\) 14.0743 + 1.24984i 0.448445 + 0.0398231i
\(986\) 3.24673 + 18.4131i 0.103397 + 0.586393i
\(987\) 0 0
\(988\) −0.584503 0.627223i −0.0185955 0.0199546i
\(989\) 6.54585i 0.208146i
\(990\) 0 0
\(991\) 20.3243 + 24.2215i 0.645622 + 0.769422i 0.985247 0.171139i \(-0.0547446\pi\)
−0.339625 + 0.940561i \(0.610300\pi\)
\(992\) −3.58011 + 7.67757i −0.113669 + 0.243763i
\(993\) 0 0
\(994\) 28.2885 33.7129i 0.897256 1.06931i
\(995\) −14.2576 + 24.6207i −0.451996 + 0.780529i
\(996\) 0 0
\(997\) −20.1485 28.7750i −0.638109 0.911314i 0.361671 0.932306i \(-0.382206\pi\)
−0.999780 + 0.0209919i \(0.993318\pi\)
\(998\) −1.58725 2.26683i −0.0502436 0.0717553i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.523.7 96
3.2 odd 2 95.2.r.a.48.2 yes 96
5.2 odd 4 inner 855.2.dl.a.352.7 96
15.2 even 4 95.2.r.a.67.2 yes 96
15.8 even 4 475.2.bb.b.257.7 96
15.14 odd 2 475.2.bb.b.143.7 96
19.2 odd 18 inner 855.2.dl.a.838.7 96
57.2 even 18 95.2.r.a.78.2 yes 96
95.2 even 36 inner 855.2.dl.a.667.7 96
285.2 odd 36 95.2.r.a.2.2 96
285.59 even 18 475.2.bb.b.268.7 96
285.173 odd 36 475.2.bb.b.382.7 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.2 96 285.2 odd 36
95.2.r.a.48.2 yes 96 3.2 odd 2
95.2.r.a.67.2 yes 96 15.2 even 4
95.2.r.a.78.2 yes 96 57.2 even 18
475.2.bb.b.143.7 96 15.14 odd 2
475.2.bb.b.257.7 96 15.8 even 4
475.2.bb.b.268.7 96 285.59 even 18
475.2.bb.b.382.7 96 285.173 odd 36
855.2.dl.a.352.7 96 5.2 odd 4 inner
855.2.dl.a.523.7 96 1.1 even 1 trivial
855.2.dl.a.667.7 96 95.2 even 36 inner
855.2.dl.a.838.7 96 19.2 odd 18 inner