Properties

Label 855.2.dl.a.838.7
Level $855$
Weight $2$
Character 855.838
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 838.7
Character \(\chi\) \(=\) 855.838
Dual form 855.2.dl.a.352.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.51450 - 1.06046i) q^{2} +(0.485079 - 1.33274i) q^{4} +(-0.762040 - 2.10221i) q^{5} +(-4.38823 - 1.17582i) q^{7} +(0.278366 + 1.03888i) q^{8} +(-3.38342 - 2.37568i) q^{10} +(0.761040 - 1.31816i) q^{11} +(-0.0120870 + 0.138155i) q^{13} +(-7.89287 + 2.87277i) q^{14} +(3.69620 + 3.10148i) q^{16} +(-2.90701 - 4.15164i) q^{17} +(-4.14601 - 1.34559i) q^{19} +(-3.17136 - 0.00413488i) q^{20} +(-0.245266 - 2.80340i) q^{22} +(-3.12809 - 6.70821i) q^{23} +(-3.83859 + 3.20394i) q^{25} +(0.128202 + 0.222052i) q^{26} +(-3.69571 + 5.27802i) q^{28} +(0.346487 + 1.96502i) q^{29} +(-1.08369 + 0.625668i) q^{31} +(6.74402 + 0.590025i) q^{32} +(-8.80531 - 3.20487i) q^{34} +(0.872178 + 10.1210i) q^{35} +(2.05676 + 2.05676i) q^{37} +(-7.70606 + 2.35879i) q^{38} +(1.97181 - 1.37685i) q^{40} +(-1.05100 + 1.25253i) q^{41} +(-0.801514 - 0.373752i) q^{43} +(-1.38761 - 1.65368i) q^{44} +(-11.8513 - 6.84234i) q^{46} +(2.02502 + 1.41793i) q^{47} +(11.8118 + 6.81954i) q^{49} +(-2.41588 + 8.92303i) q^{50} +(0.178262 + 0.0831248i) q^{52} +(10.1702 - 4.74246i) q^{53} +(-3.35100 - 0.595377i) q^{55} -4.88613i q^{56} +(2.60859 + 2.60859i) q^{58} +(1.86831 - 10.5957i) q^{59} +(-2.79178 - 1.01612i) q^{61} +(-0.977745 + 2.09678i) q^{62} +(2.48226 - 1.43314i) q^{64} +(0.299641 - 0.0798700i) q^{65} +(8.15144 - 11.6415i) q^{67} +(-6.94321 + 1.86043i) q^{68} +(12.0538 + 14.4033i) q^{70} +(1.79203 + 4.92356i) q^{71} +(-0.526410 - 6.01690i) q^{73} +(5.29607 + 0.933839i) q^{74} +(-3.80447 + 4.87285i) q^{76} +(-4.88954 + 4.88954i) q^{77} +(4.43572 + 3.72201i) q^{79} +(3.70331 - 10.1336i) q^{80} +(-0.263472 + 3.01150i) q^{82} +(0.122763 - 0.458159i) q^{83} +(-6.51237 + 9.27487i) q^{85} +(-1.61024 + 0.283929i) q^{86} +(1.58125 + 0.423695i) q^{88} +(-1.43212 + 1.20169i) q^{89} +(0.215486 - 0.592042i) q^{91} +(-10.4577 + 0.914930i) q^{92} +4.57054 q^{94} +(0.330711 + 9.74118i) q^{95} +(-0.975134 + 0.682796i) q^{97} +(25.1208 - 2.19778i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(e\left(\frac{1}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51450 1.06046i 1.07091 0.749860i 0.101384 0.994847i \(-0.467673\pi\)
0.969526 + 0.244988i \(0.0787839\pi\)
\(3\) 0 0
\(4\) 0.485079 1.33274i 0.242540 0.666372i
\(5\) −0.762040 2.10221i −0.340795 0.940138i
\(6\) 0 0
\(7\) −4.38823 1.17582i −1.65859 0.444419i −0.696593 0.717466i \(-0.745302\pi\)
−0.962001 + 0.273048i \(0.911968\pi\)
\(8\) 0.278366 + 1.03888i 0.0984172 + 0.367298i
\(9\) 0 0
\(10\) −3.38342 2.37568i −1.06993 0.751255i
\(11\) 0.761040 1.31816i 0.229462 0.397440i −0.728187 0.685379i \(-0.759637\pi\)
0.957649 + 0.287939i \(0.0929699\pi\)
\(12\) 0 0
\(13\) −0.0120870 + 0.138155i −0.00335232 + 0.0383172i −0.997687 0.0679810i \(-0.978344\pi\)
0.994334 + 0.106298i \(0.0338998\pi\)
\(14\) −7.89287 + 2.87277i −2.10946 + 0.767780i
\(15\) 0 0
\(16\) 3.69620 + 3.10148i 0.924050 + 0.775370i
\(17\) −2.90701 4.15164i −0.705054 1.00692i −0.998698 0.0510063i \(-0.983757\pi\)
0.293645 0.955915i \(-0.405132\pi\)
\(18\) 0 0
\(19\) −4.14601 1.34559i −0.951160 0.308699i
\(20\) −3.17136 0.00413488i −0.709138 0.000924588i
\(21\) 0 0
\(22\) −0.245266 2.80340i −0.0522909 0.597687i
\(23\) −3.12809 6.70821i −0.652252 1.39876i −0.902548 0.430589i \(-0.858306\pi\)
0.250297 0.968169i \(-0.419472\pi\)
\(24\) 0 0
\(25\) −3.83859 + 3.20394i −0.767718 + 0.640788i
\(26\) 0.128202 + 0.222052i 0.0251425 + 0.0435481i
\(27\) 0 0
\(28\) −3.69571 + 5.27802i −0.698423 + 0.997452i
\(29\) 0.346487 + 1.96502i 0.0643410 + 0.364896i 0.999930 + 0.0118058i \(0.00375798\pi\)
−0.935589 + 0.353090i \(0.885131\pi\)
\(30\) 0 0
\(31\) −1.08369 + 0.625668i −0.194636 + 0.112373i −0.594151 0.804353i \(-0.702512\pi\)
0.399515 + 0.916727i \(0.369179\pi\)
\(32\) 6.74402 + 0.590025i 1.19218 + 0.104303i
\(33\) 0 0
\(34\) −8.80531 3.20487i −1.51010 0.549631i
\(35\) 0.872178 + 10.1210i 0.147425 + 1.71076i
\(36\) 0 0
\(37\) 2.05676 + 2.05676i 0.338129 + 0.338129i 0.855663 0.517534i \(-0.173150\pi\)
−0.517534 + 0.855663i \(0.673150\pi\)
\(38\) −7.70606 + 2.35879i −1.25009 + 0.382647i
\(39\) 0 0
\(40\) 1.97181 1.37685i 0.311771 0.217699i
\(41\) −1.05100 + 1.25253i −0.164138 + 0.195613i −0.841844 0.539721i \(-0.818530\pi\)
0.677706 + 0.735333i \(0.262974\pi\)
\(42\) 0 0
\(43\) −0.801514 0.373752i −0.122230 0.0569966i 0.360541 0.932743i \(-0.382592\pi\)
−0.482771 + 0.875747i \(0.660370\pi\)
\(44\) −1.38761 1.65368i −0.209190 0.249302i
\(45\) 0 0
\(46\) −11.8513 6.84234i −1.74738 1.00885i
\(47\) 2.02502 + 1.41793i 0.295379 + 0.206827i 0.711866 0.702315i \(-0.247850\pi\)
−0.416488 + 0.909141i \(0.636739\pi\)
\(48\) 0 0
\(49\) 11.8118 + 6.81954i 1.68740 + 0.974220i
\(50\) −2.41588 + 8.92303i −0.341656 + 1.26191i
\(51\) 0 0
\(52\) 0.178262 + 0.0831248i 0.0247205 + 0.0115273i
\(53\) 10.1702 4.74246i 1.39699 0.651427i 0.429205 0.903207i \(-0.358794\pi\)
0.967784 + 0.251780i \(0.0810160\pi\)
\(54\) 0 0
\(55\) −3.35100 0.595377i −0.451848 0.0802806i
\(56\) 4.88613i 0.652936i
\(57\) 0 0
\(58\) 2.60859 + 2.60859i 0.342524 + 0.342524i
\(59\) 1.86831 10.5957i 0.243233 1.37944i −0.581328 0.813669i \(-0.697467\pi\)
0.824561 0.565773i \(-0.191422\pi\)
\(60\) 0 0
\(61\) −2.79178 1.01612i −0.357451 0.130101i 0.157052 0.987590i \(-0.449801\pi\)
−0.514502 + 0.857489i \(0.672023\pi\)
\(62\) −0.977745 + 2.09678i −0.124174 + 0.266292i
\(63\) 0 0
\(64\) 2.48226 1.43314i 0.310283 0.179142i
\(65\) 0.299641 0.0798700i 0.0371659 0.00990666i
\(66\) 0 0
\(67\) 8.15144 11.6415i 0.995857 1.42223i 0.0913279 0.995821i \(-0.470889\pi\)
0.904530 0.426411i \(-0.140222\pi\)
\(68\) −6.94321 + 1.86043i −0.841988 + 0.225610i
\(69\) 0 0
\(70\) 12.0538 + 14.4033i 1.44071 + 1.72152i
\(71\) 1.79203 + 4.92356i 0.212675 + 0.584319i 0.999458 0.0329100i \(-0.0104775\pi\)
−0.786784 + 0.617229i \(0.788255\pi\)
\(72\) 0 0
\(73\) −0.526410 6.01690i −0.0616117 0.704225i −0.962697 0.270582i \(-0.912784\pi\)
0.901085 0.433642i \(-0.142772\pi\)
\(74\) 5.29607 + 0.933839i 0.615655 + 0.108557i
\(75\) 0 0
\(76\) −3.80447 + 4.87285i −0.436403 + 0.558955i
\(77\) −4.88954 + 4.88954i −0.557215 + 0.557215i
\(78\) 0 0
\(79\) 4.43572 + 3.72201i 0.499058 + 0.418759i 0.857259 0.514885i \(-0.172165\pi\)
−0.358201 + 0.933644i \(0.616610\pi\)
\(80\) 3.70331 10.1336i 0.414043 1.13298i
\(81\) 0 0
\(82\) −0.263472 + 3.01150i −0.0290956 + 0.332564i
\(83\) 0.122763 0.458159i 0.0134750 0.0502895i −0.958861 0.283876i \(-0.908380\pi\)
0.972336 + 0.233587i \(0.0750462\pi\)
\(84\) 0 0
\(85\) −6.51237 + 9.27487i −0.706366 + 1.00600i
\(86\) −1.61024 + 0.283929i −0.173636 + 0.0306168i
\(87\) 0 0
\(88\) 1.58125 + 0.423695i 0.168562 + 0.0451661i
\(89\) −1.43212 + 1.20169i −0.151805 + 0.127379i −0.715527 0.698585i \(-0.753813\pi\)
0.563722 + 0.825964i \(0.309369\pi\)
\(90\) 0 0
\(91\) 0.215486 0.592042i 0.0225890 0.0620628i
\(92\) −10.4577 + 0.914930i −1.09029 + 0.0953881i
\(93\) 0 0
\(94\) 4.57054 0.471415
\(95\) 0.330711 + 9.74118i 0.0339302 + 0.999424i
\(96\) 0 0
\(97\) −0.975134 + 0.682796i −0.0990098 + 0.0693274i −0.622033 0.782991i \(-0.713693\pi\)
0.523023 + 0.852318i \(0.324804\pi\)
\(98\) 25.1208 2.19778i 2.53758 0.222010i
\(99\) 0 0
\(100\) 2.40801 + 6.67003i 0.240801 + 0.667003i
\(101\) 0.589039 0.494263i 0.0586116 0.0491810i −0.613011 0.790074i \(-0.710042\pi\)
0.671623 + 0.740893i \(0.265598\pi\)
\(102\) 0 0
\(103\) −1.02732 3.83402i −0.101225 0.377777i 0.896665 0.442711i \(-0.145983\pi\)
−0.997890 + 0.0649337i \(0.979316\pi\)
\(104\) −0.146890 + 0.0259007i −0.0144038 + 0.00253977i
\(105\) 0 0
\(106\) 10.3736 17.9676i 1.00757 1.74517i
\(107\) 3.91983 14.6290i 0.378944 1.41424i −0.468552 0.883436i \(-0.655224\pi\)
0.847496 0.530802i \(-0.178109\pi\)
\(108\) 0 0
\(109\) 8.35240 3.04003i 0.800015 0.291182i 0.0905223 0.995894i \(-0.471146\pi\)
0.709493 + 0.704713i \(0.248924\pi\)
\(110\) −5.70644 + 2.65191i −0.544088 + 0.252849i
\(111\) 0 0
\(112\) −12.5730 17.9561i −1.18803 1.69669i
\(113\) 3.03272 3.03272i 0.285294 0.285294i −0.549922 0.835216i \(-0.685342\pi\)
0.835216 + 0.549922i \(0.185342\pi\)
\(114\) 0 0
\(115\) −11.7183 + 11.6878i −1.09274 + 1.08990i
\(116\) 2.78695 + 0.491414i 0.258762 + 0.0456267i
\(117\) 0 0
\(118\) −8.40679 18.0284i −0.773907 1.65965i
\(119\) 7.87503 + 21.6365i 0.721903 + 1.98341i
\(120\) 0 0
\(121\) 4.34164 + 7.51993i 0.394694 + 0.683630i
\(122\) −5.30570 + 1.42166i −0.480355 + 0.128711i
\(123\) 0 0
\(124\) 0.308181 + 1.74778i 0.0276754 + 0.156955i
\(125\) 9.66052 + 5.62800i 0.864063 + 0.503384i
\(126\) 0 0
\(127\) −13.3493 1.16792i −1.18456 0.103636i −0.522202 0.852822i \(-0.674889\pi\)
−0.662360 + 0.749186i \(0.730445\pi\)
\(128\) −3.48247 + 7.46818i −0.307810 + 0.660100i
\(129\) 0 0
\(130\) 0.369106 0.438721i 0.0323728 0.0384784i
\(131\) 1.85946 10.5455i 0.162462 0.921369i −0.789180 0.614161i \(-0.789494\pi\)
0.951643 0.307207i \(-0.0993945\pi\)
\(132\) 0 0
\(133\) 16.6115 + 10.7797i 1.44040 + 0.934720i
\(134\) 26.2753i 2.26984i
\(135\) 0 0
\(136\) 3.50383 4.17570i 0.300451 0.358063i
\(137\) −18.9179 + 8.82158i −1.61627 + 0.753679i −0.999441 0.0334197i \(-0.989360\pi\)
−0.616828 + 0.787098i \(0.711582\pi\)
\(138\) 0 0
\(139\) −4.32307 5.15204i −0.366678 0.436990i 0.550884 0.834582i \(-0.314291\pi\)
−0.917562 + 0.397592i \(0.869846\pi\)
\(140\) 13.9118 + 3.74710i 1.17576 + 0.316688i
\(141\) 0 0
\(142\) 7.93526 + 5.55633i 0.665913 + 0.466277i
\(143\) 0.172911 + 0.121074i 0.0144596 + 0.0101247i
\(144\) 0 0
\(145\) 3.86686 2.22582i 0.321125 0.184844i
\(146\) −7.17794 8.55433i −0.594050 0.707961i
\(147\) 0 0
\(148\) 3.73883 1.74344i 0.307330 0.143310i
\(149\) 5.56213 6.62869i 0.455668 0.543043i −0.488476 0.872577i \(-0.662447\pi\)
0.944144 + 0.329534i \(0.106892\pi\)
\(150\) 0 0
\(151\) 10.4228i 0.848193i 0.905617 + 0.424097i \(0.139408\pi\)
−0.905617 + 0.424097i \(0.860592\pi\)
\(152\) 0.243792 4.68175i 0.0197742 0.379740i
\(153\) 0 0
\(154\) −2.22002 + 12.5904i −0.178894 + 1.01456i
\(155\) 2.14110 + 1.80136i 0.171977 + 0.144689i
\(156\) 0 0
\(157\) −6.88494 + 14.7648i −0.549478 + 1.17836i 0.413927 + 0.910310i \(0.364157\pi\)
−0.963405 + 0.268049i \(0.913621\pi\)
\(158\) 10.6649 + 0.933061i 0.848457 + 0.0742304i
\(159\) 0 0
\(160\) −3.89885 14.6270i −0.308231 1.15636i
\(161\) 5.83910 + 33.1152i 0.460186 + 2.60984i
\(162\) 0 0
\(163\) −5.73737 + 1.53732i −0.449386 + 0.120413i −0.476412 0.879222i \(-0.658063\pi\)
0.0270262 + 0.999635i \(0.491396\pi\)
\(164\) 1.15949 + 2.00829i 0.0905407 + 0.156821i
\(165\) 0 0
\(166\) −0.299935 0.824066i −0.0232795 0.0639599i
\(167\) −6.31154 13.5351i −0.488402 1.04738i −0.983891 0.178767i \(-0.942789\pi\)
0.495490 0.868614i \(-0.334989\pi\)
\(168\) 0 0
\(169\) 12.7836 + 2.25409i 0.983351 + 0.173391i
\(170\) −0.0273188 + 20.9529i −0.00209525 + 1.60701i
\(171\) 0 0
\(172\) −0.886914 + 0.886914i −0.0676265 + 0.0676265i
\(173\) 7.88448 + 11.2602i 0.599446 + 0.856098i 0.998139 0.0609868i \(-0.0194248\pi\)
−0.398692 + 0.917085i \(0.630536\pi\)
\(174\) 0 0
\(175\) 20.6119 9.54611i 1.55811 0.721618i
\(176\) 6.90120 2.51183i 0.520198 0.189336i
\(177\) 0 0
\(178\) −0.894595 + 3.33867i −0.0670527 + 0.250244i
\(179\) 2.00568 3.47394i 0.149912 0.259654i −0.781283 0.624177i \(-0.785434\pi\)
0.931195 + 0.364523i \(0.118768\pi\)
\(180\) 0 0
\(181\) −22.2392 + 3.92137i −1.65303 + 0.291473i −0.920930 0.389729i \(-0.872569\pi\)
−0.732096 + 0.681202i \(0.761458\pi\)
\(182\) −0.301485 1.12516i −0.0223476 0.0834023i
\(183\) 0 0
\(184\) 6.09824 5.11703i 0.449568 0.377232i
\(185\) 2.75641 5.89107i 0.202655 0.433120i
\(186\) 0 0
\(187\) −7.68488 + 0.672340i −0.561974 + 0.0491664i
\(188\) 2.87203 2.01102i 0.209465 0.146669i
\(189\) 0 0
\(190\) 10.8310 + 14.4023i 0.785764 + 1.04485i
\(191\) −12.6937 −0.918482 −0.459241 0.888312i \(-0.651879\pi\)
−0.459241 + 0.888312i \(0.651879\pi\)
\(192\) 0 0
\(193\) 14.8711 1.30105i 1.07045 0.0936519i 0.461715 0.887028i \(-0.347234\pi\)
0.608731 + 0.793376i \(0.291679\pi\)
\(194\) −0.752757 + 2.06818i −0.0540448 + 0.148487i
\(195\) 0 0
\(196\) 14.8184 12.4341i 1.05845 0.888149i
\(197\) −6.10369 1.63548i −0.434870 0.116523i 0.0347415 0.999396i \(-0.488939\pi\)
−0.469611 + 0.882873i \(0.655606\pi\)
\(198\) 0 0
\(199\) 12.5304 2.20944i 0.888254 0.156623i 0.289140 0.957287i \(-0.406631\pi\)
0.599114 + 0.800664i \(0.295520\pi\)
\(200\) −4.39703 3.09595i −0.310917 0.218917i
\(201\) 0 0
\(202\) 0.367951 1.37321i 0.0258890 0.0966189i
\(203\) 0.790056 9.03038i 0.0554510 0.633808i
\(204\) 0 0
\(205\) 3.43399 + 1.25494i 0.239840 + 0.0876490i
\(206\) −5.62170 4.71717i −0.391683 0.328661i
\(207\) 0 0
\(208\) −0.473160 + 0.473160i −0.0328077 + 0.0328077i
\(209\) −4.92898 + 4.44106i −0.340945 + 0.307194i
\(210\) 0 0
\(211\) 16.9039 + 2.98061i 1.16371 + 0.205193i 0.721953 0.691942i \(-0.243245\pi\)
0.441756 + 0.897135i \(0.354356\pi\)
\(212\) −1.38712 15.8548i −0.0952675 1.08891i
\(213\) 0 0
\(214\) −9.57692 26.3124i −0.654665 1.79868i
\(215\) −0.174920 + 1.96977i −0.0119295 + 0.134337i
\(216\) 0 0
\(217\) 5.49114 1.47135i 0.372763 0.0998816i
\(218\) 9.42585 13.4615i 0.638399 0.911728i
\(219\) 0 0
\(220\) −2.41898 + 4.17722i −0.163088 + 0.281628i
\(221\) 0.608705 0.351436i 0.0409460 0.0236402i
\(222\) 0 0
\(223\) −7.93699 + 17.0209i −0.531500 + 1.13981i 0.438952 + 0.898511i \(0.355350\pi\)
−0.970452 + 0.241295i \(0.922428\pi\)
\(224\) −28.9005 10.5189i −1.93100 0.702825i
\(225\) 0 0
\(226\) 1.37696 7.80913i 0.0915940 0.519456i
\(227\) −0.0653385 0.0653385i −0.00433667 0.00433667i 0.704935 0.709272i \(-0.250976\pi\)
−0.709272 + 0.704935i \(0.750976\pi\)
\(228\) 0 0
\(229\) 10.2958i 0.680367i 0.940359 + 0.340184i \(0.110489\pi\)
−0.940359 + 0.340184i \(0.889511\pi\)
\(230\) −5.35290 + 30.1280i −0.352959 + 1.98658i
\(231\) 0 0
\(232\) −1.94497 + 0.906952i −0.127693 + 0.0595443i
\(233\) −19.6455 9.16084i −1.28702 0.600146i −0.345915 0.938266i \(-0.612431\pi\)
−0.941103 + 0.338119i \(0.890209\pi\)
\(234\) 0 0
\(235\) 1.43765 5.33753i 0.0937819 0.348182i
\(236\) −13.2151 7.62973i −0.860229 0.496653i
\(237\) 0 0
\(238\) 34.8713 + 24.4172i 2.26037 + 1.58273i
\(239\) −8.88903 5.13208i −0.574984 0.331967i 0.184154 0.982897i \(-0.441046\pi\)
−0.759137 + 0.650931i \(0.774379\pi\)
\(240\) 0 0
\(241\) −12.7247 15.1647i −0.819672 0.976847i 0.180306 0.983611i \(-0.442291\pi\)
−0.999977 + 0.00676413i \(0.997847\pi\)
\(242\) 14.5500 + 6.78477i 0.935309 + 0.436142i
\(243\) 0 0
\(244\) −2.70847 + 3.22783i −0.173392 + 0.206640i
\(245\) 5.33506 30.0277i 0.340845 1.91840i
\(246\) 0 0
\(247\) 0.236012 0.556526i 0.0150171 0.0354109i
\(248\) −0.951653 0.951653i −0.0604300 0.0604300i
\(249\) 0 0
\(250\) 20.5991 1.72103i 1.30280 0.108847i
\(251\) −5.76397 2.09791i −0.363819 0.132419i 0.153641 0.988127i \(-0.450900\pi\)
−0.517460 + 0.855708i \(0.673122\pi\)
\(252\) 0 0
\(253\) −11.2231 0.981894i −0.705590 0.0617311i
\(254\) −21.4560 + 12.3877i −1.34627 + 0.777270i
\(255\) 0 0
\(256\) 3.64098 + 20.6490i 0.227561 + 1.29056i
\(257\) 13.3449 19.0585i 0.832430 1.18883i −0.147415 0.989075i \(-0.547095\pi\)
0.979845 0.199759i \(-0.0640159\pi\)
\(258\) 0 0
\(259\) −6.60714 11.4439i −0.410548 0.711090i
\(260\) 0.0389034 0.438088i 0.00241269 0.0271691i
\(261\) 0 0
\(262\) −8.36700 17.9431i −0.516915 1.10853i
\(263\) −1.09837 12.5544i −0.0677285 0.774140i −0.951786 0.306762i \(-0.900754\pi\)
0.884058 0.467378i \(-0.154801\pi\)
\(264\) 0 0
\(265\) −17.7198 17.7660i −1.08852 1.09136i
\(266\) 36.5895 1.28997i 2.24344 0.0790930i
\(267\) 0 0
\(268\) −11.5610 16.5108i −0.706201 1.00856i
\(269\) 13.4512 + 11.2869i 0.820136 + 0.688176i 0.953004 0.302958i \(-0.0979742\pi\)
−0.132868 + 0.991134i \(0.542419\pi\)
\(270\) 0 0
\(271\) −15.7503 + 5.73264i −0.956762 + 0.348233i −0.772764 0.634694i \(-0.781126\pi\)
−0.183998 + 0.982927i \(0.558904\pi\)
\(272\) 2.13134 24.3613i 0.129231 1.47712i
\(273\) 0 0
\(274\) −19.2962 + 33.4220i −1.16573 + 2.01910i
\(275\) 1.30198 + 7.49820i 0.0785126 + 0.452159i
\(276\) 0 0
\(277\) −7.79634 29.0963i −0.468437 1.74823i −0.645237 0.763982i \(-0.723241\pi\)
0.176800 0.984247i \(-0.443425\pi\)
\(278\) −12.0108 3.21829i −0.720361 0.193020i
\(279\) 0 0
\(280\) −10.2717 + 3.72343i −0.613850 + 0.222517i
\(281\) −9.59450 + 26.3607i −0.572360 + 1.57255i 0.228404 + 0.973566i \(0.426649\pi\)
−0.800764 + 0.598980i \(0.795573\pi\)
\(282\) 0 0
\(283\) 16.0049 11.2068i 0.951394 0.666173i 0.00874584 0.999962i \(-0.497216\pi\)
0.942648 + 0.333789i \(0.108327\pi\)
\(284\) 7.43112 0.440956
\(285\) 0 0
\(286\) 0.390268 0.0230770
\(287\) 6.08478 4.26061i 0.359173 0.251496i
\(288\) 0 0
\(289\) −2.97107 + 8.16296i −0.174769 + 0.480174i
\(290\) 3.49595 7.47165i 0.205289 0.438750i
\(291\) 0 0
\(292\) −8.27434 2.21710i −0.484219 0.129746i
\(293\) 1.45003 + 5.41159i 0.0847117 + 0.316148i 0.995259 0.0972556i \(-0.0310064\pi\)
−0.910548 + 0.413404i \(0.864340\pi\)
\(294\) 0 0
\(295\) −23.6981 + 4.14677i −1.37976 + 0.241434i
\(296\) −1.56418 + 2.70925i −0.0909164 + 0.157472i
\(297\) 0 0
\(298\) 1.39436 15.9376i 0.0807728 0.923238i
\(299\) 0.964579 0.351078i 0.0557831 0.0203034i
\(300\) 0 0
\(301\) 3.07776 + 2.58254i 0.177399 + 0.148855i
\(302\) 11.0530 + 15.7853i 0.636026 + 0.908339i
\(303\) 0 0
\(304\) −11.1512 17.8323i −0.639563 1.02275i
\(305\) −0.00866158 + 6.64324i −0.000495961 + 0.380391i
\(306\) 0 0
\(307\) 1.42367 + 16.2726i 0.0812529 + 0.928725i 0.921973 + 0.387255i \(0.126577\pi\)
−0.840720 + 0.541470i \(0.817868\pi\)
\(308\) 4.14469 + 8.88832i 0.236166 + 0.506459i
\(309\) 0 0
\(310\) 5.15296 + 0.457596i 0.292669 + 0.0259897i
\(311\) −0.890255 1.54197i −0.0504817 0.0874369i 0.839680 0.543081i \(-0.182742\pi\)
−0.890162 + 0.455644i \(0.849409\pi\)
\(312\) 0 0
\(313\) 2.51948 3.59819i 0.142409 0.203382i −0.741611 0.670830i \(-0.765938\pi\)
0.884020 + 0.467449i \(0.154827\pi\)
\(314\) 5.23029 + 29.6624i 0.295162 + 1.67395i
\(315\) 0 0
\(316\) 7.11217 4.10622i 0.400091 0.230993i
\(317\) 9.14589 + 0.800161i 0.513684 + 0.0449415i 0.341051 0.940045i \(-0.389217\pi\)
0.172633 + 0.984986i \(0.444773\pi\)
\(318\) 0 0
\(319\) 2.85391 + 1.03874i 0.159788 + 0.0581581i
\(320\) −4.90434 4.12614i −0.274161 0.230658i
\(321\) 0 0
\(322\) 43.9607 + 43.9607i 2.44983 + 2.44983i
\(323\) 6.46609 + 21.1244i 0.359783 + 1.17539i
\(324\) 0 0
\(325\) −0.396242 0.569045i −0.0219796 0.0315649i
\(326\) −7.05896 + 8.41254i −0.390959 + 0.465927i
\(327\) 0 0
\(328\) −1.59379 0.743195i −0.0880021 0.0410361i
\(329\) −7.21899 8.60326i −0.397996 0.474313i
\(330\) 0 0
\(331\) 9.85862 + 5.69188i 0.541879 + 0.312854i 0.745840 0.666125i \(-0.232048\pi\)
−0.203961 + 0.978979i \(0.565382\pi\)
\(332\) −0.551059 0.385856i −0.0302433 0.0211766i
\(333\) 0 0
\(334\) −23.9123 13.8058i −1.30842 0.755418i
\(335\) −30.6846 8.26480i −1.67648 0.451554i
\(336\) 0 0
\(337\) 14.1389 + 6.59306i 0.770193 + 0.359147i 0.767666 0.640850i \(-0.221418\pi\)
0.00252652 + 0.999997i \(0.499196\pi\)
\(338\) 21.7510 10.1427i 1.18310 0.551688i
\(339\) 0 0
\(340\) 9.20202 + 13.1784i 0.499049 + 0.714698i
\(341\) 1.90463i 0.103142i
\(342\) 0 0
\(343\) −21.3274 21.3274i −1.15157 1.15157i
\(344\) 0.165168 0.936712i 0.00890524 0.0505041i
\(345\) 0 0
\(346\) 23.8820 + 8.69235i 1.28391 + 0.467304i
\(347\) −5.93804 + 12.7342i −0.318770 + 0.683606i −0.998769 0.0496082i \(-0.984203\pi\)
0.679998 + 0.733214i \(0.261981\pi\)
\(348\) 0 0
\(349\) −20.6061 + 11.8969i −1.10302 + 0.636829i −0.937012 0.349296i \(-0.886421\pi\)
−0.166007 + 0.986125i \(0.553087\pi\)
\(350\) 21.0933 36.3156i 1.12748 1.94115i
\(351\) 0 0
\(352\) 5.91022 8.44066i 0.315016 0.449889i
\(353\) 12.3909 3.32012i 0.659499 0.176712i 0.0864789 0.996254i \(-0.472438\pi\)
0.573020 + 0.819542i \(0.305772\pi\)
\(354\) 0 0
\(355\) 8.98477 7.51917i 0.476862 0.399076i
\(356\) 0.906858 + 2.49157i 0.0480634 + 0.132053i
\(357\) 0 0
\(358\) −0.646385 7.38821i −0.0341625 0.390479i
\(359\) −1.62390 0.286337i −0.0857062 0.0151123i 0.130631 0.991431i \(-0.458300\pi\)
−0.216337 + 0.976319i \(0.569411\pi\)
\(360\) 0 0
\(361\) 15.3788 + 11.1576i 0.809409 + 0.587245i
\(362\) −29.5227 + 29.5227i −1.55168 + 1.55168i
\(363\) 0 0
\(364\) −0.684513 0.574375i −0.0358782 0.0301054i
\(365\) −12.2476 + 5.69174i −0.641071 + 0.297919i
\(366\) 0 0
\(367\) 1.54633 17.6746i 0.0807176 0.922606i −0.842593 0.538551i \(-0.818972\pi\)
0.923310 0.384055i \(-0.125473\pi\)
\(368\) 9.24333 34.4966i 0.481842 1.79826i
\(369\) 0 0
\(370\) −2.07269 11.8451i −0.107754 0.615796i
\(371\) −50.2056 + 8.85260i −2.60654 + 0.459604i
\(372\) 0 0
\(373\) −12.5757 3.36965i −0.651145 0.174474i −0.0818983 0.996641i \(-0.526098\pi\)
−0.569246 + 0.822167i \(0.692765\pi\)
\(374\) −10.9257 + 9.16778i −0.564956 + 0.474054i
\(375\) 0 0
\(376\) −0.909359 + 2.49844i −0.0468966 + 0.128847i
\(377\) −0.275665 + 0.0241176i −0.0141975 + 0.00124212i
\(378\) 0 0
\(379\) 19.2818 0.990442 0.495221 0.868767i \(-0.335087\pi\)
0.495221 + 0.868767i \(0.335087\pi\)
\(380\) 13.1429 + 4.28449i 0.674218 + 0.219790i
\(381\) 0 0
\(382\) −19.2245 + 13.4612i −0.983612 + 0.688733i
\(383\) −14.9442 + 1.30745i −0.763612 + 0.0668074i −0.462306 0.886720i \(-0.652978\pi\)
−0.301305 + 0.953528i \(0.597422\pi\)
\(384\) 0 0
\(385\) 14.0049 + 6.55282i 0.713754 + 0.333963i
\(386\) 21.1425 17.7407i 1.07613 0.902977i
\(387\) 0 0
\(388\) 0.436975 + 1.63081i 0.0221841 + 0.0827921i
\(389\) −13.3902 + 2.36105i −0.678909 + 0.119710i −0.502461 0.864600i \(-0.667572\pi\)
−0.176448 + 0.984310i \(0.556461\pi\)
\(390\) 0 0
\(391\) −18.7567 + 32.4875i −0.948566 + 1.64297i
\(392\) −3.79666 + 14.1693i −0.191760 + 0.715658i
\(393\) 0 0
\(394\) −10.9784 + 3.99580i −0.553082 + 0.201306i
\(395\) 4.44426 12.1612i 0.223615 0.611894i
\(396\) 0 0
\(397\) 2.68829 + 3.83927i 0.134921 + 0.192687i 0.880927 0.473252i \(-0.156920\pi\)
−0.746006 + 0.665939i \(0.768031\pi\)
\(398\) 16.6342 16.6342i 0.833795 0.833795i
\(399\) 0 0
\(400\) −24.1251 0.0629097i −1.20626 0.00314549i
\(401\) 29.5512 + 5.21067i 1.47572 + 0.260209i 0.852865 0.522132i \(-0.174863\pi\)
0.622851 + 0.782340i \(0.285974\pi\)
\(402\) 0 0
\(403\) −0.0733404 0.157279i −0.00365335 0.00783463i
\(404\) −0.372995 1.02480i −0.0185572 0.0509855i
\(405\) 0 0
\(406\) −8.37983 14.5143i −0.415884 0.720333i
\(407\) 4.27641 1.14586i 0.211974 0.0567982i
\(408\) 0 0
\(409\) −5.94508 33.7162i −0.293965 1.66716i −0.671379 0.741114i \(-0.734298\pi\)
0.377414 0.926045i \(-0.376813\pi\)
\(410\) 6.53158 1.74101i 0.322572 0.0859823i
\(411\) 0 0
\(412\) −5.60810 0.490645i −0.276291 0.0241723i
\(413\) −20.6572 + 44.2995i −1.01647 + 2.17984i
\(414\) 0 0
\(415\) −1.05670 + 0.0910609i −0.0518713 + 0.00447001i
\(416\) −0.163029 + 0.924586i −0.00799317 + 0.0453315i
\(417\) 0 0
\(418\) −2.75535 + 11.9530i −0.134769 + 0.584638i
\(419\) 7.01480i 0.342696i 0.985211 + 0.171348i \(0.0548122\pi\)
−0.985211 + 0.171348i \(0.945188\pi\)
\(420\) 0 0
\(421\) −2.21994 + 2.64562i −0.108193 + 0.128939i −0.817423 0.576037i \(-0.804598\pi\)
0.709230 + 0.704977i \(0.249043\pi\)
\(422\) 28.7616 13.4118i 1.40009 0.652875i
\(423\) 0 0
\(424\) 7.75787 + 9.24547i 0.376755 + 0.449000i
\(425\) 24.4604 + 6.62256i 1.18651 + 0.321242i
\(426\) 0 0
\(427\) 11.0562 + 7.74162i 0.535046 + 0.374643i
\(428\) −17.5953 12.3203i −0.850500 0.595526i
\(429\) 0 0
\(430\) 1.82394 + 3.16870i 0.0879584 + 0.152808i
\(431\) 6.73534 + 8.02687i 0.324430 + 0.386641i 0.903465 0.428662i \(-0.141015\pi\)
−0.579035 + 0.815303i \(0.696571\pi\)
\(432\) 0 0
\(433\) 21.5929 10.0690i 1.03769 0.483883i 0.172333 0.985039i \(-0.444869\pi\)
0.865357 + 0.501156i \(0.167092\pi\)
\(434\) 6.75601 8.05150i 0.324299 0.386484i
\(435\) 0 0
\(436\) 12.6063i 0.603731i
\(437\) 3.94259 + 32.0214i 0.188600 + 1.53179i
\(438\) 0 0
\(439\) 0.100282 0.568729i 0.00478621 0.0271439i −0.982321 0.187204i \(-0.940058\pi\)
0.987107 + 0.160060i \(0.0511687\pi\)
\(440\) −0.314280 3.64700i −0.0149827 0.173864i
\(441\) 0 0
\(442\) 0.549197 1.17776i 0.0261227 0.0560202i
\(443\) 8.46505 + 0.740596i 0.402187 + 0.0351868i 0.286455 0.958094i \(-0.407523\pi\)
0.115732 + 0.993281i \(0.463079\pi\)
\(444\) 0 0
\(445\) 3.61755 + 2.09489i 0.171488 + 0.0993072i
\(446\) 6.02950 + 34.1950i 0.285505 + 1.61918i
\(447\) 0 0
\(448\) −12.5778 + 3.37022i −0.594247 + 0.159228i
\(449\) −4.27636 7.40687i −0.201814 0.349552i 0.747299 0.664488i \(-0.231350\pi\)
−0.949113 + 0.314936i \(0.898017\pi\)
\(450\) 0 0
\(451\) 0.851185 + 2.33861i 0.0400807 + 0.110121i
\(452\) −2.57073 5.51295i −0.120917 0.259308i
\(453\) 0 0
\(454\) −0.168244 0.0296659i −0.00789608 0.00139229i
\(455\) −1.40881 0.00183683i −0.0660458 8.61118e-5i
\(456\) 0 0
\(457\) 1.00342 1.00342i 0.0469379 0.0469379i −0.683248 0.730186i \(-0.739433\pi\)
0.730186 + 0.683248i \(0.239433\pi\)
\(458\) 10.9183 + 15.5930i 0.510180 + 0.728612i
\(459\) 0 0
\(460\) 9.89256 + 21.2871i 0.461243 + 0.992516i
\(461\) 0.708319 0.257807i 0.0329897 0.0120073i −0.325473 0.945551i \(-0.605523\pi\)
0.358462 + 0.933544i \(0.383301\pi\)
\(462\) 0 0
\(463\) −5.65758 + 21.1144i −0.262930 + 0.981269i 0.700575 + 0.713579i \(0.252927\pi\)
−0.963505 + 0.267690i \(0.913740\pi\)
\(464\) −4.81380 + 8.33774i −0.223475 + 0.387070i
\(465\) 0 0
\(466\) −39.4677 + 6.95922i −1.82831 + 0.322380i
\(467\) 0.811663 + 3.02917i 0.0375593 + 0.140173i 0.982159 0.188050i \(-0.0602168\pi\)
−0.944600 + 0.328223i \(0.893550\pi\)
\(468\) 0 0
\(469\) −49.4587 + 41.5008i −2.28379 + 1.91633i
\(470\) −3.48293 9.60824i −0.160656 0.443195i
\(471\) 0 0
\(472\) 11.5277 1.00854i 0.530605 0.0464219i
\(473\) −1.10265 + 0.772083i −0.0506999 + 0.0355004i
\(474\) 0 0
\(475\) 20.2260 8.11840i 0.928033 0.372498i
\(476\) 32.6559 1.49678
\(477\) 0 0
\(478\) −18.9048 + 1.65395i −0.864684 + 0.0756501i
\(479\) 9.80127 26.9288i 0.447831 1.23041i −0.486399 0.873737i \(-0.661690\pi\)
0.934230 0.356670i \(-0.116088\pi\)
\(480\) 0 0
\(481\) −0.309011 + 0.259291i −0.0140897 + 0.0118226i
\(482\) −35.3532 9.47285i −1.61029 0.431477i
\(483\) 0 0
\(484\) 12.1282 2.13853i 0.551281 0.0972058i
\(485\) 2.17847 + 1.52962i 0.0989193 + 0.0694565i
\(486\) 0 0
\(487\) −2.52061 + 9.40703i −0.114220 + 0.426273i −0.999227 0.0393029i \(-0.987486\pi\)
0.885008 + 0.465576i \(0.154153\pi\)
\(488\) 0.278491 3.18316i 0.0126067 0.144095i
\(489\) 0 0
\(490\) −23.7632 51.1344i −1.07351 2.31002i
\(491\) −6.63665 5.56881i −0.299508 0.251317i 0.480631 0.876923i \(-0.340407\pi\)
−0.780139 + 0.625606i \(0.784852\pi\)
\(492\) 0 0
\(493\) 7.15084 7.15084i 0.322057 0.322057i
\(494\) −0.232735 1.09314i −0.0104713 0.0491826i
\(495\) 0 0
\(496\) −5.94602 1.04844i −0.266984 0.0470765i
\(497\) −2.07460 23.7128i −0.0930586 1.06366i
\(498\) 0 0
\(499\) −0.511920 1.40649i −0.0229167 0.0629631i 0.927707 0.373310i \(-0.121777\pi\)
−0.950623 + 0.310347i \(0.899555\pi\)
\(500\) 12.1868 10.1450i 0.545010 0.453697i
\(501\) 0 0
\(502\) −10.9543 + 2.93519i −0.488913 + 0.131004i
\(503\) 4.54411 6.48967i 0.202612 0.289360i −0.704968 0.709239i \(-0.749039\pi\)
0.907580 + 0.419879i \(0.137928\pi\)
\(504\) 0 0
\(505\) −1.48792 0.861638i −0.0662114 0.0383424i
\(506\) −18.0386 + 10.4146i −0.801913 + 0.462985i
\(507\) 0 0
\(508\) −8.03202 + 17.2247i −0.356363 + 0.764223i
\(509\) 31.2055 + 11.3579i 1.38316 + 0.503430i 0.923135 0.384476i \(-0.125618\pi\)
0.460026 + 0.887905i \(0.347840\pi\)
\(510\) 0 0
\(511\) −4.76479 + 27.0225i −0.210782 + 1.19540i
\(512\) 15.7583 + 15.7583i 0.696424 + 0.696424i
\(513\) 0 0
\(514\) 43.0157i 1.89734i
\(515\) −7.27706 + 5.08132i −0.320665 + 0.223910i
\(516\) 0 0
\(517\) 3.41018 1.59019i 0.149979 0.0699366i
\(518\) −22.1423 10.3251i −0.972877 0.453660i
\(519\) 0 0
\(520\) 0.166385 + 0.289057i 0.00729646 + 0.0126760i
\(521\) −26.1470 15.0960i −1.14552 0.661367i −0.197729 0.980257i \(-0.563357\pi\)
−0.947792 + 0.318890i \(0.896690\pi\)
\(522\) 0 0
\(523\) 6.98083 + 4.88803i 0.305250 + 0.213739i 0.716158 0.697939i \(-0.245899\pi\)
−0.410907 + 0.911677i \(0.634788\pi\)
\(524\) −13.1525 7.59362i −0.574571 0.331729i
\(525\) 0 0
\(526\) −14.9770 17.8489i −0.653028 0.778248i
\(527\) 5.74784 + 2.68026i 0.250380 + 0.116754i
\(528\) 0 0
\(529\) −20.4310 + 24.3487i −0.888304 + 1.05864i
\(530\) −45.6768 8.11546i −1.98407 0.352513i
\(531\) 0 0
\(532\) 22.4245 16.9098i 0.972225 0.733133i
\(533\) −0.160340 0.160340i −0.00694508 0.00694508i
\(534\) 0 0
\(535\) −33.7403 + 2.90757i −1.45872 + 0.125705i
\(536\) 14.3631 + 5.22775i 0.620392 + 0.225804i
\(537\) 0 0
\(538\) 32.3412 + 2.82949i 1.39433 + 0.121988i
\(539\) 17.9785 10.3799i 0.774389 0.447094i
\(540\) 0 0
\(541\) 3.84885 + 21.8279i 0.165475 + 0.938454i 0.948574 + 0.316557i \(0.102527\pi\)
−0.783099 + 0.621897i \(0.786362\pi\)
\(542\) −17.7745 + 25.3846i −0.763481 + 1.09036i
\(543\) 0 0
\(544\) −17.1554 29.7139i −0.735530 1.27397i
\(545\) −12.7556 15.2419i −0.546392 0.652891i
\(546\) 0 0
\(547\) −13.3830 28.6999i −0.572216 1.22712i −0.953144 0.302516i \(-0.902173\pi\)
0.380928 0.924605i \(-0.375604\pi\)
\(548\) 2.58021 + 29.4920i 0.110221 + 1.25983i
\(549\) 0 0
\(550\) 9.92341 + 9.97530i 0.423136 + 0.425348i
\(551\) 1.20758 8.61324i 0.0514446 0.366936i
\(552\) 0 0
\(553\) −15.0885 21.5487i −0.641630 0.916342i
\(554\) −42.6631 35.7986i −1.81258 1.52094i
\(555\) 0 0
\(556\) −8.96338 + 3.26240i −0.380132 + 0.138357i
\(557\) 0.0223538 0.255505i 0.000947162 0.0108261i −0.995706 0.0925675i \(-0.970493\pi\)
0.996654 + 0.0817414i \(0.0260482\pi\)
\(558\) 0 0
\(559\) 0.0613234 0.106215i 0.00259370 0.00449243i
\(560\) −28.1663 + 40.1143i −1.19025 + 1.69514i
\(561\) 0 0
\(562\) 13.4237 + 50.0978i 0.566243 + 2.11325i
\(563\) 5.15121 + 1.38026i 0.217097 + 0.0581711i 0.365728 0.930722i \(-0.380820\pi\)
−0.148631 + 0.988893i \(0.547487\pi\)
\(564\) 0 0
\(565\) −8.68648 4.06437i −0.365443 0.170989i
\(566\) 12.3550 33.9452i 0.519321 1.42682i
\(567\) 0 0
\(568\) −4.61612 + 3.23224i −0.193688 + 0.135622i
\(569\) −20.8877 −0.875659 −0.437830 0.899058i \(-0.644253\pi\)
−0.437830 + 0.899058i \(0.644253\pi\)
\(570\) 0 0
\(571\) −14.0563 −0.588237 −0.294118 0.955769i \(-0.595026\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(572\) 0.245236 0.171716i 0.0102538 0.00717982i
\(573\) 0 0
\(574\) 4.69716 12.9053i 0.196056 0.538659i
\(575\) 33.5001 + 15.7279i 1.39705 + 0.655897i
\(576\) 0 0
\(577\) 26.6223 + 7.13342i 1.10830 + 0.296968i 0.766140 0.642673i \(-0.222175\pi\)
0.342160 + 0.939642i \(0.388841\pi\)
\(578\) 4.15682 + 15.5135i 0.172901 + 0.645275i
\(579\) 0 0
\(580\) −1.09071 6.23324i −0.0452893 0.258821i
\(581\) −1.07743 + 1.86616i −0.0446992 + 0.0774212i
\(582\) 0 0
\(583\) 1.48864 17.0152i 0.0616531 0.704698i
\(584\) 6.10427 2.22177i 0.252597 0.0919376i
\(585\) 0 0
\(586\) 7.93484 + 6.65812i 0.327785 + 0.275045i
\(587\) −9.44733 13.4922i −0.389933 0.556882i 0.575410 0.817865i \(-0.304842\pi\)
−0.965343 + 0.260983i \(0.915953\pi\)
\(588\) 0 0
\(589\) 5.33487 1.13583i 0.219820 0.0468009i
\(590\) −31.4932 + 31.4112i −1.29656 + 1.29318i
\(591\) 0 0
\(592\) 1.22319 + 13.9812i 0.0502730 + 0.574623i
\(593\) −8.02791 17.2159i −0.329667 0.706972i 0.669697 0.742634i \(-0.266424\pi\)
−0.999364 + 0.0356619i \(0.988646\pi\)
\(594\) 0 0
\(595\) 39.4834 33.0428i 1.61866 1.35462i
\(596\) −6.13628 10.6283i −0.251352 0.435354i
\(597\) 0 0
\(598\) 1.08855 1.55461i 0.0445140 0.0635726i
\(599\) −6.72471 38.1377i −0.274764 1.55826i −0.739710 0.672926i \(-0.765037\pi\)
0.464946 0.885339i \(-0.346074\pi\)
\(600\) 0 0
\(601\) 24.2204 13.9836i 0.987970 0.570405i 0.0833031 0.996524i \(-0.473453\pi\)
0.904667 + 0.426120i \(0.140120\pi\)
\(602\) 7.39994 + 0.647411i 0.301599 + 0.0263865i
\(603\) 0 0
\(604\) 13.8909 + 5.05587i 0.565213 + 0.205721i
\(605\) 12.5000 14.8575i 0.508197 0.604044i
\(606\) 0 0
\(607\) −31.1811 31.1811i −1.26560 1.26560i −0.948338 0.317263i \(-0.897236\pi\)
−0.317263 0.948338i \(-0.602764\pi\)
\(608\) −27.1668 11.5209i −1.10176 0.467235i
\(609\) 0 0
\(610\) 7.03178 + 10.0703i 0.284708 + 0.407736i
\(611\) −0.220370 + 0.262627i −0.00891522 + 0.0106247i
\(612\) 0 0
\(613\) 13.2254 + 6.16710i 0.534169 + 0.249087i 0.670935 0.741516i \(-0.265893\pi\)
−0.136766 + 0.990603i \(0.543671\pi\)
\(614\) 19.4126 + 23.1350i 0.783428 + 0.933653i
\(615\) 0 0
\(616\) −6.44070 3.71854i −0.259503 0.149824i
\(617\) 5.03505 + 3.52558i 0.202704 + 0.141935i 0.670521 0.741891i \(-0.266071\pi\)
−0.467817 + 0.883825i \(0.654960\pi\)
\(618\) 0 0
\(619\) 19.4464 + 11.2274i 0.781618 + 0.451268i 0.837003 0.547198i \(-0.184305\pi\)
−0.0553852 + 0.998465i \(0.517639\pi\)
\(620\) 3.43936 1.97974i 0.138128 0.0795082i
\(621\) 0 0
\(622\) −2.98348 1.39122i −0.119627 0.0557829i
\(623\) 7.69746 3.58938i 0.308392 0.143806i
\(624\) 0 0
\(625\) 4.46955 24.5972i 0.178782 0.983889i
\(626\) 8.12126i 0.324591i
\(627\) 0 0
\(628\) 16.3380 + 16.3380i 0.651956 + 0.651956i
\(629\) 2.55990 14.5179i 0.102070 0.578868i
\(630\) 0 0
\(631\) 12.9935 + 4.72926i 0.517264 + 0.188269i 0.587443 0.809266i \(-0.300135\pi\)
−0.0701787 + 0.997534i \(0.522357\pi\)
\(632\) −2.63196 + 5.64425i −0.104694 + 0.224516i
\(633\) 0 0
\(634\) 14.7000 8.48702i 0.583810 0.337063i
\(635\) 7.71752 + 28.9531i 0.306260 + 1.14897i
\(636\) 0 0
\(637\) −1.08492 + 1.54943i −0.0429861 + 0.0613905i
\(638\) 5.42377 1.45330i 0.214729 0.0575365i
\(639\) 0 0
\(640\) 18.3535 + 1.62984i 0.725485 + 0.0644250i
\(641\) −10.3038 28.3093i −0.406974 1.11815i −0.958773 0.284174i \(-0.908281\pi\)
0.551799 0.833977i \(-0.313942\pi\)
\(642\) 0 0
\(643\) −2.23293 25.5226i −0.0880584 1.00651i −0.903760 0.428039i \(-0.859205\pi\)
0.815702 0.578473i \(-0.196351\pi\)
\(644\) 46.9665 + 8.28147i 1.85074 + 0.326336i
\(645\) 0 0
\(646\) 32.1945 + 25.1358i 1.26667 + 0.988953i
\(647\) 5.87443 5.87443i 0.230948 0.230948i −0.582141 0.813088i \(-0.697785\pi\)
0.813088 + 0.582141i \(0.197785\pi\)
\(648\) 0 0
\(649\) −12.5450 10.5265i −0.492433 0.413200i
\(650\) −1.20356 0.441617i −0.0472074 0.0173216i
\(651\) 0 0
\(652\) −0.734220 + 8.39218i −0.0287543 + 0.328663i
\(653\) −1.41293 + 5.27313i −0.0552922 + 0.206353i −0.988046 0.154162i \(-0.950732\pi\)
0.932753 + 0.360515i \(0.117399\pi\)
\(654\) 0 0
\(655\) −23.5860 + 4.12714i −0.921580 + 0.161261i
\(656\) −7.76940 + 1.36995i −0.303344 + 0.0534878i
\(657\) 0 0
\(658\) −20.0566 5.37414i −0.781886 0.209506i
\(659\) −22.7331 + 19.0754i −0.885557 + 0.743071i −0.967314 0.253582i \(-0.918391\pi\)
0.0817569 + 0.996652i \(0.473947\pi\)
\(660\) 0 0
\(661\) 8.70685 23.9219i 0.338657 0.930454i −0.647119 0.762389i \(-0.724026\pi\)
0.985776 0.168064i \(-0.0537516\pi\)
\(662\) 20.9669 1.83436i 0.814900 0.0712945i
\(663\) 0 0
\(664\) 0.510143 0.0197974
\(665\) 10.0027 43.1354i 0.387886 1.67272i
\(666\) 0 0
\(667\) 12.0980 8.47108i 0.468435 0.328001i
\(668\) −21.1005 + 1.84605i −0.816402 + 0.0714259i
\(669\) 0 0
\(670\) −55.2362 + 20.0228i −2.13396 + 0.773548i
\(671\) −3.46407 + 2.90670i −0.133729 + 0.112212i
\(672\) 0 0
\(673\) 10.0188 + 37.3907i 0.386197 + 1.44131i 0.836272 + 0.548315i \(0.184731\pi\)
−0.450075 + 0.892991i \(0.648603\pi\)
\(674\) 28.4049 5.00855i 1.09412 0.192922i
\(675\) 0 0
\(676\) 9.20516 15.9438i 0.354045 0.613224i
\(677\) 3.50187 13.0692i 0.134588 0.502289i −0.865411 0.501062i \(-0.832943\pi\)
0.999999 0.00122697i \(-0.000390556\pi\)
\(678\) 0 0
\(679\) 5.08195 1.84968i 0.195027 0.0709842i
\(680\) −11.4483 4.18374i −0.439021 0.160439i
\(681\) 0 0
\(682\) 2.01979 + 2.88456i 0.0773418 + 0.110456i
\(683\) −8.52271 + 8.52271i −0.326112 + 0.326112i −0.851106 0.524994i \(-0.824068\pi\)
0.524994 + 0.851106i \(0.324068\pi\)
\(684\) 0 0
\(685\) 32.9611 + 33.0471i 1.25938 + 1.26267i
\(686\) −54.9172 9.68339i −2.09675 0.369714i
\(687\) 0 0
\(688\) −1.80337 3.86734i −0.0687528 0.147441i
\(689\) 0.532265 + 1.46239i 0.0202777 + 0.0557125i
\(690\) 0 0
\(691\) −26.0866 45.1834i −0.992383 1.71886i −0.602878 0.797833i \(-0.705980\pi\)
−0.389504 0.921025i \(-0.627354\pi\)
\(692\) 18.8316 5.04591i 0.715869 0.191817i
\(693\) 0 0
\(694\) 4.51095 + 25.5829i 0.171233 + 0.971113i
\(695\) −7.53632 + 13.0141i −0.285869 + 0.493652i
\(696\) 0 0
\(697\) 8.25533 + 0.722248i 0.312693 + 0.0273571i
\(698\) −18.5916 + 39.8698i −0.703703 + 1.50910i
\(699\) 0 0
\(700\) −2.72414 32.1010i −0.102963 1.21330i
\(701\) 4.07872 23.1316i 0.154051 0.873668i −0.805597 0.592464i \(-0.798155\pi\)
0.959648 0.281204i \(-0.0907337\pi\)
\(702\) 0 0
\(703\) −5.75979 11.2949i −0.217234 0.425995i
\(704\) 4.36270i 0.164425i
\(705\) 0 0
\(706\) 15.2450 18.1683i 0.573755 0.683774i
\(707\) −3.16600 + 1.47633i −0.119070 + 0.0555232i
\(708\) 0 0
\(709\) −8.49230 10.1207i −0.318935 0.380092i 0.582629 0.812739i \(-0.302024\pi\)
−0.901564 + 0.432647i \(0.857580\pi\)
\(710\) 5.63360 20.9158i 0.211425 0.784954i
\(711\) 0 0
\(712\) −1.64706 1.15329i −0.0617264 0.0432213i
\(713\) 7.58698 + 5.31246i 0.284135 + 0.198953i
\(714\) 0 0
\(715\) 0.122757 0.455759i 0.00459087 0.0170444i
\(716\) −3.65696 4.35819i −0.136667 0.162873i
\(717\) 0 0
\(718\) −2.76304 + 1.28843i −0.103116 + 0.0480837i
\(719\) −30.9997 + 36.9440i −1.15609 + 1.37778i −0.243001 + 0.970026i \(0.578132\pi\)
−0.913092 + 0.407753i \(0.866313\pi\)
\(720\) 0 0
\(721\) 18.0325i 0.671565i
\(722\) 35.1234 + 0.589612i 1.30716 + 0.0219431i
\(723\) 0 0
\(724\) −5.56159 + 31.5413i −0.206695 + 1.17222i
\(725\) −7.62584 6.43280i −0.283217 0.238908i
\(726\) 0 0
\(727\) −2.41835 + 5.18618i −0.0896918 + 0.192345i −0.946037 0.324060i \(-0.894952\pi\)
0.856345 + 0.516404i \(0.172730\pi\)
\(728\) 0.675041 + 0.0590585i 0.0250187 + 0.00218885i
\(729\) 0 0
\(730\) −12.5131 + 21.6083i −0.463132 + 0.799758i
\(731\) 0.778324 + 4.41410i 0.0287874 + 0.163261i
\(732\) 0 0
\(733\) 14.5096 3.88782i 0.535923 0.143600i 0.0193008 0.999814i \(-0.493856\pi\)
0.516622 + 0.856214i \(0.327189\pi\)
\(734\) −16.4013 28.4079i −0.605384 1.04856i
\(735\) 0 0
\(736\) −17.1379 47.0859i −0.631710 1.73561i
\(737\) −9.14175 19.6045i −0.336741 0.722142i
\(738\) 0 0
\(739\) −37.0848 6.53906i −1.36419 0.240543i −0.556840 0.830620i \(-0.687986\pi\)
−0.807347 + 0.590077i \(0.799098\pi\)
\(740\) −6.51422 6.53123i −0.239468 0.240093i
\(741\) 0 0
\(742\) −66.6483 + 66.6483i −2.44674 + 2.44674i
\(743\) −3.84433 5.49028i −0.141035 0.201419i 0.742420 0.669934i \(-0.233678\pi\)
−0.883455 + 0.468516i \(0.844789\pi\)
\(744\) 0 0
\(745\) −18.1735 6.64145i −0.665825 0.243324i
\(746\) −22.6192 + 8.23272i −0.828148 + 0.301421i
\(747\) 0 0
\(748\) −2.83172 + 10.5681i −0.103538 + 0.386409i
\(749\) −34.4022 + 59.5863i −1.25703 + 2.17724i
\(750\) 0 0
\(751\) 16.8825 2.97683i 0.616050 0.108626i 0.143089 0.989710i \(-0.454296\pi\)
0.472960 + 0.881084i \(0.343185\pi\)
\(752\) 3.08718 + 11.5215i 0.112578 + 0.420146i
\(753\) 0 0
\(754\) −0.391918 + 0.328858i −0.0142728 + 0.0119763i
\(755\) 21.9109 7.94257i 0.797419 0.289060i
\(756\) 0 0
\(757\) 6.62372 0.579501i 0.240743 0.0210623i 0.0338545 0.999427i \(-0.489222\pi\)
0.206889 + 0.978364i \(0.433666\pi\)
\(758\) 29.2023 20.4477i 1.06067 0.742692i
\(759\) 0 0
\(760\) −10.0278 + 3.05518i −0.363747 + 0.110823i
\(761\) 46.7690 1.69538 0.847688 0.530495i \(-0.177994\pi\)
0.847688 + 0.530495i \(0.177994\pi\)
\(762\) 0 0
\(763\) −40.2268 + 3.51938i −1.45631 + 0.127410i
\(764\) −6.15744 + 16.9174i −0.222768 + 0.612051i
\(765\) 0 0
\(766\) −21.2464 + 17.8278i −0.767664 + 0.644146i
\(767\) 1.44126 + 0.386185i 0.0520410 + 0.0139443i
\(768\) 0 0
\(769\) 48.7943 8.60376i 1.75957 0.310259i 0.801756 0.597652i \(-0.203899\pi\)
0.957813 + 0.287392i \(0.0927883\pi\)
\(770\) 28.1593 4.92740i 1.01479 0.177571i
\(771\) 0 0
\(772\) 5.47970 20.4505i 0.197219 0.736030i
\(773\) −1.24000 + 14.1733i −0.0445998 + 0.509778i 0.940735 + 0.339144i \(0.110137\pi\)
−0.985334 + 0.170634i \(0.945418\pi\)
\(774\) 0 0
\(775\) 2.15523 5.87376i 0.0774183 0.210992i
\(776\) −0.980784 0.822975i −0.0352081 0.0295431i
\(777\) 0 0
\(778\) −17.7756 + 17.7756i −0.637285 + 0.637285i
\(779\) 6.04284 3.77880i 0.216507 0.135389i
\(780\) 0 0
\(781\) 7.85385 + 1.38484i 0.281033 + 0.0495536i
\(782\) 6.04485 + 69.0930i 0.216163 + 2.47076i
\(783\) 0 0
\(784\) 22.5081 + 61.8404i 0.803860 + 2.20859i
\(785\) 36.2853 + 3.22223i 1.29508 + 0.115006i
\(786\) 0 0
\(787\) −20.5663 + 5.51072i −0.733110 + 0.196436i −0.606014 0.795454i \(-0.707232\pi\)
−0.127096 + 0.991890i \(0.540566\pi\)
\(788\) −5.14045 + 7.34132i −0.183121 + 0.261524i
\(789\) 0 0
\(790\) −6.16562 23.1310i −0.219363 0.822964i
\(791\) −16.8742 + 9.74233i −0.599978 + 0.346397i
\(792\) 0 0
\(793\) 0.174126 0.373415i 0.00618341 0.0132604i
\(794\) 8.14280 + 2.96374i 0.288977 + 0.105179i
\(795\) 0 0
\(796\) 3.13360 17.7715i 0.111068 0.629895i
\(797\) −2.03401 2.03401i −0.0720484 0.0720484i 0.670164 0.742213i \(-0.266224\pi\)
−0.742213 + 0.670164i \(0.766224\pi\)
\(798\) 0 0
\(799\) 12.5291i 0.443247i
\(800\) −27.7779 + 19.3426i −0.982098 + 0.683863i
\(801\) 0 0
\(802\) 50.2809 23.4464i 1.77548 0.827920i
\(803\) −8.33186 3.88521i −0.294025 0.137106i
\(804\) 0 0
\(805\) 65.1656 37.5101i 2.29678 1.32206i
\(806\) −0.277862 0.160424i −0.00978728 0.00565069i
\(807\) 0 0
\(808\) 0.677446 + 0.474353i 0.0238325 + 0.0166877i
\(809\) 8.61084 + 4.97147i 0.302741 + 0.174788i 0.643674 0.765300i \(-0.277409\pi\)
−0.340932 + 0.940088i \(0.610743\pi\)
\(810\) 0 0
\(811\) 4.70296 + 5.60477i 0.165143 + 0.196810i 0.842269 0.539057i \(-0.181219\pi\)
−0.677126 + 0.735867i \(0.736775\pi\)
\(812\) −11.6520 5.43339i −0.408903 0.190675i
\(813\) 0 0
\(814\) 5.26147 6.27038i 0.184414 0.219777i
\(815\) 7.60389 + 10.8897i 0.266353 + 0.381449i
\(816\) 0 0
\(817\) 2.82017 + 2.62809i 0.0986651 + 0.0919451i
\(818\) −44.7585 44.7585i −1.56495 1.56495i
\(819\) 0 0
\(820\) 3.33828 3.96789i 0.116578 0.138565i
\(821\) 42.9758 + 15.6419i 1.49986 + 0.545906i 0.956025 0.293284i \(-0.0947481\pi\)
0.543839 + 0.839190i \(0.316970\pi\)
\(822\) 0 0
\(823\) 50.0561 + 4.37934i 1.74485 + 0.152654i 0.914498 0.404591i \(-0.132586\pi\)
0.830348 + 0.557245i \(0.188142\pi\)
\(824\) 3.69709 2.13452i 0.128794 0.0743595i
\(825\) 0 0
\(826\) 15.6927 + 88.9976i 0.546018 + 3.09662i
\(827\) 28.0454 40.0530i 0.975234 1.39278i 0.0562800 0.998415i \(-0.482076\pi\)
0.918954 0.394364i \(-0.129035\pi\)
\(828\) 0 0
\(829\) 17.1185 + 29.6501i 0.594549 + 1.02979i 0.993610 + 0.112865i \(0.0360028\pi\)
−0.399061 + 0.916924i \(0.630664\pi\)
\(830\) −1.50380 + 1.25850i −0.0521976 + 0.0436831i
\(831\) 0 0
\(832\) 0.167991 + 0.360259i 0.00582405 + 0.0124897i
\(833\) −6.02472 68.8628i −0.208744 2.38596i
\(834\) 0 0
\(835\) −23.6441 + 23.5825i −0.818237 + 0.816107i
\(836\) 3.52785 + 8.72334i 0.122013 + 0.301703i
\(837\) 0 0
\(838\) 7.43893 + 10.6239i 0.256974 + 0.366996i
\(839\) 20.4137 + 17.1291i 0.704758 + 0.591362i 0.923123 0.384505i \(-0.125628\pi\)
−0.218365 + 0.975867i \(0.570072\pi\)
\(840\) 0 0
\(841\) 23.5098 8.55687i 0.810683 0.295065i
\(842\) −0.556510 + 6.36093i −0.0191786 + 0.219212i
\(843\) 0 0
\(844\) 12.1721 21.0827i 0.418981 0.725696i
\(845\) −5.00302 28.5915i −0.172109 0.983576i
\(846\) 0 0
\(847\) −10.2100 38.1042i −0.350819 1.30927i
\(848\) 52.2998 + 14.0137i 1.79598 + 0.481232i
\(849\) 0 0
\(850\) 44.0682 15.9095i 1.51153 0.545691i
\(851\) 7.36344 20.2309i 0.252415 0.693506i
\(852\) 0 0
\(853\) 12.6145 8.83275i 0.431911 0.302427i −0.337329 0.941387i \(-0.609524\pi\)
0.769241 + 0.638959i \(0.220635\pi\)
\(854\) 24.9542 0.853916
\(855\) 0 0
\(856\) 16.2888 0.556741
\(857\) 28.7532 20.1332i 0.982191 0.687737i 0.0320266 0.999487i \(-0.489804\pi\)
0.950164 + 0.311750i \(0.100915\pi\)
\(858\) 0 0
\(859\) 13.2030 36.2749i 0.450480 1.23768i −0.481907 0.876223i \(-0.660056\pi\)
0.932387 0.361462i \(-0.117722\pi\)
\(860\) 2.54034 + 1.18862i 0.0866250 + 0.0405315i
\(861\) 0 0
\(862\) 18.7128 + 5.01409i 0.637362 + 0.170781i
\(863\) 8.56232 + 31.9550i 0.291465 + 1.08776i 0.943985 + 0.329989i \(0.107045\pi\)
−0.652520 + 0.757772i \(0.726288\pi\)
\(864\) 0 0
\(865\) 17.6631 25.1556i 0.600562 0.855316i
\(866\) 22.0247 38.1479i 0.748429 1.29632i
\(867\) 0 0
\(868\) 0.702710 8.03201i 0.0238515 0.272624i
\(869\) 8.28198 3.01439i 0.280947 0.102256i
\(870\) 0 0
\(871\) 1.50980 + 1.26687i 0.0511575 + 0.0429263i
\(872\) 5.48323 + 7.83086i 0.185686 + 0.265187i
\(873\) 0 0
\(874\) 39.9285 + 44.3153i 1.35060 + 1.49899i
\(875\) −35.7750 36.0560i −1.20942 1.21891i
\(876\) 0 0
\(877\) 3.04056 + 34.7538i 0.102672 + 1.17355i 0.856382 + 0.516343i \(0.172707\pi\)
−0.753709 + 0.657208i \(0.771737\pi\)
\(878\) −0.451238 0.967683i −0.0152285 0.0326577i
\(879\) 0 0
\(880\) −10.5394 12.5937i −0.355283 0.424533i
\(881\) 4.01849 + 6.96024i 0.135387 + 0.234496i 0.925745 0.378148i \(-0.123439\pi\)
−0.790359 + 0.612645i \(0.790106\pi\)
\(882\) 0 0
\(883\) −3.73014 + 5.32719i −0.125529 + 0.179274i −0.876997 0.480495i \(-0.840457\pi\)
0.751468 + 0.659769i \(0.229346\pi\)
\(884\) −0.173104 0.981724i −0.00582213 0.0330189i
\(885\) 0 0
\(886\) 13.6057 7.85523i 0.457091 0.263902i
\(887\) −47.7217 4.17511i −1.60234 0.140186i −0.749370 0.662151i \(-0.769644\pi\)
−0.852967 + 0.521965i \(0.825199\pi\)
\(888\) 0 0
\(889\) 57.2066 + 20.8215i 1.91865 + 0.698331i
\(890\) 7.70031 0.663575i 0.258115 0.0222431i
\(891\) 0 0
\(892\) 18.8345 + 18.8345i 0.630625 + 0.630625i
\(893\) −6.48778 8.60359i −0.217105 0.287908i
\(894\) 0 0
\(895\) −8.83136 1.56908i −0.295200 0.0524487i
\(896\) 24.0631 28.6773i 0.803892 0.958041i
\(897\) 0 0
\(898\) −14.3312 6.68276i −0.478239 0.223007i
\(899\) −1.60494 1.91269i −0.0535276 0.0637918i
\(900\) 0 0
\(901\) −49.2540 28.4368i −1.64089 0.947367i
\(902\) 3.76913 + 2.63917i 0.125498 + 0.0878747i
\(903\) 0 0
\(904\) 3.99483 + 2.30641i 0.132866 + 0.0767102i
\(905\) 25.1907 + 43.7632i 0.837367 + 1.45474i
\(906\) 0 0
\(907\) −24.9537 11.6361i −0.828574 0.386370i −0.0384071 0.999262i \(-0.512228\pi\)
−0.790167 + 0.612892i \(0.790006\pi\)
\(908\) −0.118774 + 0.0553852i −0.00394165 + 0.00183802i
\(909\) 0 0
\(910\) −2.13558 + 1.49120i −0.0707938 + 0.0494329i
\(911\) 50.4735i 1.67226i 0.548529 + 0.836132i \(0.315188\pi\)
−0.548529 + 0.836132i \(0.684812\pi\)
\(912\) 0 0
\(913\) −0.510499 0.510499i −0.0168951 0.0168951i
\(914\) 0.455586 2.58376i 0.0150694 0.0854631i
\(915\) 0 0
\(916\) 13.7217 + 4.99429i 0.453378 + 0.165016i
\(917\) −20.5594 + 44.0898i −0.678932 + 1.45598i
\(918\) 0 0
\(919\) 22.3948 12.9296i 0.738736 0.426510i −0.0828733 0.996560i \(-0.526410\pi\)
0.821610 + 0.570050i \(0.193076\pi\)
\(920\) −15.4042 8.92041i −0.507861 0.294097i
\(921\) 0 0
\(922\) 0.799352 1.14159i 0.0263252 0.0375964i
\(923\) −0.701873 + 0.188066i −0.0231024 + 0.00619027i
\(924\) 0 0
\(925\) −14.4848 1.30532i −0.476257 0.0429188i
\(926\) 13.8226 + 37.9773i 0.454239 + 1.24801i
\(927\) 0 0
\(928\) 1.17730 + 13.4566i 0.0386467 + 0.441734i
\(929\) 49.5361 + 8.73454i 1.62523 + 0.286571i 0.910709 0.413048i \(-0.135536\pi\)
0.714516 + 0.699619i \(0.246647\pi\)
\(930\) 0 0
\(931\) −39.7955 44.1677i −1.30424 1.44754i
\(932\) −21.7387 + 21.7387i −0.712074 + 0.712074i
\(933\) 0 0
\(934\) 4.44157 + 3.72692i 0.145333 + 0.121949i
\(935\) 7.26959 + 15.6429i 0.237741 + 0.511577i
\(936\) 0 0
\(937\) 2.94620 33.6752i 0.0962482 1.10012i −0.782440 0.622726i \(-0.786025\pi\)
0.878688 0.477396i \(-0.158419\pi\)
\(938\) −30.8950 + 115.302i −1.00876 + 3.76474i
\(939\) 0 0
\(940\) −6.41619 4.50515i −0.209273 0.146942i
\(941\) 20.3861 3.59461i 0.664567 0.117181i 0.168818 0.985647i \(-0.446005\pi\)
0.495748 + 0.868466i \(0.334894\pi\)
\(942\) 0 0
\(943\) 11.6899 + 3.13229i 0.380674 + 0.102001i
\(944\) 39.7680 33.3693i 1.29434 1.08608i
\(945\) 0 0
\(946\) −0.851193 + 2.33863i −0.0276747 + 0.0760355i
\(947\) 36.6021 3.20227i 1.18941 0.104060i 0.524782 0.851237i \(-0.324147\pi\)
0.664625 + 0.747177i \(0.268591\pi\)
\(948\) 0 0
\(949\) 0.837625 0.0271905
\(950\) 22.0230 33.7442i 0.714520 1.09481i
\(951\) 0 0
\(952\) −20.2855 + 14.2040i −0.657455 + 0.460355i
\(953\) 13.6473 1.19399i 0.442080 0.0386770i 0.136057 0.990701i \(-0.456557\pi\)
0.306023 + 0.952024i \(0.401001\pi\)
\(954\) 0 0
\(955\) 9.67309 + 26.6848i 0.313014 + 0.863500i
\(956\) −11.1516 + 9.35734i −0.360670 + 0.302638i
\(957\) 0 0
\(958\) −13.7129 51.1774i −0.443045 1.65347i
\(959\) 93.3888 16.4670i 3.01568 0.531746i
\(960\) 0 0
\(961\) −14.7171 + 25.4907i −0.474744 + 0.822282i
\(962\) −0.193028 + 0.720389i −0.00622346 + 0.0232263i
\(963\) 0 0
\(964\) −26.3832 + 9.60271i −0.849746 + 0.309282i
\(965\) −14.0675 30.2708i −0.452848 0.974451i
\(966\) 0 0
\(967\) −0.179322 0.256099i −0.00576661 0.00823557i 0.816258 0.577687i \(-0.196045\pi\)
−0.822025 + 0.569451i \(0.807156\pi\)
\(968\) −6.60371 + 6.60371i −0.212251 + 0.212251i
\(969\) 0 0
\(970\) 4.92139 + 0.00641660i 0.158016 + 0.000206025i
\(971\) 38.3652 + 6.76482i 1.23120 + 0.217093i 0.751140 0.660143i \(-0.229504\pi\)
0.480058 + 0.877237i \(0.340616\pi\)
\(972\) 0 0
\(973\) 12.9127 + 27.6915i 0.413963 + 0.887748i
\(974\) 6.15835 + 16.9199i 0.197326 + 0.542149i
\(975\) 0 0
\(976\) −7.16748 12.4144i −0.229425 0.397376i
\(977\) −16.1368 + 4.32385i −0.516262 + 0.138332i −0.507537 0.861630i \(-0.669444\pi\)
−0.00872521 + 0.999962i \(0.502777\pi\)
\(978\) 0 0
\(979\) 0.494122 + 2.80231i 0.0157922 + 0.0895621i
\(980\) −37.4313 21.6761i −1.19570 0.692417i
\(981\) 0 0
\(982\) −15.9567 1.39603i −0.509199 0.0445491i
\(983\) 9.25970 19.8575i 0.295338 0.633355i −0.701512 0.712657i \(-0.747491\pi\)
0.996851 + 0.0793022i \(0.0252692\pi\)
\(984\) 0 0
\(985\) 1.21313 + 14.0775i 0.0386536 + 0.448548i
\(986\) 3.24673 18.4131i 0.103397 0.586393i
\(987\) 0 0
\(988\) −0.627223 0.584503i −0.0199546 0.0185955i
\(989\) 6.54585i 0.208146i
\(990\) 0 0
\(991\) 20.3243 24.2215i 0.645622 0.769422i −0.339625 0.940561i \(-0.610300\pi\)
0.985247 + 0.171139i \(0.0547446\pi\)
\(992\) −7.67757 + 3.58011i −0.243763 + 0.113669i
\(993\) 0 0
\(994\) −28.2885 33.7129i −0.897256 1.06931i
\(995\) −14.1934 24.6578i −0.449959 0.781705i
\(996\) 0 0
\(997\) 28.7750 + 20.1485i 0.911314 + 0.638109i 0.932306 0.361671i \(-0.117794\pi\)
−0.0209919 + 0.999780i \(0.506682\pi\)
\(998\) −2.26683 1.58725i −0.0717553 0.0502436i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.838.7 96
3.2 odd 2 95.2.r.a.78.2 yes 96
5.2 odd 4 inner 855.2.dl.a.667.7 96
15.2 even 4 95.2.r.a.2.2 96
15.8 even 4 475.2.bb.b.382.7 96
15.14 odd 2 475.2.bb.b.268.7 96
19.10 odd 18 inner 855.2.dl.a.523.7 96
57.29 even 18 95.2.r.a.48.2 yes 96
95.67 even 36 inner 855.2.dl.a.352.7 96
285.29 even 18 475.2.bb.b.143.7 96
285.143 odd 36 475.2.bb.b.257.7 96
285.257 odd 36 95.2.r.a.67.2 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.2 96 15.2 even 4
95.2.r.a.48.2 yes 96 57.29 even 18
95.2.r.a.67.2 yes 96 285.257 odd 36
95.2.r.a.78.2 yes 96 3.2 odd 2
475.2.bb.b.143.7 96 285.29 even 18
475.2.bb.b.257.7 96 285.143 odd 36
475.2.bb.b.268.7 96 15.14 odd 2
475.2.bb.b.382.7 96 15.8 even 4
855.2.dl.a.352.7 96 95.67 even 36 inner
855.2.dl.a.523.7 96 19.10 odd 18 inner
855.2.dl.a.667.7 96 5.2 odd 4 inner
855.2.dl.a.838.7 96 1.1 even 1 trivial