Properties

Label 855.2.dl.a.352.7
Level $855$
Weight $2$
Character 855.352
Analytic conductor $6.827$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [855,2,Mod(127,855)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(855, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 10])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("855.127"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 855 = 3^{2} \cdot 5 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 855.dl (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,12,0,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.82720937282\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(8\) over \(\Q(\zeta_{36})\)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 352.7
Character \(\chi\) \(=\) 855.352
Dual form 855.2.dl.a.838.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.51450 + 1.06046i) q^{2} +(0.485079 + 1.33274i) q^{4} +(-0.762040 + 2.10221i) q^{5} +(-4.38823 + 1.17582i) q^{7} +(0.278366 - 1.03888i) q^{8} +(-3.38342 + 2.37568i) q^{10} +(0.761040 + 1.31816i) q^{11} +(-0.0120870 - 0.138155i) q^{13} +(-7.89287 - 2.87277i) q^{14} +(3.69620 - 3.10148i) q^{16} +(-2.90701 + 4.15164i) q^{17} +(-4.14601 + 1.34559i) q^{19} +(-3.17136 + 0.00413488i) q^{20} +(-0.245266 + 2.80340i) q^{22} +(-3.12809 + 6.70821i) q^{23} +(-3.83859 - 3.20394i) q^{25} +(0.128202 - 0.222052i) q^{26} +(-3.69571 - 5.27802i) q^{28} +(0.346487 - 1.96502i) q^{29} +(-1.08369 - 0.625668i) q^{31} +(6.74402 - 0.590025i) q^{32} +(-8.80531 + 3.20487i) q^{34} +(0.872178 - 10.1210i) q^{35} +(2.05676 - 2.05676i) q^{37} +(-7.70606 - 2.35879i) q^{38} +(1.97181 + 1.37685i) q^{40} +(-1.05100 - 1.25253i) q^{41} +(-0.801514 + 0.373752i) q^{43} +(-1.38761 + 1.65368i) q^{44} +(-11.8513 + 6.84234i) q^{46} +(2.02502 - 1.41793i) q^{47} +(11.8118 - 6.81954i) q^{49} +(-2.41588 - 8.92303i) q^{50} +(0.178262 - 0.0831248i) q^{52} +(10.1702 + 4.74246i) q^{53} +(-3.35100 + 0.595377i) q^{55} +4.88613i q^{56} +(2.60859 - 2.60859i) q^{58} +(1.86831 + 10.5957i) q^{59} +(-2.79178 + 1.01612i) q^{61} +(-0.977745 - 2.09678i) q^{62} +(2.48226 + 1.43314i) q^{64} +(0.299641 + 0.0798700i) q^{65} +(8.15144 + 11.6415i) q^{67} +(-6.94321 - 1.86043i) q^{68} +(12.0538 - 14.4033i) q^{70} +(1.79203 - 4.92356i) q^{71} +(-0.526410 + 6.01690i) q^{73} +(5.29607 - 0.933839i) q^{74} +(-3.80447 - 4.87285i) q^{76} +(-4.88954 - 4.88954i) q^{77} +(4.43572 - 3.72201i) q^{79} +(3.70331 + 10.1336i) q^{80} +(-0.263472 - 3.01150i) q^{82} +(0.122763 + 0.458159i) q^{83} +(-6.51237 - 9.27487i) q^{85} +(-1.61024 - 0.283929i) q^{86} +(1.58125 - 0.423695i) q^{88} +(-1.43212 - 1.20169i) q^{89} +(0.215486 + 0.592042i) q^{91} +(-10.4577 - 0.914930i) q^{92} +4.57054 q^{94} +(0.330711 - 9.74118i) q^{95} +(-0.975134 - 0.682796i) q^{97} +(25.1208 + 2.19778i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{2} + 12 q^{5} + 18 q^{8} - 12 q^{10} + 12 q^{11} - 12 q^{13} + 12 q^{16} + 30 q^{17} + 84 q^{20} - 24 q^{22} + 12 q^{25} + 48 q^{26} - 36 q^{31} - 18 q^{32} + 30 q^{35} - 54 q^{38} + 54 q^{40}+ \cdots + 90 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/855\mathbb{Z}\right)^\times\).

\(n\) \(172\) \(191\) \(496\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.51450 + 1.06046i 1.07091 + 0.749860i 0.969526 0.244988i \(-0.0787839\pi\)
0.101384 + 0.994847i \(0.467673\pi\)
\(3\) 0 0
\(4\) 0.485079 + 1.33274i 0.242540 + 0.666372i
\(5\) −0.762040 + 2.10221i −0.340795 + 0.940138i
\(6\) 0 0
\(7\) −4.38823 + 1.17582i −1.65859 + 0.444419i −0.962001 0.273048i \(-0.911968\pi\)
−0.696593 + 0.717466i \(0.745302\pi\)
\(8\) 0.278366 1.03888i 0.0984172 0.367298i
\(9\) 0 0
\(10\) −3.38342 + 2.37568i −1.06993 + 0.751255i
\(11\) 0.761040 + 1.31816i 0.229462 + 0.397440i 0.957649 0.287939i \(-0.0929699\pi\)
−0.728187 + 0.685379i \(0.759637\pi\)
\(12\) 0 0
\(13\) −0.0120870 0.138155i −0.00335232 0.0383172i 0.994334 0.106298i \(-0.0338998\pi\)
−0.997687 + 0.0679810i \(0.978344\pi\)
\(14\) −7.89287 2.87277i −2.10946 0.767780i
\(15\) 0 0
\(16\) 3.69620 3.10148i 0.924050 0.775370i
\(17\) −2.90701 + 4.15164i −0.705054 + 1.00692i 0.293645 + 0.955915i \(0.405132\pi\)
−0.998698 + 0.0510063i \(0.983757\pi\)
\(18\) 0 0
\(19\) −4.14601 + 1.34559i −0.951160 + 0.308699i
\(20\) −3.17136 + 0.00413488i −0.709138 + 0.000924588i
\(21\) 0 0
\(22\) −0.245266 + 2.80340i −0.0522909 + 0.597687i
\(23\) −3.12809 + 6.70821i −0.652252 + 1.39876i 0.250297 + 0.968169i \(0.419472\pi\)
−0.902548 + 0.430589i \(0.858306\pi\)
\(24\) 0 0
\(25\) −3.83859 3.20394i −0.767718 0.640788i
\(26\) 0.128202 0.222052i 0.0251425 0.0435481i
\(27\) 0 0
\(28\) −3.69571 5.27802i −0.698423 0.997452i
\(29\) 0.346487 1.96502i 0.0643410 0.364896i −0.935589 0.353090i \(-0.885131\pi\)
0.999930 0.0118058i \(-0.00375798\pi\)
\(30\) 0 0
\(31\) −1.08369 0.625668i −0.194636 0.112373i 0.399515 0.916727i \(-0.369179\pi\)
−0.594151 + 0.804353i \(0.702512\pi\)
\(32\) 6.74402 0.590025i 1.19218 0.104303i
\(33\) 0 0
\(34\) −8.80531 + 3.20487i −1.51010 + 0.549631i
\(35\) 0.872178 10.1210i 0.147425 1.71076i
\(36\) 0 0
\(37\) 2.05676 2.05676i 0.338129 0.338129i −0.517534 0.855663i \(-0.673150\pi\)
0.855663 + 0.517534i \(0.173150\pi\)
\(38\) −7.70606 2.35879i −1.25009 0.382647i
\(39\) 0 0
\(40\) 1.97181 + 1.37685i 0.311771 + 0.217699i
\(41\) −1.05100 1.25253i −0.164138 0.195613i 0.677706 0.735333i \(-0.262974\pi\)
−0.841844 + 0.539721i \(0.818530\pi\)
\(42\) 0 0
\(43\) −0.801514 + 0.373752i −0.122230 + 0.0569966i −0.482771 0.875747i \(-0.660370\pi\)
0.360541 + 0.932743i \(0.382592\pi\)
\(44\) −1.38761 + 1.65368i −0.209190 + 0.249302i
\(45\) 0 0
\(46\) −11.8513 + 6.84234i −1.74738 + 1.00885i
\(47\) 2.02502 1.41793i 0.295379 0.206827i −0.416488 0.909141i \(-0.636739\pi\)
0.711866 + 0.702315i \(0.247850\pi\)
\(48\) 0 0
\(49\) 11.8118 6.81954i 1.68740 0.974220i
\(50\) −2.41588 8.92303i −0.341656 1.26191i
\(51\) 0 0
\(52\) 0.178262 0.0831248i 0.0247205 0.0115273i
\(53\) 10.1702 + 4.74246i 1.39699 + 0.651427i 0.967784 0.251780i \(-0.0810160\pi\)
0.429205 + 0.903207i \(0.358794\pi\)
\(54\) 0 0
\(55\) −3.35100 + 0.595377i −0.451848 + 0.0802806i
\(56\) 4.88613i 0.652936i
\(57\) 0 0
\(58\) 2.60859 2.60859i 0.342524 0.342524i
\(59\) 1.86831 + 10.5957i 0.243233 + 1.37944i 0.824561 + 0.565773i \(0.191422\pi\)
−0.581328 + 0.813669i \(0.697467\pi\)
\(60\) 0 0
\(61\) −2.79178 + 1.01612i −0.357451 + 0.130101i −0.514502 0.857489i \(-0.672023\pi\)
0.157052 + 0.987590i \(0.449801\pi\)
\(62\) −0.977745 2.09678i −0.124174 0.266292i
\(63\) 0 0
\(64\) 2.48226 + 1.43314i 0.310283 + 0.179142i
\(65\) 0.299641 + 0.0798700i 0.0371659 + 0.00990666i
\(66\) 0 0
\(67\) 8.15144 + 11.6415i 0.995857 + 1.42223i 0.904530 + 0.426411i \(0.140222\pi\)
0.0913279 + 0.995821i \(0.470889\pi\)
\(68\) −6.94321 1.86043i −0.841988 0.225610i
\(69\) 0 0
\(70\) 12.0538 14.4033i 1.44071 1.72152i
\(71\) 1.79203 4.92356i 0.212675 0.584319i −0.786784 0.617229i \(-0.788255\pi\)
0.999458 + 0.0329100i \(0.0104775\pi\)
\(72\) 0 0
\(73\) −0.526410 + 6.01690i −0.0616117 + 0.704225i 0.901085 + 0.433642i \(0.142772\pi\)
−0.962697 + 0.270582i \(0.912784\pi\)
\(74\) 5.29607 0.933839i 0.615655 0.108557i
\(75\) 0 0
\(76\) −3.80447 4.87285i −0.436403 0.558955i
\(77\) −4.88954 4.88954i −0.557215 0.557215i
\(78\) 0 0
\(79\) 4.43572 3.72201i 0.499058 0.418759i −0.358201 0.933644i \(-0.616610\pi\)
0.857259 + 0.514885i \(0.172165\pi\)
\(80\) 3.70331 + 10.1336i 0.414043 + 1.13298i
\(81\) 0 0
\(82\) −0.263472 3.01150i −0.0290956 0.332564i
\(83\) 0.122763 + 0.458159i 0.0134750 + 0.0502895i 0.972336 0.233587i \(-0.0750462\pi\)
−0.958861 + 0.283876i \(0.908380\pi\)
\(84\) 0 0
\(85\) −6.51237 9.27487i −0.706366 1.00600i
\(86\) −1.61024 0.283929i −0.173636 0.0306168i
\(87\) 0 0
\(88\) 1.58125 0.423695i 0.168562 0.0451661i
\(89\) −1.43212 1.20169i −0.151805 0.127379i 0.563722 0.825964i \(-0.309369\pi\)
−0.715527 + 0.698585i \(0.753813\pi\)
\(90\) 0 0
\(91\) 0.215486 + 0.592042i 0.0225890 + 0.0620628i
\(92\) −10.4577 0.914930i −1.09029 0.0953881i
\(93\) 0 0
\(94\) 4.57054 0.471415
\(95\) 0.330711 9.74118i 0.0339302 0.999424i
\(96\) 0 0
\(97\) −0.975134 0.682796i −0.0990098 0.0693274i 0.523023 0.852318i \(-0.324804\pi\)
−0.622033 + 0.782991i \(0.713693\pi\)
\(98\) 25.1208 + 2.19778i 2.53758 + 0.222010i
\(99\) 0 0
\(100\) 2.40801 6.67003i 0.240801 0.667003i
\(101\) 0.589039 + 0.494263i 0.0586116 + 0.0491810i 0.671623 0.740893i \(-0.265598\pi\)
−0.613011 + 0.790074i \(0.710042\pi\)
\(102\) 0 0
\(103\) −1.02732 + 3.83402i −0.101225 + 0.377777i −0.997890 0.0649337i \(-0.979316\pi\)
0.896665 + 0.442711i \(0.145983\pi\)
\(104\) −0.146890 0.0259007i −0.0144038 0.00253977i
\(105\) 0 0
\(106\) 10.3736 + 17.9676i 1.00757 + 1.74517i
\(107\) 3.91983 + 14.6290i 0.378944 + 1.41424i 0.847496 + 0.530802i \(0.178109\pi\)
−0.468552 + 0.883436i \(0.655224\pi\)
\(108\) 0 0
\(109\) 8.35240 + 3.04003i 0.800015 + 0.291182i 0.709493 0.704713i \(-0.248924\pi\)
0.0905223 + 0.995894i \(0.471146\pi\)
\(110\) −5.70644 2.65191i −0.544088 0.252849i
\(111\) 0 0
\(112\) −12.5730 + 17.9561i −1.18803 + 1.69669i
\(113\) 3.03272 + 3.03272i 0.285294 + 0.285294i 0.835216 0.549922i \(-0.185342\pi\)
−0.549922 + 0.835216i \(0.685342\pi\)
\(114\) 0 0
\(115\) −11.7183 11.6878i −1.09274 1.08990i
\(116\) 2.78695 0.491414i 0.258762 0.0456267i
\(117\) 0 0
\(118\) −8.40679 + 18.0284i −0.773907 + 1.65965i
\(119\) 7.87503 21.6365i 0.721903 1.98341i
\(120\) 0 0
\(121\) 4.34164 7.51993i 0.394694 0.683630i
\(122\) −5.30570 1.42166i −0.480355 0.128711i
\(123\) 0 0
\(124\) 0.308181 1.74778i 0.0276754 0.156955i
\(125\) 9.66052 5.62800i 0.864063 0.503384i
\(126\) 0 0
\(127\) −13.3493 + 1.16792i −1.18456 + 0.103636i −0.662360 0.749186i \(-0.730445\pi\)
−0.522202 + 0.852822i \(0.674889\pi\)
\(128\) −3.48247 7.46818i −0.307810 0.660100i
\(129\) 0 0
\(130\) 0.369106 + 0.438721i 0.0323728 + 0.0384784i
\(131\) 1.85946 + 10.5455i 0.162462 + 0.921369i 0.951643 + 0.307207i \(0.0993945\pi\)
−0.789180 + 0.614161i \(0.789494\pi\)
\(132\) 0 0
\(133\) 16.6115 10.7797i 1.44040 0.934720i
\(134\) 26.2753i 2.26984i
\(135\) 0 0
\(136\) 3.50383 + 4.17570i 0.300451 + 0.358063i
\(137\) −18.9179 8.82158i −1.61627 0.753679i −0.616828 0.787098i \(-0.711582\pi\)
−0.999441 + 0.0334197i \(0.989360\pi\)
\(138\) 0 0
\(139\) −4.32307 + 5.15204i −0.366678 + 0.436990i −0.917562 0.397592i \(-0.869846\pi\)
0.550884 + 0.834582i \(0.314291\pi\)
\(140\) 13.9118 3.74710i 1.17576 0.316688i
\(141\) 0 0
\(142\) 7.93526 5.55633i 0.665913 0.466277i
\(143\) 0.172911 0.121074i 0.0144596 0.0101247i
\(144\) 0 0
\(145\) 3.86686 + 2.22582i 0.321125 + 0.184844i
\(146\) −7.17794 + 8.55433i −0.594050 + 0.707961i
\(147\) 0 0
\(148\) 3.73883 + 1.74344i 0.307330 + 0.143310i
\(149\) 5.56213 + 6.62869i 0.455668 + 0.543043i 0.944144 0.329534i \(-0.106892\pi\)
−0.488476 + 0.872577i \(0.662447\pi\)
\(150\) 0 0
\(151\) 10.4228i 0.848193i −0.905617 0.424097i \(-0.860592\pi\)
0.905617 0.424097i \(-0.139408\pi\)
\(152\) 0.243792 + 4.68175i 0.0197742 + 0.379740i
\(153\) 0 0
\(154\) −2.22002 12.5904i −0.178894 1.01456i
\(155\) 2.14110 1.80136i 0.171977 0.144689i
\(156\) 0 0
\(157\) −6.88494 14.7648i −0.549478 1.17836i −0.963405 0.268049i \(-0.913621\pi\)
0.413927 0.910310i \(-0.364157\pi\)
\(158\) 10.6649 0.933061i 0.848457 0.0742304i
\(159\) 0 0
\(160\) −3.89885 + 14.6270i −0.308231 + 1.15636i
\(161\) 5.83910 33.1152i 0.460186 2.60984i
\(162\) 0 0
\(163\) −5.73737 1.53732i −0.449386 0.120413i 0.0270262 0.999635i \(-0.491396\pi\)
−0.476412 + 0.879222i \(0.658063\pi\)
\(164\) 1.15949 2.00829i 0.0905407 0.156821i
\(165\) 0 0
\(166\) −0.299935 + 0.824066i −0.0232795 + 0.0639599i
\(167\) −6.31154 + 13.5351i −0.488402 + 1.04738i 0.495490 + 0.868614i \(0.334989\pi\)
−0.983891 + 0.178767i \(0.942789\pi\)
\(168\) 0 0
\(169\) 12.7836 2.25409i 0.983351 0.173391i
\(170\) −0.0273188 20.9529i −0.00209525 1.60701i
\(171\) 0 0
\(172\) −0.886914 0.886914i −0.0676265 0.0676265i
\(173\) 7.88448 11.2602i 0.599446 0.856098i −0.398692 0.917085i \(-0.630536\pi\)
0.998139 + 0.0609868i \(0.0194248\pi\)
\(174\) 0 0
\(175\) 20.6119 + 9.54611i 1.55811 + 0.721618i
\(176\) 6.90120 + 2.51183i 0.520198 + 0.189336i
\(177\) 0 0
\(178\) −0.894595 3.33867i −0.0670527 0.250244i
\(179\) 2.00568 + 3.47394i 0.149912 + 0.259654i 0.931195 0.364523i \(-0.118768\pi\)
−0.781283 + 0.624177i \(0.785434\pi\)
\(180\) 0 0
\(181\) −22.2392 3.92137i −1.65303 0.291473i −0.732096 0.681202i \(-0.761458\pi\)
−0.920930 + 0.389729i \(0.872569\pi\)
\(182\) −0.301485 + 1.12516i −0.0223476 + 0.0834023i
\(183\) 0 0
\(184\) 6.09824 + 5.11703i 0.449568 + 0.377232i
\(185\) 2.75641 + 5.89107i 0.202655 + 0.433120i
\(186\) 0 0
\(187\) −7.68488 0.672340i −0.561974 0.0491664i
\(188\) 2.87203 + 2.01102i 0.209465 + 0.146669i
\(189\) 0 0
\(190\) 10.8310 14.4023i 0.785764 1.04485i
\(191\) −12.6937 −0.918482 −0.459241 0.888312i \(-0.651879\pi\)
−0.459241 + 0.888312i \(0.651879\pi\)
\(192\) 0 0
\(193\) 14.8711 + 1.30105i 1.07045 + 0.0936519i 0.608731 0.793376i \(-0.291679\pi\)
0.461715 + 0.887028i \(0.347234\pi\)
\(194\) −0.752757 2.06818i −0.0540448 0.148487i
\(195\) 0 0
\(196\) 14.8184 + 12.4341i 1.05845 + 0.888149i
\(197\) −6.10369 + 1.63548i −0.434870 + 0.116523i −0.469611 0.882873i \(-0.655606\pi\)
0.0347415 + 0.999396i \(0.488939\pi\)
\(198\) 0 0
\(199\) 12.5304 + 2.20944i 0.888254 + 0.156623i 0.599114 0.800664i \(-0.295520\pi\)
0.289140 + 0.957287i \(0.406631\pi\)
\(200\) −4.39703 + 3.09595i −0.310917 + 0.218917i
\(201\) 0 0
\(202\) 0.367951 + 1.37321i 0.0258890 + 0.0966189i
\(203\) 0.790056 + 9.03038i 0.0554510 + 0.633808i
\(204\) 0 0
\(205\) 3.43399 1.25494i 0.239840 0.0876490i
\(206\) −5.62170 + 4.71717i −0.391683 + 0.328661i
\(207\) 0 0
\(208\) −0.473160 0.473160i −0.0328077 0.0328077i
\(209\) −4.92898 4.44106i −0.340945 0.307194i
\(210\) 0 0
\(211\) 16.9039 2.98061i 1.16371 0.205193i 0.441756 0.897135i \(-0.354356\pi\)
0.721953 + 0.691942i \(0.243245\pi\)
\(212\) −1.38712 + 15.8548i −0.0952675 + 1.08891i
\(213\) 0 0
\(214\) −9.57692 + 26.3124i −0.654665 + 1.79868i
\(215\) −0.174920 1.96977i −0.0119295 0.134337i
\(216\) 0 0
\(217\) 5.49114 + 1.47135i 0.372763 + 0.0998816i
\(218\) 9.42585 + 13.4615i 0.638399 + 0.911728i
\(219\) 0 0
\(220\) −2.41898 4.17722i −0.163088 0.281628i
\(221\) 0.608705 + 0.351436i 0.0409460 + 0.0236402i
\(222\) 0 0
\(223\) −7.93699 17.0209i −0.531500 1.13981i −0.970452 0.241295i \(-0.922428\pi\)
0.438952 0.898511i \(-0.355350\pi\)
\(224\) −28.9005 + 10.5189i −1.93100 + 0.702825i
\(225\) 0 0
\(226\) 1.37696 + 7.80913i 0.0915940 + 0.519456i
\(227\) −0.0653385 + 0.0653385i −0.00433667 + 0.00433667i −0.709272 0.704935i \(-0.750976\pi\)
0.704935 + 0.709272i \(0.250976\pi\)
\(228\) 0 0
\(229\) 10.2958i 0.680367i −0.940359 0.340184i \(-0.889511\pi\)
0.940359 0.340184i \(-0.110489\pi\)
\(230\) −5.35290 30.1280i −0.352959 1.98658i
\(231\) 0 0
\(232\) −1.94497 0.906952i −0.127693 0.0595443i
\(233\) −19.6455 + 9.16084i −1.28702 + 0.600146i −0.941103 0.338119i \(-0.890209\pi\)
−0.345915 + 0.938266i \(0.612431\pi\)
\(234\) 0 0
\(235\) 1.43765 + 5.33753i 0.0937819 + 0.348182i
\(236\) −13.2151 + 7.62973i −0.860229 + 0.496653i
\(237\) 0 0
\(238\) 34.8713 24.4172i 2.26037 1.58273i
\(239\) −8.88903 + 5.13208i −0.574984 + 0.331967i −0.759137 0.650931i \(-0.774379\pi\)
0.184154 + 0.982897i \(0.441046\pi\)
\(240\) 0 0
\(241\) −12.7247 + 15.1647i −0.819672 + 0.976847i −0.999977 0.00676413i \(-0.997847\pi\)
0.180306 + 0.983611i \(0.442291\pi\)
\(242\) 14.5500 6.78477i 0.935309 0.436142i
\(243\) 0 0
\(244\) −2.70847 3.22783i −0.173392 0.206640i
\(245\) 5.33506 + 30.0277i 0.340845 + 1.91840i
\(246\) 0 0
\(247\) 0.236012 + 0.556526i 0.0150171 + 0.0354109i
\(248\) −0.951653 + 0.951653i −0.0604300 + 0.0604300i
\(249\) 0 0
\(250\) 20.5991 + 1.72103i 1.30280 + 0.108847i
\(251\) −5.76397 + 2.09791i −0.363819 + 0.132419i −0.517460 0.855708i \(-0.673122\pi\)
0.153641 + 0.988127i \(0.450900\pi\)
\(252\) 0 0
\(253\) −11.2231 + 0.981894i −0.705590 + 0.0617311i
\(254\) −21.4560 12.3877i −1.34627 0.777270i
\(255\) 0 0
\(256\) 3.64098 20.6490i 0.227561 1.29056i
\(257\) 13.3449 + 19.0585i 0.832430 + 1.18883i 0.979845 + 0.199759i \(0.0640159\pi\)
−0.147415 + 0.989075i \(0.547095\pi\)
\(258\) 0 0
\(259\) −6.60714 + 11.4439i −0.410548 + 0.711090i
\(260\) 0.0389034 + 0.438088i 0.00241269 + 0.0271691i
\(261\) 0 0
\(262\) −8.36700 + 17.9431i −0.516915 + 1.10853i
\(263\) −1.09837 + 12.5544i −0.0677285 + 0.774140i 0.884058 + 0.467378i \(0.154801\pi\)
−0.951786 + 0.306762i \(0.900754\pi\)
\(264\) 0 0
\(265\) −17.7198 + 17.7660i −1.08852 + 1.09136i
\(266\) 36.5895 + 1.28997i 2.24344 + 0.0790930i
\(267\) 0 0
\(268\) −11.5610 + 16.5108i −0.706201 + 1.00856i
\(269\) 13.4512 11.2869i 0.820136 0.688176i −0.132868 0.991134i \(-0.542419\pi\)
0.953004 + 0.302958i \(0.0979742\pi\)
\(270\) 0 0
\(271\) −15.7503 5.73264i −0.956762 0.348233i −0.183998 0.982927i \(-0.558904\pi\)
−0.772764 + 0.634694i \(0.781126\pi\)
\(272\) 2.13134 + 24.3613i 0.129231 + 1.47712i
\(273\) 0 0
\(274\) −19.2962 33.4220i −1.16573 2.01910i
\(275\) 1.30198 7.49820i 0.0785126 0.452159i
\(276\) 0 0
\(277\) −7.79634 + 29.0963i −0.468437 + 1.74823i 0.176800 + 0.984247i \(0.443425\pi\)
−0.645237 + 0.763982i \(0.723241\pi\)
\(278\) −12.0108 + 3.21829i −0.720361 + 0.193020i
\(279\) 0 0
\(280\) −10.2717 3.72343i −0.613850 0.222517i
\(281\) −9.59450 26.3607i −0.572360 1.57255i −0.800764 0.598980i \(-0.795573\pi\)
0.228404 0.973566i \(-0.426649\pi\)
\(282\) 0 0
\(283\) 16.0049 + 11.2068i 0.951394 + 0.666173i 0.942648 0.333789i \(-0.108327\pi\)
0.00874584 + 0.999962i \(0.497216\pi\)
\(284\) 7.43112 0.440956
\(285\) 0 0
\(286\) 0.390268 0.0230770
\(287\) 6.08478 + 4.26061i 0.359173 + 0.251496i
\(288\) 0 0
\(289\) −2.97107 8.16296i −0.174769 0.480174i
\(290\) 3.49595 + 7.47165i 0.205289 + 0.438750i
\(291\) 0 0
\(292\) −8.27434 + 2.21710i −0.484219 + 0.129746i
\(293\) 1.45003 5.41159i 0.0847117 0.316148i −0.910548 0.413404i \(-0.864340\pi\)
0.995259 + 0.0972556i \(0.0310064\pi\)
\(294\) 0 0
\(295\) −23.6981 4.14677i −1.37976 0.241434i
\(296\) −1.56418 2.70925i −0.0909164 0.157472i
\(297\) 0 0
\(298\) 1.39436 + 15.9376i 0.0807728 + 0.923238i
\(299\) 0.964579 + 0.351078i 0.0557831 + 0.0203034i
\(300\) 0 0
\(301\) 3.07776 2.58254i 0.177399 0.148855i
\(302\) 11.0530 15.7853i 0.636026 0.908339i
\(303\) 0 0
\(304\) −11.1512 + 17.8323i −0.639563 + 1.02275i
\(305\) −0.00866158 6.64324i −0.000495961 0.380391i
\(306\) 0 0
\(307\) 1.42367 16.2726i 0.0812529 0.928725i −0.840720 0.541470i \(-0.817868\pi\)
0.921973 0.387255i \(-0.126577\pi\)
\(308\) 4.14469 8.88832i 0.236166 0.506459i
\(309\) 0 0
\(310\) 5.15296 0.457596i 0.292669 0.0259897i
\(311\) −0.890255 + 1.54197i −0.0504817 + 0.0874369i −0.890162 0.455644i \(-0.849409\pi\)
0.839680 + 0.543081i \(0.182742\pi\)
\(312\) 0 0
\(313\) 2.51948 + 3.59819i 0.142409 + 0.203382i 0.884020 0.467449i \(-0.154827\pi\)
−0.741611 + 0.670830i \(0.765938\pi\)
\(314\) 5.23029 29.6624i 0.295162 1.67395i
\(315\) 0 0
\(316\) 7.11217 + 4.10622i 0.400091 + 0.230993i
\(317\) 9.14589 0.800161i 0.513684 0.0449415i 0.172633 0.984986i \(-0.444773\pi\)
0.341051 + 0.940045i \(0.389217\pi\)
\(318\) 0 0
\(319\) 2.85391 1.03874i 0.159788 0.0581581i
\(320\) −4.90434 + 4.12614i −0.274161 + 0.230658i
\(321\) 0 0
\(322\) 43.9607 43.9607i 2.44983 2.44983i
\(323\) 6.46609 21.1244i 0.359783 1.17539i
\(324\) 0 0
\(325\) −0.396242 + 0.569045i −0.0219796 + 0.0315649i
\(326\) −7.05896 8.41254i −0.390959 0.465927i
\(327\) 0 0
\(328\) −1.59379 + 0.743195i −0.0880021 + 0.0410361i
\(329\) −7.21899 + 8.60326i −0.397996 + 0.474313i
\(330\) 0 0
\(331\) 9.85862 5.69188i 0.541879 0.312854i −0.203961 0.978979i \(-0.565382\pi\)
0.745840 + 0.666125i \(0.232048\pi\)
\(332\) −0.551059 + 0.385856i −0.0302433 + 0.0211766i
\(333\) 0 0
\(334\) −23.9123 + 13.8058i −1.30842 + 0.755418i
\(335\) −30.6846 + 8.26480i −1.67648 + 0.451554i
\(336\) 0 0
\(337\) 14.1389 6.59306i 0.770193 0.359147i 0.00252652 0.999997i \(-0.499196\pi\)
0.767666 + 0.640850i \(0.221418\pi\)
\(338\) 21.7510 + 10.1427i 1.18310 + 0.551688i
\(339\) 0 0
\(340\) 9.20202 13.1784i 0.499049 0.714698i
\(341\) 1.90463i 0.103142i
\(342\) 0 0
\(343\) −21.3274 + 21.3274i −1.15157 + 1.15157i
\(344\) 0.165168 + 0.936712i 0.00890524 + 0.0505041i
\(345\) 0 0
\(346\) 23.8820 8.69235i 1.28391 0.467304i
\(347\) −5.93804 12.7342i −0.318770 0.683606i 0.679998 0.733214i \(-0.261981\pi\)
−0.998769 + 0.0496082i \(0.984203\pi\)
\(348\) 0 0
\(349\) −20.6061 11.8969i −1.10302 0.636829i −0.166007 0.986125i \(-0.553087\pi\)
−0.937012 + 0.349296i \(0.886421\pi\)
\(350\) 21.0933 + 36.3156i 1.12748 + 1.94115i
\(351\) 0 0
\(352\) 5.91022 + 8.44066i 0.315016 + 0.449889i
\(353\) 12.3909 + 3.32012i 0.659499 + 0.176712i 0.573020 0.819542i \(-0.305772\pi\)
0.0864789 + 0.996254i \(0.472438\pi\)
\(354\) 0 0
\(355\) 8.98477 + 7.51917i 0.476862 + 0.399076i
\(356\) 0.906858 2.49157i 0.0480634 0.132053i
\(357\) 0 0
\(358\) −0.646385 + 7.38821i −0.0341625 + 0.390479i
\(359\) −1.62390 + 0.286337i −0.0857062 + 0.0151123i −0.216337 0.976319i \(-0.569411\pi\)
0.130631 + 0.991431i \(0.458300\pi\)
\(360\) 0 0
\(361\) 15.3788 11.1576i 0.809409 0.587245i
\(362\) −29.5227 29.5227i −1.55168 1.55168i
\(363\) 0 0
\(364\) −0.684513 + 0.574375i −0.0358782 + 0.0301054i
\(365\) −12.2476 5.69174i −0.641071 0.297919i
\(366\) 0 0
\(367\) 1.54633 + 17.6746i 0.0807176 + 0.922606i 0.923310 + 0.384055i \(0.125473\pi\)
−0.842593 + 0.538551i \(0.818972\pi\)
\(368\) 9.24333 + 34.4966i 0.481842 + 1.79826i
\(369\) 0 0
\(370\) −2.07269 + 11.8451i −0.107754 + 0.615796i
\(371\) −50.2056 8.85260i −2.60654 0.459604i
\(372\) 0 0
\(373\) −12.5757 + 3.36965i −0.651145 + 0.174474i −0.569246 0.822167i \(-0.692765\pi\)
−0.0818983 + 0.996641i \(0.526098\pi\)
\(374\) −10.9257 9.16778i −0.564956 0.474054i
\(375\) 0 0
\(376\) −0.909359 2.49844i −0.0468966 0.128847i
\(377\) −0.275665 0.0241176i −0.0141975 0.00124212i
\(378\) 0 0
\(379\) 19.2818 0.990442 0.495221 0.868767i \(-0.335087\pi\)
0.495221 + 0.868767i \(0.335087\pi\)
\(380\) 13.1429 4.28449i 0.674218 0.219790i
\(381\) 0 0
\(382\) −19.2245 13.4612i −0.983612 0.688733i
\(383\) −14.9442 1.30745i −0.763612 0.0668074i −0.301305 0.953528i \(-0.597422\pi\)
−0.462306 + 0.886720i \(0.652978\pi\)
\(384\) 0 0
\(385\) 14.0049 6.55282i 0.713754 0.333963i
\(386\) 21.1425 + 17.7407i 1.07613 + 0.902977i
\(387\) 0 0
\(388\) 0.436975 1.63081i 0.0221841 0.0827921i
\(389\) −13.3902 2.36105i −0.678909 0.119710i −0.176448 0.984310i \(-0.556461\pi\)
−0.502461 + 0.864600i \(0.667572\pi\)
\(390\) 0 0
\(391\) −18.7567 32.4875i −0.948566 1.64297i
\(392\) −3.79666 14.1693i −0.191760 0.715658i
\(393\) 0 0
\(394\) −10.9784 3.99580i −0.553082 0.201306i
\(395\) 4.44426 + 12.1612i 0.223615 + 0.611894i
\(396\) 0 0
\(397\) 2.68829 3.83927i 0.134921 0.192687i −0.746006 0.665939i \(-0.768031\pi\)
0.880927 + 0.473252i \(0.156920\pi\)
\(398\) 16.6342 + 16.6342i 0.833795 + 0.833795i
\(399\) 0 0
\(400\) −24.1251 + 0.0629097i −1.20626 + 0.00314549i
\(401\) 29.5512 5.21067i 1.47572 0.260209i 0.622851 0.782340i \(-0.285974\pi\)
0.852865 + 0.522132i \(0.174863\pi\)
\(402\) 0 0
\(403\) −0.0733404 + 0.157279i −0.00365335 + 0.00783463i
\(404\) −0.372995 + 1.02480i −0.0185572 + 0.0509855i
\(405\) 0 0
\(406\) −8.37983 + 14.5143i −0.415884 + 0.720333i
\(407\) 4.27641 + 1.14586i 0.211974 + 0.0567982i
\(408\) 0 0
\(409\) −5.94508 + 33.7162i −0.293965 + 1.66716i 0.377414 + 0.926045i \(0.376813\pi\)
−0.671379 + 0.741114i \(0.734298\pi\)
\(410\) 6.53158 + 1.74101i 0.322572 + 0.0859823i
\(411\) 0 0
\(412\) −5.60810 + 0.490645i −0.276291 + 0.0241723i
\(413\) −20.6572 44.2995i −1.01647 2.17984i
\(414\) 0 0
\(415\) −1.05670 0.0910609i −0.0518713 0.00447001i
\(416\) −0.163029 0.924586i −0.00799317 0.0453315i
\(417\) 0 0
\(418\) −2.75535 11.9530i −0.134769 0.584638i
\(419\) 7.01480i 0.342696i −0.985211 0.171348i \(-0.945188\pi\)
0.985211 0.171348i \(-0.0548122\pi\)
\(420\) 0 0
\(421\) −2.21994 2.64562i −0.108193 0.128939i 0.709230 0.704977i \(-0.249043\pi\)
−0.817423 + 0.576037i \(0.804598\pi\)
\(422\) 28.7616 + 13.4118i 1.40009 + 0.652875i
\(423\) 0 0
\(424\) 7.75787 9.24547i 0.376755 0.449000i
\(425\) 24.4604 6.62256i 1.18651 0.321242i
\(426\) 0 0
\(427\) 11.0562 7.74162i 0.535046 0.374643i
\(428\) −17.5953 + 12.3203i −0.850500 + 0.595526i
\(429\) 0 0
\(430\) 1.82394 3.16870i 0.0879584 0.152808i
\(431\) 6.73534 8.02687i 0.324430 0.386641i −0.579035 0.815303i \(-0.696571\pi\)
0.903465 + 0.428662i \(0.141015\pi\)
\(432\) 0 0
\(433\) 21.5929 + 10.0690i 1.03769 + 0.483883i 0.865357 0.501156i \(-0.167092\pi\)
0.172333 + 0.985039i \(0.444869\pi\)
\(434\) 6.75601 + 8.05150i 0.324299 + 0.386484i
\(435\) 0 0
\(436\) 12.6063i 0.603731i
\(437\) 3.94259 32.0214i 0.188600 1.53179i
\(438\) 0 0
\(439\) 0.100282 + 0.568729i 0.00478621 + 0.0271439i 0.987107 0.160060i \(-0.0511687\pi\)
−0.982321 + 0.187204i \(0.940058\pi\)
\(440\) −0.314280 + 3.64700i −0.0149827 + 0.173864i
\(441\) 0 0
\(442\) 0.549197 + 1.17776i 0.0261227 + 0.0560202i
\(443\) 8.46505 0.740596i 0.402187 0.0351868i 0.115732 0.993281i \(-0.463079\pi\)
0.286455 + 0.958094i \(0.407523\pi\)
\(444\) 0 0
\(445\) 3.61755 2.09489i 0.171488 0.0993072i
\(446\) 6.02950 34.1950i 0.285505 1.61918i
\(447\) 0 0
\(448\) −12.5778 3.37022i −0.594247 0.159228i
\(449\) −4.27636 + 7.40687i −0.201814 + 0.349552i −0.949113 0.314936i \(-0.898017\pi\)
0.747299 + 0.664488i \(0.231350\pi\)
\(450\) 0 0
\(451\) 0.851185 2.33861i 0.0400807 0.110121i
\(452\) −2.57073 + 5.51295i −0.120917 + 0.259308i
\(453\) 0 0
\(454\) −0.168244 + 0.0296659i −0.00789608 + 0.00139229i
\(455\) −1.40881 + 0.00183683i −0.0660458 + 8.61118e-5i
\(456\) 0 0
\(457\) 1.00342 + 1.00342i 0.0469379 + 0.0469379i 0.730186 0.683248i \(-0.239433\pi\)
−0.683248 + 0.730186i \(0.739433\pi\)
\(458\) 10.9183 15.5930i 0.510180 0.728612i
\(459\) 0 0
\(460\) 9.89256 21.2871i 0.461243 0.992516i
\(461\) 0.708319 + 0.257807i 0.0329897 + 0.0120073i 0.358462 0.933544i \(-0.383301\pi\)
−0.325473 + 0.945551i \(0.605523\pi\)
\(462\) 0 0
\(463\) −5.65758 21.1144i −0.262930 0.981269i −0.963505 0.267690i \(-0.913740\pi\)
0.700575 0.713579i \(-0.252927\pi\)
\(464\) −4.81380 8.33774i −0.223475 0.387070i
\(465\) 0 0
\(466\) −39.4677 6.95922i −1.82831 0.322380i
\(467\) 0.811663 3.02917i 0.0375593 0.140173i −0.944600 0.328223i \(-0.893550\pi\)
0.982159 + 0.188050i \(0.0602168\pi\)
\(468\) 0 0
\(469\) −49.4587 41.5008i −2.28379 1.91633i
\(470\) −3.48293 + 9.60824i −0.160656 + 0.443195i
\(471\) 0 0
\(472\) 11.5277 + 1.00854i 0.530605 + 0.0464219i
\(473\) −1.10265 0.772083i −0.0506999 0.0355004i
\(474\) 0 0
\(475\) 20.2260 + 8.11840i 0.928033 + 0.372498i
\(476\) 32.6559 1.49678
\(477\) 0 0
\(478\) −18.9048 1.65395i −0.864684 0.0756501i
\(479\) 9.80127 + 26.9288i 0.447831 + 1.23041i 0.934230 + 0.356670i \(0.116088\pi\)
−0.486399 + 0.873737i \(0.661690\pi\)
\(480\) 0 0
\(481\) −0.309011 0.259291i −0.0140897 0.0118226i
\(482\) −35.3532 + 9.47285i −1.61029 + 0.431477i
\(483\) 0 0
\(484\) 12.1282 + 2.13853i 0.551281 + 0.0972058i
\(485\) 2.17847 1.52962i 0.0989193 0.0694565i
\(486\) 0 0
\(487\) −2.52061 9.40703i −0.114220 0.426273i 0.885008 0.465576i \(-0.154153\pi\)
−0.999227 + 0.0393029i \(0.987486\pi\)
\(488\) 0.278491 + 3.18316i 0.0126067 + 0.144095i
\(489\) 0 0
\(490\) −23.7632 + 51.1344i −1.07351 + 2.31002i
\(491\) −6.63665 + 5.56881i −0.299508 + 0.251317i −0.780139 0.625606i \(-0.784852\pi\)
0.480631 + 0.876923i \(0.340407\pi\)
\(492\) 0 0
\(493\) 7.15084 + 7.15084i 0.322057 + 0.322057i
\(494\) −0.232735 + 1.09314i −0.0104713 + 0.0491826i
\(495\) 0 0
\(496\) −5.94602 + 1.04844i −0.266984 + 0.0470765i
\(497\) −2.07460 + 23.7128i −0.0930586 + 1.06366i
\(498\) 0 0
\(499\) −0.511920 + 1.40649i −0.0229167 + 0.0629631i −0.950623 0.310347i \(-0.899555\pi\)
0.927707 + 0.373310i \(0.121777\pi\)
\(500\) 12.1868 + 10.1450i 0.545010 + 0.453697i
\(501\) 0 0
\(502\) −10.9543 2.93519i −0.488913 0.131004i
\(503\) 4.54411 + 6.48967i 0.202612 + 0.289360i 0.907580 0.419879i \(-0.137928\pi\)
−0.704968 + 0.709239i \(0.749039\pi\)
\(504\) 0 0
\(505\) −1.48792 + 0.861638i −0.0662114 + 0.0383424i
\(506\) −18.0386 10.4146i −0.801913 0.462985i
\(507\) 0 0
\(508\) −8.03202 17.2247i −0.356363 0.764223i
\(509\) 31.2055 11.3579i 1.38316 0.503430i 0.460026 0.887905i \(-0.347840\pi\)
0.923135 + 0.384476i \(0.125618\pi\)
\(510\) 0 0
\(511\) −4.76479 27.0225i −0.210782 1.19540i
\(512\) 15.7583 15.7583i 0.696424 0.696424i
\(513\) 0 0
\(514\) 43.0157i 1.89734i
\(515\) −7.27706 5.08132i −0.320665 0.223910i
\(516\) 0 0
\(517\) 3.41018 + 1.59019i 0.149979 + 0.0699366i
\(518\) −22.1423 + 10.3251i −0.972877 + 0.453660i
\(519\) 0 0
\(520\) 0.166385 0.289057i 0.00729646 0.0126760i
\(521\) −26.1470 + 15.0960i −1.14552 + 0.661367i −0.947792 0.318890i \(-0.896690\pi\)
−0.197729 + 0.980257i \(0.563357\pi\)
\(522\) 0 0
\(523\) 6.98083 4.88803i 0.305250 0.213739i −0.410907 0.911677i \(-0.634788\pi\)
0.716158 + 0.697939i \(0.245899\pi\)
\(524\) −13.1525 + 7.59362i −0.574571 + 0.331729i
\(525\) 0 0
\(526\) −14.9770 + 17.8489i −0.653028 + 0.778248i
\(527\) 5.74784 2.68026i 0.250380 0.116754i
\(528\) 0 0
\(529\) −20.4310 24.3487i −0.888304 1.05864i
\(530\) −45.6768 + 8.11546i −1.98407 + 0.352513i
\(531\) 0 0
\(532\) 22.4245 + 16.9098i 0.972225 + 0.733133i
\(533\) −0.160340 + 0.160340i −0.00694508 + 0.00694508i
\(534\) 0 0
\(535\) −33.7403 2.90757i −1.45872 0.125705i
\(536\) 14.3631 5.22775i 0.620392 0.225804i
\(537\) 0 0
\(538\) 32.3412 2.82949i 1.39433 0.121988i
\(539\) 17.9785 + 10.3799i 0.774389 + 0.447094i
\(540\) 0 0
\(541\) 3.84885 21.8279i 0.165475 0.938454i −0.783099 0.621897i \(-0.786362\pi\)
0.948574 0.316557i \(-0.102527\pi\)
\(542\) −17.7745 25.3846i −0.763481 1.09036i
\(543\) 0 0
\(544\) −17.1554 + 29.7139i −0.735530 + 1.27397i
\(545\) −12.7556 + 15.2419i −0.546392 + 0.652891i
\(546\) 0 0
\(547\) −13.3830 + 28.6999i −0.572216 + 1.22712i 0.380928 + 0.924605i \(0.375604\pi\)
−0.953144 + 0.302516i \(0.902173\pi\)
\(548\) 2.58021 29.4920i 0.110221 1.25983i
\(549\) 0 0
\(550\) 9.92341 9.97530i 0.423136 0.425348i
\(551\) 1.20758 + 8.61324i 0.0514446 + 0.366936i
\(552\) 0 0
\(553\) −15.0885 + 21.5487i −0.641630 + 0.916342i
\(554\) −42.6631 + 35.7986i −1.81258 + 1.52094i
\(555\) 0 0
\(556\) −8.96338 3.26240i −0.380132 0.138357i
\(557\) 0.0223538 + 0.255505i 0.000947162 + 0.0108261i 0.996654 0.0817414i \(-0.0260482\pi\)
−0.995706 + 0.0925675i \(0.970493\pi\)
\(558\) 0 0
\(559\) 0.0613234 + 0.106215i 0.00259370 + 0.00449243i
\(560\) −28.1663 40.1143i −1.19025 1.69514i
\(561\) 0 0
\(562\) 13.4237 50.0978i 0.566243 2.11325i
\(563\) 5.15121 1.38026i 0.217097 0.0581711i −0.148631 0.988893i \(-0.547487\pi\)
0.365728 + 0.930722i \(0.380820\pi\)
\(564\) 0 0
\(565\) −8.68648 + 4.06437i −0.365443 + 0.170989i
\(566\) 12.3550 + 33.9452i 0.519321 + 1.42682i
\(567\) 0 0
\(568\) −4.61612 3.23224i −0.193688 0.135622i
\(569\) −20.8877 −0.875659 −0.437830 0.899058i \(-0.644253\pi\)
−0.437830 + 0.899058i \(0.644253\pi\)
\(570\) 0 0
\(571\) −14.0563 −0.588237 −0.294118 0.955769i \(-0.595026\pi\)
−0.294118 + 0.955769i \(0.595026\pi\)
\(572\) 0.245236 + 0.171716i 0.0102538 + 0.00717982i
\(573\) 0 0
\(574\) 4.69716 + 12.9053i 0.196056 + 0.538659i
\(575\) 33.5001 15.7279i 1.39705 0.655897i
\(576\) 0 0
\(577\) 26.6223 7.13342i 1.10830 0.296968i 0.342160 0.939642i \(-0.388841\pi\)
0.766140 + 0.642673i \(0.222175\pi\)
\(578\) 4.15682 15.5135i 0.172901 0.645275i
\(579\) 0 0
\(580\) −1.09071 + 6.23324i −0.0452893 + 0.258821i
\(581\) −1.07743 1.86616i −0.0446992 0.0774212i
\(582\) 0 0
\(583\) 1.48864 + 17.0152i 0.0616531 + 0.704698i
\(584\) 6.10427 + 2.22177i 0.252597 + 0.0919376i
\(585\) 0 0
\(586\) 7.93484 6.65812i 0.327785 0.275045i
\(587\) −9.44733 + 13.4922i −0.389933 + 0.556882i −0.965343 0.260983i \(-0.915953\pi\)
0.575410 + 0.817865i \(0.304842\pi\)
\(588\) 0 0
\(589\) 5.33487 + 1.13583i 0.219820 + 0.0468009i
\(590\) −31.4932 31.4112i −1.29656 1.29318i
\(591\) 0 0
\(592\) 1.22319 13.9812i 0.0502730 0.574623i
\(593\) −8.02791 + 17.2159i −0.329667 + 0.706972i −0.999364 0.0356619i \(-0.988646\pi\)
0.669697 + 0.742634i \(0.266424\pi\)
\(594\) 0 0
\(595\) 39.4834 + 33.0428i 1.61866 + 1.35462i
\(596\) −6.13628 + 10.6283i −0.251352 + 0.435354i
\(597\) 0 0
\(598\) 1.08855 + 1.55461i 0.0445140 + 0.0635726i
\(599\) −6.72471 + 38.1377i −0.274764 + 1.55826i 0.464946 + 0.885339i \(0.346074\pi\)
−0.739710 + 0.672926i \(0.765037\pi\)
\(600\) 0 0
\(601\) 24.2204 + 13.9836i 0.987970 + 0.570405i 0.904667 0.426120i \(-0.140120\pi\)
0.0833031 + 0.996524i \(0.473453\pi\)
\(602\) 7.39994 0.647411i 0.301599 0.0263865i
\(603\) 0 0
\(604\) 13.8909 5.05587i 0.565213 0.205721i
\(605\) 12.5000 + 14.8575i 0.508197 + 0.604044i
\(606\) 0 0
\(607\) −31.1811 + 31.1811i −1.26560 + 1.26560i −0.317263 + 0.948338i \(0.602764\pi\)
−0.948338 + 0.317263i \(0.897236\pi\)
\(608\) −27.1668 + 11.5209i −1.10176 + 0.467235i
\(609\) 0 0
\(610\) 7.03178 10.0703i 0.284708 0.407736i
\(611\) −0.220370 0.262627i −0.00891522 0.0106247i
\(612\) 0 0
\(613\) 13.2254 6.16710i 0.534169 0.249087i −0.136766 0.990603i \(-0.543671\pi\)
0.670935 + 0.741516i \(0.265893\pi\)
\(614\) 19.4126 23.1350i 0.783428 0.933653i
\(615\) 0 0
\(616\) −6.44070 + 3.71854i −0.259503 + 0.149824i
\(617\) 5.03505 3.52558i 0.202704 0.141935i −0.467817 0.883825i \(-0.654960\pi\)
0.670521 + 0.741891i \(0.266071\pi\)
\(618\) 0 0
\(619\) 19.4464 11.2274i 0.781618 0.451268i −0.0553852 0.998465i \(-0.517639\pi\)
0.837003 + 0.547198i \(0.184305\pi\)
\(620\) 3.43936 + 1.97974i 0.138128 + 0.0795082i
\(621\) 0 0
\(622\) −2.98348 + 1.39122i −0.119627 + 0.0557829i
\(623\) 7.69746 + 3.58938i 0.308392 + 0.143806i
\(624\) 0 0
\(625\) 4.46955 + 24.5972i 0.178782 + 0.983889i
\(626\) 8.12126i 0.324591i
\(627\) 0 0
\(628\) 16.3380 16.3380i 0.651956 0.651956i
\(629\) 2.55990 + 14.5179i 0.102070 + 0.578868i
\(630\) 0 0
\(631\) 12.9935 4.72926i 0.517264 0.188269i −0.0701787 0.997534i \(-0.522357\pi\)
0.587443 + 0.809266i \(0.300135\pi\)
\(632\) −2.63196 5.64425i −0.104694 0.224516i
\(633\) 0 0
\(634\) 14.7000 + 8.48702i 0.583810 + 0.337063i
\(635\) 7.71752 28.9531i 0.306260 1.14897i
\(636\) 0 0
\(637\) −1.08492 1.54943i −0.0429861 0.0613905i
\(638\) 5.42377 + 1.45330i 0.214729 + 0.0575365i
\(639\) 0 0
\(640\) 18.3535 1.62984i 0.725485 0.0644250i
\(641\) −10.3038 + 28.3093i −0.406974 + 1.11815i 0.551799 + 0.833977i \(0.313942\pi\)
−0.958773 + 0.284174i \(0.908281\pi\)
\(642\) 0 0
\(643\) −2.23293 + 25.5226i −0.0880584 + 1.00651i 0.815702 + 0.578473i \(0.196351\pi\)
−0.903760 + 0.428039i \(0.859205\pi\)
\(644\) 46.9665 8.28147i 1.85074 0.326336i
\(645\) 0 0
\(646\) 32.1945 25.1358i 1.26667 0.988953i
\(647\) 5.87443 + 5.87443i 0.230948 + 0.230948i 0.813088 0.582141i \(-0.197785\pi\)
−0.582141 + 0.813088i \(0.697785\pi\)
\(648\) 0 0
\(649\) −12.5450 + 10.5265i −0.492433 + 0.413200i
\(650\) −1.20356 + 0.441617i −0.0472074 + 0.0173216i
\(651\) 0 0
\(652\) −0.734220 8.39218i −0.0287543 0.328663i
\(653\) −1.41293 5.27313i −0.0552922 0.206353i 0.932753 0.360515i \(-0.117399\pi\)
−0.988046 + 0.154162i \(0.950732\pi\)
\(654\) 0 0
\(655\) −23.5860 4.12714i −0.921580 0.161261i
\(656\) −7.76940 1.36995i −0.303344 0.0534878i
\(657\) 0 0
\(658\) −20.0566 + 5.37414i −0.781886 + 0.209506i
\(659\) −22.7331 19.0754i −0.885557 0.743071i 0.0817569 0.996652i \(-0.473947\pi\)
−0.967314 + 0.253582i \(0.918391\pi\)
\(660\) 0 0
\(661\) 8.70685 + 23.9219i 0.338657 + 0.930454i 0.985776 + 0.168064i \(0.0537516\pi\)
−0.647119 + 0.762389i \(0.724026\pi\)
\(662\) 20.9669 + 1.83436i 0.814900 + 0.0712945i
\(663\) 0 0
\(664\) 0.510143 0.0197974
\(665\) 10.0027 + 43.1354i 0.387886 + 1.67272i
\(666\) 0 0
\(667\) 12.0980 + 8.47108i 0.468435 + 0.328001i
\(668\) −21.1005 1.84605i −0.816402 0.0714259i
\(669\) 0 0
\(670\) −55.2362 20.0228i −2.13396 0.773548i
\(671\) −3.46407 2.90670i −0.133729 0.112212i
\(672\) 0 0
\(673\) 10.0188 37.3907i 0.386197 1.44131i −0.450075 0.892991i \(-0.648603\pi\)
0.836272 0.548315i \(-0.184731\pi\)
\(674\) 28.4049 + 5.00855i 1.09412 + 0.192922i
\(675\) 0 0
\(676\) 9.20516 + 15.9438i 0.354045 + 0.613224i
\(677\) 3.50187 + 13.0692i 0.134588 + 0.502289i 0.999999 + 0.00122697i \(0.000390556\pi\)
−0.865411 + 0.501062i \(0.832943\pi\)
\(678\) 0 0
\(679\) 5.08195 + 1.84968i 0.195027 + 0.0709842i
\(680\) −11.4483 + 4.18374i −0.439021 + 0.160439i
\(681\) 0 0
\(682\) 2.01979 2.88456i 0.0773418 0.110456i
\(683\) −8.52271 8.52271i −0.326112 0.326112i 0.524994 0.851106i \(-0.324068\pi\)
−0.851106 + 0.524994i \(0.824068\pi\)
\(684\) 0 0
\(685\) 32.9611 33.0471i 1.25938 1.26267i
\(686\) −54.9172 + 9.68339i −2.09675 + 0.369714i
\(687\) 0 0
\(688\) −1.80337 + 3.86734i −0.0687528 + 0.147441i
\(689\) 0.532265 1.46239i 0.0202777 0.0557125i
\(690\) 0 0
\(691\) −26.0866 + 45.1834i −0.992383 + 1.71886i −0.389504 + 0.921025i \(0.627354\pi\)
−0.602878 + 0.797833i \(0.705980\pi\)
\(692\) 18.8316 + 5.04591i 0.715869 + 0.191817i
\(693\) 0 0
\(694\) 4.51095 25.5829i 0.171233 0.971113i
\(695\) −7.53632 13.0141i −0.285869 0.493652i
\(696\) 0 0
\(697\) 8.25533 0.722248i 0.312693 0.0273571i
\(698\) −18.5916 39.8698i −0.703703 1.50910i
\(699\) 0 0
\(700\) −2.72414 + 32.1010i −0.102963 + 1.21330i
\(701\) 4.07872 + 23.1316i 0.154051 + 0.873668i 0.959648 + 0.281204i \(0.0907337\pi\)
−0.805597 + 0.592464i \(0.798155\pi\)
\(702\) 0 0
\(703\) −5.75979 + 11.2949i −0.217234 + 0.425995i
\(704\) 4.36270i 0.164425i
\(705\) 0 0
\(706\) 15.2450 + 18.1683i 0.573755 + 0.683774i
\(707\) −3.16600 1.47633i −0.119070 0.0555232i
\(708\) 0 0
\(709\) −8.49230 + 10.1207i −0.318935 + 0.380092i −0.901564 0.432647i \(-0.857580\pi\)
0.582629 + 0.812739i \(0.302024\pi\)
\(710\) 5.63360 + 20.9158i 0.211425 + 0.784954i
\(711\) 0 0
\(712\) −1.64706 + 1.15329i −0.0617264 + 0.0432213i
\(713\) 7.58698 5.31246i 0.284135 0.198953i
\(714\) 0 0
\(715\) 0.122757 + 0.455759i 0.00459087 + 0.0170444i
\(716\) −3.65696 + 4.35819i −0.136667 + 0.162873i
\(717\) 0 0
\(718\) −2.76304 1.28843i −0.103116 0.0480837i
\(719\) −30.9997 36.9440i −1.15609 1.37778i −0.913092 0.407753i \(-0.866313\pi\)
−0.243001 0.970026i \(-0.578132\pi\)
\(720\) 0 0
\(721\) 18.0325i 0.671565i
\(722\) 35.1234 0.589612i 1.30716 0.0219431i
\(723\) 0 0
\(724\) −5.56159 31.5413i −0.206695 1.17222i
\(725\) −7.62584 + 6.43280i −0.283217 + 0.238908i
\(726\) 0 0
\(727\) −2.41835 5.18618i −0.0896918 0.192345i 0.856345 0.516404i \(-0.172730\pi\)
−0.946037 + 0.324060i \(0.894952\pi\)
\(728\) 0.675041 0.0590585i 0.0250187 0.00218885i
\(729\) 0 0
\(730\) −12.5131 21.6083i −0.463132 0.799758i
\(731\) 0.778324 4.41410i 0.0287874 0.163261i
\(732\) 0 0
\(733\) 14.5096 + 3.88782i 0.535923 + 0.143600i 0.516622 0.856214i \(-0.327189\pi\)
0.0193008 + 0.999814i \(0.493856\pi\)
\(734\) −16.4013 + 28.4079i −0.605384 + 1.04856i
\(735\) 0 0
\(736\) −17.1379 + 47.0859i −0.631710 + 1.73561i
\(737\) −9.14175 + 19.6045i −0.336741 + 0.722142i
\(738\) 0 0
\(739\) −37.0848 + 6.53906i −1.36419 + 0.240543i −0.807347 0.590077i \(-0.799098\pi\)
−0.556840 + 0.830620i \(0.687986\pi\)
\(740\) −6.51422 + 6.53123i −0.239468 + 0.240093i
\(741\) 0 0
\(742\) −66.6483 66.6483i −2.44674 2.44674i
\(743\) −3.84433 + 5.49028i −0.141035 + 0.201419i −0.883455 0.468516i \(-0.844789\pi\)
0.742420 + 0.669934i \(0.233678\pi\)
\(744\) 0 0
\(745\) −18.1735 + 6.64145i −0.665825 + 0.243324i
\(746\) −22.6192 8.23272i −0.828148 0.301421i
\(747\) 0 0
\(748\) −2.83172 10.5681i −0.103538 0.386409i
\(749\) −34.4022 59.5863i −1.25703 2.17724i
\(750\) 0 0
\(751\) 16.8825 + 2.97683i 0.616050 + 0.108626i 0.472960 0.881084i \(-0.343185\pi\)
0.143089 + 0.989710i \(0.454296\pi\)
\(752\) 3.08718 11.5215i 0.112578 0.420146i
\(753\) 0 0
\(754\) −0.391918 0.328858i −0.0142728 0.0119763i
\(755\) 21.9109 + 7.94257i 0.797419 + 0.289060i
\(756\) 0 0
\(757\) 6.62372 + 0.579501i 0.240743 + 0.0210623i 0.206889 0.978364i \(-0.433666\pi\)
0.0338545 + 0.999427i \(0.489222\pi\)
\(758\) 29.2023 + 20.4477i 1.06067 + 0.742692i
\(759\) 0 0
\(760\) −10.0278 3.05518i −0.363747 0.110823i
\(761\) 46.7690 1.69538 0.847688 0.530495i \(-0.177994\pi\)
0.847688 + 0.530495i \(0.177994\pi\)
\(762\) 0 0
\(763\) −40.2268 3.51938i −1.45631 0.127410i
\(764\) −6.15744 16.9174i −0.222768 0.612051i
\(765\) 0 0
\(766\) −21.2464 17.8278i −0.767664 0.644146i
\(767\) 1.44126 0.386185i 0.0520410 0.0139443i
\(768\) 0 0
\(769\) 48.7943 + 8.60376i 1.75957 + 0.310259i 0.957813 0.287392i \(-0.0927883\pi\)
0.801756 + 0.597652i \(0.203899\pi\)
\(770\) 28.1593 + 4.92740i 1.01479 + 0.177571i
\(771\) 0 0
\(772\) 5.47970 + 20.4505i 0.197219 + 0.736030i
\(773\) −1.24000 14.1733i −0.0445998 0.509778i −0.985334 0.170634i \(-0.945418\pi\)
0.940735 0.339144i \(-0.110137\pi\)
\(774\) 0 0
\(775\) 2.15523 + 5.87376i 0.0774183 + 0.210992i
\(776\) −0.980784 + 0.822975i −0.0352081 + 0.0295431i
\(777\) 0 0
\(778\) −17.7756 17.7756i −0.637285 0.637285i
\(779\) 6.04284 + 3.77880i 0.216507 + 0.135389i
\(780\) 0 0
\(781\) 7.85385 1.38484i 0.281033 0.0495536i
\(782\) 6.04485 69.0930i 0.216163 2.47076i
\(783\) 0 0
\(784\) 22.5081 61.8404i 0.803860 2.20859i
\(785\) 36.2853 3.22223i 1.29508 0.115006i
\(786\) 0 0
\(787\) −20.5663 5.51072i −0.733110 0.196436i −0.127096 0.991890i \(-0.540566\pi\)
−0.606014 + 0.795454i \(0.707232\pi\)
\(788\) −5.14045 7.34132i −0.183121 0.261524i
\(789\) 0 0
\(790\) −6.16562 + 23.1310i −0.219363 + 0.822964i
\(791\) −16.8742 9.74233i −0.599978 0.346397i
\(792\) 0 0
\(793\) 0.174126 + 0.373415i 0.00618341 + 0.0132604i
\(794\) 8.14280 2.96374i 0.288977 0.105179i
\(795\) 0 0
\(796\) 3.13360 + 17.7715i 0.111068 + 0.629895i
\(797\) −2.03401 + 2.03401i −0.0720484 + 0.0720484i −0.742213 0.670164i \(-0.766224\pi\)
0.670164 + 0.742213i \(0.266224\pi\)
\(798\) 0 0
\(799\) 12.5291i 0.443247i
\(800\) −27.7779 19.3426i −0.982098 0.683863i
\(801\) 0 0
\(802\) 50.2809 + 23.4464i 1.77548 + 0.827920i
\(803\) −8.33186 + 3.88521i −0.294025 + 0.137106i
\(804\) 0 0
\(805\) 65.1656 + 37.5101i 2.29678 + 1.32206i
\(806\) −0.277862 + 0.160424i −0.00978728 + 0.00565069i
\(807\) 0 0
\(808\) 0.677446 0.474353i 0.0238325 0.0166877i
\(809\) 8.61084 4.97147i 0.302741 0.174788i −0.340932 0.940088i \(-0.610743\pi\)
0.643674 + 0.765300i \(0.277409\pi\)
\(810\) 0 0
\(811\) 4.70296 5.60477i 0.165143 0.196810i −0.677126 0.735867i \(-0.736775\pi\)
0.842269 + 0.539057i \(0.181219\pi\)
\(812\) −11.6520 + 5.43339i −0.408903 + 0.190675i
\(813\) 0 0
\(814\) 5.26147 + 6.27038i 0.184414 + 0.219777i
\(815\) 7.60389 10.8897i 0.266353 0.381449i
\(816\) 0 0
\(817\) 2.82017 2.62809i 0.0986651 0.0919451i
\(818\) −44.7585 + 44.7585i −1.56495 + 1.56495i
\(819\) 0 0
\(820\) 3.33828 + 3.96789i 0.116578 + 0.138565i
\(821\) 42.9758 15.6419i 1.49986 0.545906i 0.543839 0.839190i \(-0.316970\pi\)
0.956025 + 0.293284i \(0.0947481\pi\)
\(822\) 0 0
\(823\) 50.0561 4.37934i 1.74485 0.152654i 0.830348 0.557245i \(-0.188142\pi\)
0.914498 + 0.404591i \(0.132586\pi\)
\(824\) 3.69709 + 2.13452i 0.128794 + 0.0743595i
\(825\) 0 0
\(826\) 15.6927 88.9976i 0.546018 3.09662i
\(827\) 28.0454 + 40.0530i 0.975234 + 1.39278i 0.918954 + 0.394364i \(0.129035\pi\)
0.0562800 + 0.998415i \(0.482076\pi\)
\(828\) 0 0
\(829\) 17.1185 29.6501i 0.594549 1.02979i −0.399061 0.916924i \(-0.630664\pi\)
0.993610 0.112865i \(-0.0360028\pi\)
\(830\) −1.50380 1.25850i −0.0521976 0.0436831i
\(831\) 0 0
\(832\) 0.167991 0.360259i 0.00582405 0.0124897i
\(833\) −6.02472 + 68.8628i −0.208744 + 2.38596i
\(834\) 0 0
\(835\) −23.6441 23.5825i −0.818237 0.816107i
\(836\) 3.52785 8.72334i 0.122013 0.301703i
\(837\) 0 0
\(838\) 7.43893 10.6239i 0.256974 0.366996i
\(839\) 20.4137 17.1291i 0.704758 0.591362i −0.218365 0.975867i \(-0.570072\pi\)
0.923123 + 0.384505i \(0.125628\pi\)
\(840\) 0 0
\(841\) 23.5098 + 8.55687i 0.810683 + 0.295065i
\(842\) −0.556510 6.36093i −0.0191786 0.219212i
\(843\) 0 0
\(844\) 12.1721 + 21.0827i 0.418981 + 0.725696i
\(845\) −5.00302 + 28.5915i −0.172109 + 0.983576i
\(846\) 0 0
\(847\) −10.2100 + 38.1042i −0.350819 + 1.30927i
\(848\) 52.2998 14.0137i 1.79598 0.481232i
\(849\) 0 0
\(850\) 44.0682 + 15.9095i 1.51153 + 0.545691i
\(851\) 7.36344 + 20.2309i 0.252415 + 0.693506i
\(852\) 0 0
\(853\) 12.6145 + 8.83275i 0.431911 + 0.302427i 0.769241 0.638959i \(-0.220635\pi\)
−0.337329 + 0.941387i \(0.609524\pi\)
\(854\) 24.9542 0.853916
\(855\) 0 0
\(856\) 16.2888 0.556741
\(857\) 28.7532 + 20.1332i 0.982191 + 0.687737i 0.950164 0.311750i \(-0.100915\pi\)
0.0320266 + 0.999487i \(0.489804\pi\)
\(858\) 0 0
\(859\) 13.2030 + 36.2749i 0.450480 + 1.23768i 0.932387 + 0.361462i \(0.117722\pi\)
−0.481907 + 0.876223i \(0.660056\pi\)
\(860\) 2.54034 1.18862i 0.0866250 0.0405315i
\(861\) 0 0
\(862\) 18.7128 5.01409i 0.637362 0.170781i
\(863\) 8.56232 31.9550i 0.291465 1.08776i −0.652520 0.757772i \(-0.726288\pi\)
0.943985 0.329989i \(-0.107045\pi\)
\(864\) 0 0
\(865\) 17.6631 + 25.1556i 0.600562 + 0.855316i
\(866\) 22.0247 + 38.1479i 0.748429 + 1.29632i
\(867\) 0 0
\(868\) 0.702710 + 8.03201i 0.0238515 + 0.272624i
\(869\) 8.28198 + 3.01439i 0.280947 + 0.102256i
\(870\) 0 0
\(871\) 1.50980 1.26687i 0.0511575 0.0429263i
\(872\) 5.48323 7.83086i 0.185686 0.265187i
\(873\) 0 0
\(874\) 39.9285 44.3153i 1.35060 1.49899i
\(875\) −35.7750 + 36.0560i −1.20942 + 1.21891i
\(876\) 0 0
\(877\) 3.04056 34.7538i 0.102672 1.17355i −0.753709 0.657208i \(-0.771737\pi\)
0.856382 0.516343i \(-0.172707\pi\)
\(878\) −0.451238 + 0.967683i −0.0152285 + 0.0326577i
\(879\) 0 0
\(880\) −10.5394 + 12.5937i −0.355283 + 0.424533i
\(881\) 4.01849 6.96024i 0.135387 0.234496i −0.790359 0.612645i \(-0.790106\pi\)
0.925745 + 0.378148i \(0.123439\pi\)
\(882\) 0 0
\(883\) −3.73014 5.32719i −0.125529 0.179274i 0.751468 0.659769i \(-0.229346\pi\)
−0.876997 + 0.480495i \(0.840457\pi\)
\(884\) −0.173104 + 0.981724i −0.00582213 + 0.0330189i
\(885\) 0 0
\(886\) 13.6057 + 7.85523i 0.457091 + 0.263902i
\(887\) −47.7217 + 4.17511i −1.60234 + 0.140186i −0.852967 0.521965i \(-0.825199\pi\)
−0.749370 + 0.662151i \(0.769644\pi\)
\(888\) 0 0
\(889\) 57.2066 20.8215i 1.91865 0.698331i
\(890\) 7.70031 + 0.663575i 0.258115 + 0.0222431i
\(891\) 0 0
\(892\) 18.8345 18.8345i 0.630625 0.630625i
\(893\) −6.48778 + 8.60359i −0.217105 + 0.287908i
\(894\) 0 0
\(895\) −8.83136 + 1.56908i −0.295200 + 0.0524487i
\(896\) 24.0631 + 28.6773i 0.803892 + 0.958041i
\(897\) 0 0
\(898\) −14.3312 + 6.68276i −0.478239 + 0.223007i
\(899\) −1.60494 + 1.91269i −0.0535276 + 0.0637918i
\(900\) 0 0
\(901\) −49.2540 + 28.4368i −1.64089 + 0.947367i
\(902\) 3.76913 2.63917i 0.125498 0.0878747i
\(903\) 0 0
\(904\) 3.99483 2.30641i 0.132866 0.0767102i
\(905\) 25.1907 43.7632i 0.837367 1.45474i
\(906\) 0 0
\(907\) −24.9537 + 11.6361i −0.828574 + 0.386370i −0.790167 0.612892i \(-0.790006\pi\)
−0.0384071 + 0.999262i \(0.512228\pi\)
\(908\) −0.118774 0.0553852i −0.00394165 0.00183802i
\(909\) 0 0
\(910\) −2.13558 1.49120i −0.0707938 0.0494329i
\(911\) 50.4735i 1.67226i −0.548529 0.836132i \(-0.684812\pi\)
0.548529 0.836132i \(-0.315188\pi\)
\(912\) 0 0
\(913\) −0.510499 + 0.510499i −0.0168951 + 0.0168951i
\(914\) 0.455586 + 2.58376i 0.0150694 + 0.0854631i
\(915\) 0 0
\(916\) 13.7217 4.99429i 0.453378 0.165016i
\(917\) −20.5594 44.0898i −0.678932 1.45598i
\(918\) 0 0
\(919\) 22.3948 + 12.9296i 0.738736 + 0.426510i 0.821610 0.570050i \(-0.193076\pi\)
−0.0828733 + 0.996560i \(0.526410\pi\)
\(920\) −15.4042 + 8.92041i −0.507861 + 0.294097i
\(921\) 0 0
\(922\) 0.799352 + 1.14159i 0.0263252 + 0.0375964i
\(923\) −0.701873 0.188066i −0.0231024 0.00619027i
\(924\) 0 0
\(925\) −14.4848 + 1.30532i −0.476257 + 0.0429188i
\(926\) 13.8226 37.9773i 0.454239 1.24801i
\(927\) 0 0
\(928\) 1.17730 13.4566i 0.0386467 0.441734i
\(929\) 49.5361 8.73454i 1.62523 0.286571i 0.714516 0.699619i \(-0.246647\pi\)
0.910709 + 0.413048i \(0.135536\pi\)
\(930\) 0 0
\(931\) −39.7955 + 44.1677i −1.30424 + 1.44754i
\(932\) −21.7387 21.7387i −0.712074 0.712074i
\(933\) 0 0
\(934\) 4.44157 3.72692i 0.145333 0.121949i
\(935\) 7.26959 15.6429i 0.237741 0.511577i
\(936\) 0 0
\(937\) 2.94620 + 33.6752i 0.0962482 + 1.10012i 0.878688 + 0.477396i \(0.158419\pi\)
−0.782440 + 0.622726i \(0.786025\pi\)
\(938\) −30.8950 115.302i −1.00876 3.76474i
\(939\) 0 0
\(940\) −6.41619 + 4.50515i −0.209273 + 0.146942i
\(941\) 20.3861 + 3.59461i 0.664567 + 0.117181i 0.495748 0.868466i \(-0.334894\pi\)
0.168818 + 0.985647i \(0.446005\pi\)
\(942\) 0 0
\(943\) 11.6899 3.13229i 0.380674 0.102001i
\(944\) 39.7680 + 33.3693i 1.29434 + 1.08608i
\(945\) 0 0
\(946\) −0.851193 2.33863i −0.0276747 0.0760355i
\(947\) 36.6021 + 3.20227i 1.18941 + 0.104060i 0.664625 0.747177i \(-0.268591\pi\)
0.524782 + 0.851237i \(0.324147\pi\)
\(948\) 0 0
\(949\) 0.837625 0.0271905
\(950\) 22.0230 + 33.7442i 0.714520 + 1.09481i
\(951\) 0 0
\(952\) −20.2855 14.2040i −0.657455 0.460355i
\(953\) 13.6473 + 1.19399i 0.442080 + 0.0386770i 0.306023 0.952024i \(-0.401001\pi\)
0.136057 + 0.990701i \(0.456557\pi\)
\(954\) 0 0
\(955\) 9.67309 26.6848i 0.313014 0.863500i
\(956\) −11.1516 9.35734i −0.360670 0.302638i
\(957\) 0 0
\(958\) −13.7129 + 51.1774i −0.443045 + 1.65347i
\(959\) 93.3888 + 16.4670i 3.01568 + 0.531746i
\(960\) 0 0
\(961\) −14.7171 25.4907i −0.474744 0.822282i
\(962\) −0.193028 0.720389i −0.00622346 0.0232263i
\(963\) 0 0
\(964\) −26.3832 9.60271i −0.849746 0.309282i
\(965\) −14.0675 + 30.2708i −0.452848 + 0.974451i
\(966\) 0 0
\(967\) −0.179322 + 0.256099i −0.00576661 + 0.00823557i −0.822025 0.569451i \(-0.807156\pi\)
0.816258 + 0.577687i \(0.196045\pi\)
\(968\) −6.60371 6.60371i −0.212251 0.212251i
\(969\) 0 0
\(970\) 4.92139 0.00641660i 0.158016 0.000206025i
\(971\) 38.3652 6.76482i 1.23120 0.217093i 0.480058 0.877237i \(-0.340616\pi\)
0.751140 + 0.660143i \(0.229504\pi\)
\(972\) 0 0
\(973\) 12.9127 27.6915i 0.413963 0.887748i
\(974\) 6.15835 16.9199i 0.197326 0.542149i
\(975\) 0 0
\(976\) −7.16748 + 12.4144i −0.229425 + 0.397376i
\(977\) −16.1368 4.32385i −0.516262 0.138332i −0.00872521 0.999962i \(-0.502777\pi\)
−0.507537 + 0.861630i \(0.669444\pi\)
\(978\) 0 0
\(979\) 0.494122 2.80231i 0.0157922 0.0895621i
\(980\) −37.4313 + 21.6761i −1.19570 + 0.692417i
\(981\) 0 0
\(982\) −15.9567 + 1.39603i −0.509199 + 0.0445491i
\(983\) 9.25970 + 19.8575i 0.295338 + 0.633355i 0.996851 0.0793022i \(-0.0252692\pi\)
−0.701512 + 0.712657i \(0.747491\pi\)
\(984\) 0 0
\(985\) 1.21313 14.0775i 0.0386536 0.448548i
\(986\) 3.24673 + 18.4131i 0.103397 + 0.586393i
\(987\) 0 0
\(988\) −0.627223 + 0.584503i −0.0199546 + 0.0185955i
\(989\) 6.54585i 0.208146i
\(990\) 0 0
\(991\) 20.3243 + 24.2215i 0.645622 + 0.769422i 0.985247 0.171139i \(-0.0547446\pi\)
−0.339625 + 0.940561i \(0.610300\pi\)
\(992\) −7.67757 3.58011i −0.243763 0.113669i
\(993\) 0 0
\(994\) −28.2885 + 33.7129i −0.897256 + 1.06931i
\(995\) −14.1934 + 24.6578i −0.449959 + 0.781705i
\(996\) 0 0
\(997\) 28.7750 20.1485i 0.911314 0.638109i −0.0209919 0.999780i \(-0.506682\pi\)
0.932306 + 0.361671i \(0.117794\pi\)
\(998\) −2.26683 + 1.58725i −0.0717553 + 0.0502436i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 855.2.dl.a.352.7 96
3.2 odd 2 95.2.r.a.67.2 yes 96
5.3 odd 4 inner 855.2.dl.a.523.7 96
15.2 even 4 475.2.bb.b.143.7 96
15.8 even 4 95.2.r.a.48.2 yes 96
15.14 odd 2 475.2.bb.b.257.7 96
19.2 odd 18 inner 855.2.dl.a.667.7 96
57.2 even 18 95.2.r.a.2.2 96
95.78 even 36 inner 855.2.dl.a.838.7 96
285.2 odd 36 475.2.bb.b.268.7 96
285.59 even 18 475.2.bb.b.382.7 96
285.173 odd 36 95.2.r.a.78.2 yes 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.r.a.2.2 96 57.2 even 18
95.2.r.a.48.2 yes 96 15.8 even 4
95.2.r.a.67.2 yes 96 3.2 odd 2
95.2.r.a.78.2 yes 96 285.173 odd 36
475.2.bb.b.143.7 96 15.2 even 4
475.2.bb.b.257.7 96 15.14 odd 2
475.2.bb.b.268.7 96 285.2 odd 36
475.2.bb.b.382.7 96 285.59 even 18
855.2.dl.a.352.7 96 1.1 even 1 trivial
855.2.dl.a.523.7 96 5.3 odd 4 inner
855.2.dl.a.667.7 96 19.2 odd 18 inner
855.2.dl.a.838.7 96 95.78 even 36 inner