Properties

Label 4732.2.a.s.1.8
Level $4732$
Weight $2$
Character 4732.1
Self dual yes
Analytic conductor $37.785$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4732,2,Mod(1,4732)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4732, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4732.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-6,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 19x^{6} - 2x^{5} + 113x^{4} + 40x^{3} - 232x^{2} - 136x + 52 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(-3.23100\) of defining polynomial
Character \(\chi\) \(=\) 4732.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.23100 q^{3} -3.14769 q^{5} -1.00000 q^{7} +7.43937 q^{9} -3.84820 q^{11} -10.1702 q^{15} +0.194369 q^{17} +6.15618 q^{19} -3.23100 q^{21} -8.02163 q^{23} +4.90796 q^{25} +14.3436 q^{27} -2.71904 q^{29} -8.51671 q^{31} -12.4335 q^{33} +3.14769 q^{35} +3.59029 q^{37} +3.98295 q^{41} -11.4951 q^{43} -23.4168 q^{45} -4.35126 q^{47} +1.00000 q^{49} +0.628005 q^{51} -0.576803 q^{53} +12.1129 q^{55} +19.8906 q^{57} -2.08672 q^{59} +3.40510 q^{61} -7.43937 q^{63} -5.42026 q^{67} -25.9179 q^{69} -9.15185 q^{71} -3.31209 q^{73} +15.8576 q^{75} +3.84820 q^{77} -8.98752 q^{79} +24.0261 q^{81} -7.66353 q^{83} -0.611813 q^{85} -8.78521 q^{87} +5.11527 q^{89} -27.5175 q^{93} -19.3778 q^{95} +9.62669 q^{97} -28.6282 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 6 q^{5} - 8 q^{7} + 14 q^{9} - 12 q^{11} - 12 q^{15} + 2 q^{17} - 6 q^{19} + 22 q^{25} - 6 q^{27} + 22 q^{29} - 14 q^{31} + 28 q^{33} + 6 q^{35} - 12 q^{37} - 4 q^{41} + 6 q^{43} - 20 q^{45} - 42 q^{47}+ \cdots - 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.23100 1.86542 0.932710 0.360628i \(-0.117438\pi\)
0.932710 + 0.360628i \(0.117438\pi\)
\(4\) 0 0
\(5\) −3.14769 −1.40769 −0.703845 0.710353i \(-0.748535\pi\)
−0.703845 + 0.710353i \(0.748535\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 7.43937 2.47979
\(10\) 0 0
\(11\) −3.84820 −1.16028 −0.580138 0.814518i \(-0.697001\pi\)
−0.580138 + 0.814518i \(0.697001\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −10.1702 −2.62593
\(16\) 0 0
\(17\) 0.194369 0.0471413 0.0235707 0.999722i \(-0.492497\pi\)
0.0235707 + 0.999722i \(0.492497\pi\)
\(18\) 0 0
\(19\) 6.15618 1.41232 0.706162 0.708050i \(-0.250425\pi\)
0.706162 + 0.708050i \(0.250425\pi\)
\(20\) 0 0
\(21\) −3.23100 −0.705062
\(22\) 0 0
\(23\) −8.02163 −1.67263 −0.836313 0.548253i \(-0.815293\pi\)
−0.836313 + 0.548253i \(0.815293\pi\)
\(24\) 0 0
\(25\) 4.90796 0.981593
\(26\) 0 0
\(27\) 14.3436 2.76043
\(28\) 0 0
\(29\) −2.71904 −0.504912 −0.252456 0.967608i \(-0.581238\pi\)
−0.252456 + 0.967608i \(0.581238\pi\)
\(30\) 0 0
\(31\) −8.51671 −1.52965 −0.764823 0.644240i \(-0.777174\pi\)
−0.764823 + 0.644240i \(0.777174\pi\)
\(32\) 0 0
\(33\) −12.4335 −2.16440
\(34\) 0 0
\(35\) 3.14769 0.532057
\(36\) 0 0
\(37\) 3.59029 0.590240 0.295120 0.955460i \(-0.404640\pi\)
0.295120 + 0.955460i \(0.404640\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.98295 0.622033 0.311016 0.950405i \(-0.399331\pi\)
0.311016 + 0.950405i \(0.399331\pi\)
\(42\) 0 0
\(43\) −11.4951 −1.75299 −0.876494 0.481413i \(-0.840124\pi\)
−0.876494 + 0.481413i \(0.840124\pi\)
\(44\) 0 0
\(45\) −23.4168 −3.49078
\(46\) 0 0
\(47\) −4.35126 −0.634696 −0.317348 0.948309i \(-0.602792\pi\)
−0.317348 + 0.948309i \(0.602792\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0.628005 0.0879383
\(52\) 0 0
\(53\) −0.576803 −0.0792300 −0.0396150 0.999215i \(-0.512613\pi\)
−0.0396150 + 0.999215i \(0.512613\pi\)
\(54\) 0 0
\(55\) 12.1129 1.63331
\(56\) 0 0
\(57\) 19.8906 2.63458
\(58\) 0 0
\(59\) −2.08672 −0.271668 −0.135834 0.990732i \(-0.543371\pi\)
−0.135834 + 0.990732i \(0.543371\pi\)
\(60\) 0 0
\(61\) 3.40510 0.435979 0.217989 0.975951i \(-0.430050\pi\)
0.217989 + 0.975951i \(0.430050\pi\)
\(62\) 0 0
\(63\) −7.43937 −0.937272
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −5.42026 −0.662190 −0.331095 0.943597i \(-0.607418\pi\)
−0.331095 + 0.943597i \(0.607418\pi\)
\(68\) 0 0
\(69\) −25.9179 −3.12015
\(70\) 0 0
\(71\) −9.15185 −1.08613 −0.543063 0.839692i \(-0.682735\pi\)
−0.543063 + 0.839692i \(0.682735\pi\)
\(72\) 0 0
\(73\) −3.31209 −0.387650 −0.193825 0.981036i \(-0.562089\pi\)
−0.193825 + 0.981036i \(0.562089\pi\)
\(74\) 0 0
\(75\) 15.8576 1.83108
\(76\) 0 0
\(77\) 3.84820 0.438543
\(78\) 0 0
\(79\) −8.98752 −1.01117 −0.505587 0.862775i \(-0.668724\pi\)
−0.505587 + 0.862775i \(0.668724\pi\)
\(80\) 0 0
\(81\) 24.0261 2.66957
\(82\) 0 0
\(83\) −7.66353 −0.841181 −0.420591 0.907251i \(-0.638177\pi\)
−0.420591 + 0.907251i \(0.638177\pi\)
\(84\) 0 0
\(85\) −0.611813 −0.0663604
\(86\) 0 0
\(87\) −8.78521 −0.941873
\(88\) 0 0
\(89\) 5.11527 0.542218 0.271109 0.962549i \(-0.412610\pi\)
0.271109 + 0.962549i \(0.412610\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −27.5175 −2.85343
\(94\) 0 0
\(95\) −19.3778 −1.98812
\(96\) 0 0
\(97\) 9.62669 0.977442 0.488721 0.872440i \(-0.337464\pi\)
0.488721 + 0.872440i \(0.337464\pi\)
\(98\) 0 0
\(99\) −28.6282 −2.87724
\(100\) 0 0
\(101\) −2.54158 −0.252896 −0.126448 0.991973i \(-0.540358\pi\)
−0.126448 + 0.991973i \(0.540358\pi\)
\(102\) 0 0
\(103\) −3.35392 −0.330471 −0.165236 0.986254i \(-0.552838\pi\)
−0.165236 + 0.986254i \(0.552838\pi\)
\(104\) 0 0
\(105\) 10.1702 0.992510
\(106\) 0 0
\(107\) −12.9130 −1.24835 −0.624174 0.781286i \(-0.714564\pi\)
−0.624174 + 0.781286i \(0.714564\pi\)
\(108\) 0 0
\(109\) 8.04268 0.770349 0.385174 0.922844i \(-0.374141\pi\)
0.385174 + 0.922844i \(0.374141\pi\)
\(110\) 0 0
\(111\) 11.6002 1.10105
\(112\) 0 0
\(113\) −8.00469 −0.753018 −0.376509 0.926413i \(-0.622876\pi\)
−0.376509 + 0.926413i \(0.622876\pi\)
\(114\) 0 0
\(115\) 25.2496 2.35454
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.194369 −0.0178177
\(120\) 0 0
\(121\) 3.80865 0.346241
\(122\) 0 0
\(123\) 12.8689 1.16035
\(124\) 0 0
\(125\) 0.289701 0.0259116
\(126\) 0 0
\(127\) 1.32877 0.117909 0.0589545 0.998261i \(-0.481223\pi\)
0.0589545 + 0.998261i \(0.481223\pi\)
\(128\) 0 0
\(129\) −37.1407 −3.27006
\(130\) 0 0
\(131\) −0.592761 −0.0517897 −0.0258949 0.999665i \(-0.508244\pi\)
−0.0258949 + 0.999665i \(0.508244\pi\)
\(132\) 0 0
\(133\) −6.15618 −0.533808
\(134\) 0 0
\(135\) −45.1492 −3.88583
\(136\) 0 0
\(137\) 2.56034 0.218745 0.109372 0.994001i \(-0.465116\pi\)
0.109372 + 0.994001i \(0.465116\pi\)
\(138\) 0 0
\(139\) −18.0230 −1.52869 −0.764345 0.644807i \(-0.776938\pi\)
−0.764345 + 0.644807i \(0.776938\pi\)
\(140\) 0 0
\(141\) −14.0589 −1.18397
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 8.55869 0.710760
\(146\) 0 0
\(147\) 3.23100 0.266488
\(148\) 0 0
\(149\) 8.10789 0.664224 0.332112 0.943240i \(-0.392239\pi\)
0.332112 + 0.943240i \(0.392239\pi\)
\(150\) 0 0
\(151\) −3.58804 −0.291991 −0.145995 0.989285i \(-0.546638\pi\)
−0.145995 + 0.989285i \(0.546638\pi\)
\(152\) 0 0
\(153\) 1.44598 0.116901
\(154\) 0 0
\(155\) 26.8080 2.15327
\(156\) 0 0
\(157\) 14.3447 1.14483 0.572417 0.819963i \(-0.306006\pi\)
0.572417 + 0.819963i \(0.306006\pi\)
\(158\) 0 0
\(159\) −1.86365 −0.147797
\(160\) 0 0
\(161\) 8.02163 0.632193
\(162\) 0 0
\(163\) −0.246141 −0.0192792 −0.00963961 0.999954i \(-0.503068\pi\)
−0.00963961 + 0.999954i \(0.503068\pi\)
\(164\) 0 0
\(165\) 39.1370 3.04681
\(166\) 0 0
\(167\) 1.80831 0.139931 0.0699657 0.997549i \(-0.477711\pi\)
0.0699657 + 0.997549i \(0.477711\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 45.7981 3.50227
\(172\) 0 0
\(173\) −10.7996 −0.821080 −0.410540 0.911843i \(-0.634660\pi\)
−0.410540 + 0.911843i \(0.634660\pi\)
\(174\) 0 0
\(175\) −4.90796 −0.371007
\(176\) 0 0
\(177\) −6.74220 −0.506775
\(178\) 0 0
\(179\) 8.67647 0.648510 0.324255 0.945970i \(-0.394886\pi\)
0.324255 + 0.945970i \(0.394886\pi\)
\(180\) 0 0
\(181\) 10.0087 0.743940 0.371970 0.928245i \(-0.378682\pi\)
0.371970 + 0.928245i \(0.378682\pi\)
\(182\) 0 0
\(183\) 11.0019 0.813283
\(184\) 0 0
\(185\) −11.3011 −0.830876
\(186\) 0 0
\(187\) −0.747970 −0.0546970
\(188\) 0 0
\(189\) −14.3436 −1.04334
\(190\) 0 0
\(191\) −24.0312 −1.73884 −0.869420 0.494074i \(-0.835507\pi\)
−0.869420 + 0.494074i \(0.835507\pi\)
\(192\) 0 0
\(193\) −3.27308 −0.235601 −0.117801 0.993037i \(-0.537584\pi\)
−0.117801 + 0.993037i \(0.537584\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.7524 −0.908570 −0.454285 0.890857i \(-0.650105\pi\)
−0.454285 + 0.890857i \(0.650105\pi\)
\(198\) 0 0
\(199\) 27.3231 1.93688 0.968442 0.249239i \(-0.0801806\pi\)
0.968442 + 0.249239i \(0.0801806\pi\)
\(200\) 0 0
\(201\) −17.5129 −1.23526
\(202\) 0 0
\(203\) 2.71904 0.190839
\(204\) 0 0
\(205\) −12.5371 −0.875629
\(206\) 0 0
\(207\) −59.6758 −4.14776
\(208\) 0 0
\(209\) −23.6902 −1.63869
\(210\) 0 0
\(211\) 26.5857 1.83024 0.915118 0.403185i \(-0.132097\pi\)
0.915118 + 0.403185i \(0.132097\pi\)
\(212\) 0 0
\(213\) −29.5696 −2.02608
\(214\) 0 0
\(215\) 36.1831 2.46766
\(216\) 0 0
\(217\) 8.51671 0.578152
\(218\) 0 0
\(219\) −10.7014 −0.723130
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −15.1338 −1.01344 −0.506718 0.862112i \(-0.669141\pi\)
−0.506718 + 0.862112i \(0.669141\pi\)
\(224\) 0 0
\(225\) 36.5122 2.43414
\(226\) 0 0
\(227\) −21.4054 −1.42072 −0.710362 0.703836i \(-0.751469\pi\)
−0.710362 + 0.703836i \(0.751469\pi\)
\(228\) 0 0
\(229\) −8.36123 −0.552526 −0.276263 0.961082i \(-0.589096\pi\)
−0.276263 + 0.961082i \(0.589096\pi\)
\(230\) 0 0
\(231\) 12.4335 0.818067
\(232\) 0 0
\(233\) −26.1663 −1.71421 −0.857107 0.515138i \(-0.827740\pi\)
−0.857107 + 0.515138i \(0.827740\pi\)
\(234\) 0 0
\(235\) 13.6964 0.893456
\(236\) 0 0
\(237\) −29.0387 −1.88626
\(238\) 0 0
\(239\) −18.3562 −1.18736 −0.593682 0.804700i \(-0.702326\pi\)
−0.593682 + 0.804700i \(0.702326\pi\)
\(240\) 0 0
\(241\) 3.33482 0.214814 0.107407 0.994215i \(-0.465745\pi\)
0.107407 + 0.994215i \(0.465745\pi\)
\(242\) 0 0
\(243\) 34.5975 2.21943
\(244\) 0 0
\(245\) −3.14769 −0.201099
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −24.7609 −1.56916
\(250\) 0 0
\(251\) −12.1977 −0.769911 −0.384956 0.922935i \(-0.625783\pi\)
−0.384956 + 0.922935i \(0.625783\pi\)
\(252\) 0 0
\(253\) 30.8688 1.94071
\(254\) 0 0
\(255\) −1.97677 −0.123790
\(256\) 0 0
\(257\) 15.2730 0.952701 0.476350 0.879256i \(-0.341959\pi\)
0.476350 + 0.879256i \(0.341959\pi\)
\(258\) 0 0
\(259\) −3.59029 −0.223090
\(260\) 0 0
\(261\) −20.2279 −1.25208
\(262\) 0 0
\(263\) 24.8989 1.53533 0.767666 0.640850i \(-0.221418\pi\)
0.767666 + 0.640850i \(0.221418\pi\)
\(264\) 0 0
\(265\) 1.81560 0.111531
\(266\) 0 0
\(267\) 16.5275 1.01146
\(268\) 0 0
\(269\) −7.85673 −0.479033 −0.239517 0.970892i \(-0.576989\pi\)
−0.239517 + 0.970892i \(0.576989\pi\)
\(270\) 0 0
\(271\) 2.63865 0.160287 0.0801433 0.996783i \(-0.474462\pi\)
0.0801433 + 0.996783i \(0.474462\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −18.8868 −1.13892
\(276\) 0 0
\(277\) 11.6549 0.700273 0.350136 0.936699i \(-0.386135\pi\)
0.350136 + 0.936699i \(0.386135\pi\)
\(278\) 0 0
\(279\) −63.3589 −3.79320
\(280\) 0 0
\(281\) 3.86501 0.230567 0.115283 0.993333i \(-0.463222\pi\)
0.115283 + 0.993333i \(0.463222\pi\)
\(282\) 0 0
\(283\) 6.84863 0.407109 0.203554 0.979064i \(-0.434751\pi\)
0.203554 + 0.979064i \(0.434751\pi\)
\(284\) 0 0
\(285\) −62.6095 −3.70867
\(286\) 0 0
\(287\) −3.98295 −0.235106
\(288\) 0 0
\(289\) −16.9622 −0.997778
\(290\) 0 0
\(291\) 31.1038 1.82334
\(292\) 0 0
\(293\) −1.48894 −0.0869846 −0.0434923 0.999054i \(-0.513848\pi\)
−0.0434923 + 0.999054i \(0.513848\pi\)
\(294\) 0 0
\(295\) 6.56836 0.382425
\(296\) 0 0
\(297\) −55.1971 −3.20286
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 11.4951 0.662567
\(302\) 0 0
\(303\) −8.21183 −0.471757
\(304\) 0 0
\(305\) −10.7182 −0.613723
\(306\) 0 0
\(307\) 2.33128 0.133053 0.0665265 0.997785i \(-0.478808\pi\)
0.0665265 + 0.997785i \(0.478808\pi\)
\(308\) 0 0
\(309\) −10.8365 −0.616468
\(310\) 0 0
\(311\) −11.8244 −0.670502 −0.335251 0.942129i \(-0.608821\pi\)
−0.335251 + 0.942129i \(0.608821\pi\)
\(312\) 0 0
\(313\) −18.4087 −1.04052 −0.520260 0.854008i \(-0.674165\pi\)
−0.520260 + 0.854008i \(0.674165\pi\)
\(314\) 0 0
\(315\) 23.4168 1.31939
\(316\) 0 0
\(317\) 8.42274 0.473068 0.236534 0.971623i \(-0.423988\pi\)
0.236534 + 0.971623i \(0.423988\pi\)
\(318\) 0 0
\(319\) 10.4634 0.585838
\(320\) 0 0
\(321\) −41.7219 −2.32869
\(322\) 0 0
\(323\) 1.19657 0.0665788
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 25.9859 1.43702
\(328\) 0 0
\(329\) 4.35126 0.239893
\(330\) 0 0
\(331\) 18.0566 0.992481 0.496240 0.868185i \(-0.334713\pi\)
0.496240 + 0.868185i \(0.334713\pi\)
\(332\) 0 0
\(333\) 26.7095 1.46367
\(334\) 0 0
\(335\) 17.0613 0.932159
\(336\) 0 0
\(337\) 3.64765 0.198700 0.0993500 0.995053i \(-0.468324\pi\)
0.0993500 + 0.995053i \(0.468324\pi\)
\(338\) 0 0
\(339\) −25.8632 −1.40469
\(340\) 0 0
\(341\) 32.7740 1.77481
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 81.5815 4.39220
\(346\) 0 0
\(347\) 14.5945 0.783476 0.391738 0.920077i \(-0.371874\pi\)
0.391738 + 0.920077i \(0.371874\pi\)
\(348\) 0 0
\(349\) −17.8836 −0.957289 −0.478645 0.878009i \(-0.658872\pi\)
−0.478645 + 0.878009i \(0.658872\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −6.38272 −0.339718 −0.169859 0.985468i \(-0.554331\pi\)
−0.169859 + 0.985468i \(0.554331\pi\)
\(354\) 0 0
\(355\) 28.8072 1.52893
\(356\) 0 0
\(357\) −0.628005 −0.0332376
\(358\) 0 0
\(359\) 30.4944 1.60943 0.804717 0.593659i \(-0.202317\pi\)
0.804717 + 0.593659i \(0.202317\pi\)
\(360\) 0 0
\(361\) 18.8985 0.994660
\(362\) 0 0
\(363\) 12.3057 0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) −7.16337 −0.373925 −0.186962 0.982367i \(-0.559864\pi\)
−0.186962 + 0.982367i \(0.559864\pi\)
\(368\) 0 0
\(369\) 29.6306 1.54251
\(370\) 0 0
\(371\) 0.576803 0.0299461
\(372\) 0 0
\(373\) −1.16467 −0.0603045 −0.0301523 0.999545i \(-0.509599\pi\)
−0.0301523 + 0.999545i \(0.509599\pi\)
\(374\) 0 0
\(375\) 0.936023 0.0483360
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.0197 1.49064 0.745322 0.666705i \(-0.232296\pi\)
0.745322 + 0.666705i \(0.232296\pi\)
\(380\) 0 0
\(381\) 4.29325 0.219950
\(382\) 0 0
\(383\) 21.9571 1.12196 0.560978 0.827831i \(-0.310425\pi\)
0.560978 + 0.827831i \(0.310425\pi\)
\(384\) 0 0
\(385\) −12.1129 −0.617333
\(386\) 0 0
\(387\) −85.5163 −4.34704
\(388\) 0 0
\(389\) 29.1973 1.48036 0.740180 0.672409i \(-0.234740\pi\)
0.740180 + 0.672409i \(0.234740\pi\)
\(390\) 0 0
\(391\) −1.55915 −0.0788498
\(392\) 0 0
\(393\) −1.91521 −0.0966096
\(394\) 0 0
\(395\) 28.2899 1.42342
\(396\) 0 0
\(397\) −31.9503 −1.60354 −0.801771 0.597632i \(-0.796108\pi\)
−0.801771 + 0.597632i \(0.796108\pi\)
\(398\) 0 0
\(399\) −19.8906 −0.995776
\(400\) 0 0
\(401\) 36.8552 1.84046 0.920232 0.391374i \(-0.128000\pi\)
0.920232 + 0.391374i \(0.128000\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −75.6267 −3.75792
\(406\) 0 0
\(407\) −13.8162 −0.684842
\(408\) 0 0
\(409\) 5.65493 0.279618 0.139809 0.990178i \(-0.455351\pi\)
0.139809 + 0.990178i \(0.455351\pi\)
\(410\) 0 0
\(411\) 8.27247 0.408051
\(412\) 0 0
\(413\) 2.08672 0.102681
\(414\) 0 0
\(415\) 24.1224 1.18412
\(416\) 0 0
\(417\) −58.2323 −2.85165
\(418\) 0 0
\(419\) −25.8062 −1.26072 −0.630358 0.776304i \(-0.717092\pi\)
−0.630358 + 0.776304i \(0.717092\pi\)
\(420\) 0 0
\(421\) −28.8606 −1.40658 −0.703290 0.710903i \(-0.748286\pi\)
−0.703290 + 0.710903i \(0.748286\pi\)
\(422\) 0 0
\(423\) −32.3706 −1.57391
\(424\) 0 0
\(425\) 0.953954 0.0462736
\(426\) 0 0
\(427\) −3.40510 −0.164785
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 31.6712 1.52555 0.762774 0.646665i \(-0.223837\pi\)
0.762774 + 0.646665i \(0.223837\pi\)
\(432\) 0 0
\(433\) 31.3034 1.50434 0.752172 0.658967i \(-0.229006\pi\)
0.752172 + 0.658967i \(0.229006\pi\)
\(434\) 0 0
\(435\) 27.6531 1.32587
\(436\) 0 0
\(437\) −49.3826 −2.36229
\(438\) 0 0
\(439\) 36.9572 1.76387 0.881935 0.471371i \(-0.156241\pi\)
0.881935 + 0.471371i \(0.156241\pi\)
\(440\) 0 0
\(441\) 7.43937 0.354256
\(442\) 0 0
\(443\) 28.2871 1.34396 0.671981 0.740568i \(-0.265444\pi\)
0.671981 + 0.740568i \(0.265444\pi\)
\(444\) 0 0
\(445\) −16.1013 −0.763275
\(446\) 0 0
\(447\) 26.1966 1.23906
\(448\) 0 0
\(449\) −24.3284 −1.14813 −0.574064 0.818811i \(-0.694634\pi\)
−0.574064 + 0.818811i \(0.694634\pi\)
\(450\) 0 0
\(451\) −15.3272 −0.721730
\(452\) 0 0
\(453\) −11.5930 −0.544686
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.54960 0.0724870 0.0362435 0.999343i \(-0.488461\pi\)
0.0362435 + 0.999343i \(0.488461\pi\)
\(458\) 0 0
\(459\) 2.78795 0.130130
\(460\) 0 0
\(461\) 12.9552 0.603383 0.301692 0.953406i \(-0.402449\pi\)
0.301692 + 0.953406i \(0.402449\pi\)
\(462\) 0 0
\(463\) −28.1690 −1.30912 −0.654562 0.756008i \(-0.727147\pi\)
−0.654562 + 0.756008i \(0.727147\pi\)
\(464\) 0 0
\(465\) 86.6166 4.01675
\(466\) 0 0
\(467\) 29.2908 1.35542 0.677709 0.735330i \(-0.262973\pi\)
0.677709 + 0.735330i \(0.262973\pi\)
\(468\) 0 0
\(469\) 5.42026 0.250284
\(470\) 0 0
\(471\) 46.3478 2.13559
\(472\) 0 0
\(473\) 44.2355 2.03395
\(474\) 0 0
\(475\) 30.2143 1.38633
\(476\) 0 0
\(477\) −4.29105 −0.196474
\(478\) 0 0
\(479\) −19.4711 −0.889658 −0.444829 0.895616i \(-0.646735\pi\)
−0.444829 + 0.895616i \(0.646735\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 25.9179 1.17930
\(484\) 0 0
\(485\) −30.3018 −1.37594
\(486\) 0 0
\(487\) 4.53546 0.205521 0.102761 0.994706i \(-0.467232\pi\)
0.102761 + 0.994706i \(0.467232\pi\)
\(488\) 0 0
\(489\) −0.795281 −0.0359638
\(490\) 0 0
\(491\) 18.1487 0.819037 0.409519 0.912302i \(-0.365697\pi\)
0.409519 + 0.912302i \(0.365697\pi\)
\(492\) 0 0
\(493\) −0.528495 −0.0238022
\(494\) 0 0
\(495\) 90.1127 4.05026
\(496\) 0 0
\(497\) 9.15185 0.410517
\(498\) 0 0
\(499\) 6.65532 0.297933 0.148967 0.988842i \(-0.452405\pi\)
0.148967 + 0.988842i \(0.452405\pi\)
\(500\) 0 0
\(501\) 5.84266 0.261031
\(502\) 0 0
\(503\) 14.9196 0.665230 0.332615 0.943063i \(-0.392069\pi\)
0.332615 + 0.943063i \(0.392069\pi\)
\(504\) 0 0
\(505\) 8.00010 0.356000
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.7673 0.787522 0.393761 0.919213i \(-0.371174\pi\)
0.393761 + 0.919213i \(0.371174\pi\)
\(510\) 0 0
\(511\) 3.31209 0.146518
\(512\) 0 0
\(513\) 88.3018 3.89862
\(514\) 0 0
\(515\) 10.5571 0.465201
\(516\) 0 0
\(517\) 16.7445 0.736423
\(518\) 0 0
\(519\) −34.8936 −1.53166
\(520\) 0 0
\(521\) 38.0579 1.66735 0.833673 0.552258i \(-0.186234\pi\)
0.833673 + 0.552258i \(0.186234\pi\)
\(522\) 0 0
\(523\) 13.8905 0.607390 0.303695 0.952769i \(-0.401780\pi\)
0.303695 + 0.952769i \(0.401780\pi\)
\(524\) 0 0
\(525\) −15.8576 −0.692084
\(526\) 0 0
\(527\) −1.65538 −0.0721096
\(528\) 0 0
\(529\) 41.3465 1.79767
\(530\) 0 0
\(531\) −15.5239 −0.673680
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 40.6462 1.75729
\(536\) 0 0
\(537\) 28.0337 1.20974
\(538\) 0 0
\(539\) −3.84820 −0.165754
\(540\) 0 0
\(541\) −41.8453 −1.79907 −0.899535 0.436850i \(-0.856094\pi\)
−0.899535 + 0.436850i \(0.856094\pi\)
\(542\) 0 0
\(543\) 32.3381 1.38776
\(544\) 0 0
\(545\) −25.3159 −1.08441
\(546\) 0 0
\(547\) −22.3475 −0.955509 −0.477754 0.878493i \(-0.658549\pi\)
−0.477754 + 0.878493i \(0.658549\pi\)
\(548\) 0 0
\(549\) 25.3318 1.08114
\(550\) 0 0
\(551\) −16.7389 −0.713100
\(552\) 0 0
\(553\) 8.98752 0.382188
\(554\) 0 0
\(555\) −36.5140 −1.54993
\(556\) 0 0
\(557\) 30.6572 1.29899 0.649493 0.760368i \(-0.274981\pi\)
0.649493 + 0.760368i \(0.274981\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −2.41669 −0.102033
\(562\) 0 0
\(563\) −33.2473 −1.40121 −0.700604 0.713550i \(-0.747086\pi\)
−0.700604 + 0.713550i \(0.747086\pi\)
\(564\) 0 0
\(565\) 25.1963 1.06002
\(566\) 0 0
\(567\) −24.0261 −1.00900
\(568\) 0 0
\(569\) 11.6102 0.486725 0.243363 0.969935i \(-0.421749\pi\)
0.243363 + 0.969935i \(0.421749\pi\)
\(570\) 0 0
\(571\) −16.6994 −0.698847 −0.349423 0.936965i \(-0.613623\pi\)
−0.349423 + 0.936965i \(0.613623\pi\)
\(572\) 0 0
\(573\) −77.6450 −3.24366
\(574\) 0 0
\(575\) −39.3699 −1.64184
\(576\) 0 0
\(577\) 37.2583 1.55108 0.775541 0.631297i \(-0.217477\pi\)
0.775541 + 0.631297i \(0.217477\pi\)
\(578\) 0 0
\(579\) −10.5753 −0.439495
\(580\) 0 0
\(581\) 7.66353 0.317937
\(582\) 0 0
\(583\) 2.21965 0.0919287
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −41.7900 −1.72486 −0.862429 0.506178i \(-0.831058\pi\)
−0.862429 + 0.506178i \(0.831058\pi\)
\(588\) 0 0
\(589\) −52.4304 −2.16036
\(590\) 0 0
\(591\) −41.2030 −1.69486
\(592\) 0 0
\(593\) −4.33672 −0.178088 −0.0890438 0.996028i \(-0.528381\pi\)
−0.0890438 + 0.996028i \(0.528381\pi\)
\(594\) 0 0
\(595\) 0.611813 0.0250819
\(596\) 0 0
\(597\) 88.2810 3.61310
\(598\) 0 0
\(599\) 22.7578 0.929858 0.464929 0.885348i \(-0.346080\pi\)
0.464929 + 0.885348i \(0.346080\pi\)
\(600\) 0 0
\(601\) −27.5268 −1.12284 −0.561421 0.827530i \(-0.689745\pi\)
−0.561421 + 0.827530i \(0.689745\pi\)
\(602\) 0 0
\(603\) −40.3233 −1.64209
\(604\) 0 0
\(605\) −11.9885 −0.487400
\(606\) 0 0
\(607\) −9.06967 −0.368126 −0.184063 0.982914i \(-0.558925\pi\)
−0.184063 + 0.982914i \(0.558925\pi\)
\(608\) 0 0
\(609\) 8.78521 0.355995
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 9.37895 0.378812 0.189406 0.981899i \(-0.439344\pi\)
0.189406 + 0.981899i \(0.439344\pi\)
\(614\) 0 0
\(615\) −40.5074 −1.63342
\(616\) 0 0
\(617\) −30.1129 −1.21230 −0.606151 0.795350i \(-0.707287\pi\)
−0.606151 + 0.795350i \(0.707287\pi\)
\(618\) 0 0
\(619\) 39.8942 1.60348 0.801742 0.597671i \(-0.203907\pi\)
0.801742 + 0.597671i \(0.203907\pi\)
\(620\) 0 0
\(621\) −115.059 −4.61716
\(622\) 0 0
\(623\) −5.11527 −0.204939
\(624\) 0 0
\(625\) −25.4517 −1.01807
\(626\) 0 0
\(627\) −76.5431 −3.05684
\(628\) 0 0
\(629\) 0.697840 0.0278247
\(630\) 0 0
\(631\) 24.6880 0.982812 0.491406 0.870931i \(-0.336483\pi\)
0.491406 + 0.870931i \(0.336483\pi\)
\(632\) 0 0
\(633\) 85.8985 3.41416
\(634\) 0 0
\(635\) −4.18255 −0.165979
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −68.0840 −2.69336
\(640\) 0 0
\(641\) −18.6177 −0.735353 −0.367677 0.929954i \(-0.619847\pi\)
−0.367677 + 0.929954i \(0.619847\pi\)
\(642\) 0 0
\(643\) −31.6831 −1.24946 −0.624729 0.780841i \(-0.714791\pi\)
−0.624729 + 0.780841i \(0.714791\pi\)
\(644\) 0 0
\(645\) 116.908 4.60323
\(646\) 0 0
\(647\) 29.6583 1.16599 0.582994 0.812477i \(-0.301881\pi\)
0.582994 + 0.812477i \(0.301881\pi\)
\(648\) 0 0
\(649\) 8.03013 0.315210
\(650\) 0 0
\(651\) 27.5175 1.07850
\(652\) 0 0
\(653\) 12.6897 0.496585 0.248292 0.968685i \(-0.420131\pi\)
0.248292 + 0.968685i \(0.420131\pi\)
\(654\) 0 0
\(655\) 1.86583 0.0729039
\(656\) 0 0
\(657\) −24.6398 −0.961291
\(658\) 0 0
\(659\) −24.5526 −0.956434 −0.478217 0.878242i \(-0.658717\pi\)
−0.478217 + 0.878242i \(0.658717\pi\)
\(660\) 0 0
\(661\) 25.5574 0.994067 0.497033 0.867731i \(-0.334423\pi\)
0.497033 + 0.867731i \(0.334423\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 19.3778 0.751437
\(666\) 0 0
\(667\) 21.8111 0.844529
\(668\) 0 0
\(669\) −48.8974 −1.89048
\(670\) 0 0
\(671\) −13.1035 −0.505856
\(672\) 0 0
\(673\) −6.79658 −0.261989 −0.130994 0.991383i \(-0.541817\pi\)
−0.130994 + 0.991383i \(0.541817\pi\)
\(674\) 0 0
\(675\) 70.3979 2.70962
\(676\) 0 0
\(677\) −26.0956 −1.00294 −0.501468 0.865176i \(-0.667207\pi\)
−0.501468 + 0.865176i \(0.667207\pi\)
\(678\) 0 0
\(679\) −9.62669 −0.369438
\(680\) 0 0
\(681\) −69.1608 −2.65025
\(682\) 0 0
\(683\) −48.6898 −1.86306 −0.931532 0.363660i \(-0.881527\pi\)
−0.931532 + 0.363660i \(0.881527\pi\)
\(684\) 0 0
\(685\) −8.05917 −0.307925
\(686\) 0 0
\(687\) −27.0152 −1.03069
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 3.59045 0.136587 0.0682935 0.997665i \(-0.478245\pi\)
0.0682935 + 0.997665i \(0.478245\pi\)
\(692\) 0 0
\(693\) 28.6282 1.08749
\(694\) 0 0
\(695\) 56.7308 2.15192
\(696\) 0 0
\(697\) 0.774161 0.0293234
\(698\) 0 0
\(699\) −84.5435 −3.19773
\(700\) 0 0
\(701\) 15.8746 0.599575 0.299787 0.954006i \(-0.403084\pi\)
0.299787 + 0.954006i \(0.403084\pi\)
\(702\) 0 0
\(703\) 22.1025 0.833611
\(704\) 0 0
\(705\) 44.2532 1.66667
\(706\) 0 0
\(707\) 2.54158 0.0955858
\(708\) 0 0
\(709\) 22.6500 0.850637 0.425318 0.905044i \(-0.360162\pi\)
0.425318 + 0.905044i \(0.360162\pi\)
\(710\) 0 0
\(711\) −66.8614 −2.50750
\(712\) 0 0
\(713\) 68.3179 2.55852
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −59.3089 −2.21493
\(718\) 0 0
\(719\) 10.2526 0.382358 0.191179 0.981555i \(-0.438769\pi\)
0.191179 + 0.981555i \(0.438769\pi\)
\(720\) 0 0
\(721\) 3.35392 0.124906
\(722\) 0 0
\(723\) 10.7748 0.400719
\(724\) 0 0
\(725\) −13.3449 −0.495618
\(726\) 0 0
\(727\) 5.60059 0.207715 0.103857 0.994592i \(-0.466881\pi\)
0.103857 + 0.994592i \(0.466881\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) −2.23429 −0.0826382
\(732\) 0 0
\(733\) 41.1556 1.52012 0.760058 0.649855i \(-0.225170\pi\)
0.760058 + 0.649855i \(0.225170\pi\)
\(734\) 0 0
\(735\) −10.1702 −0.375133
\(736\) 0 0
\(737\) 20.8582 0.768323
\(738\) 0 0
\(739\) 12.1469 0.446833 0.223416 0.974723i \(-0.428279\pi\)
0.223416 + 0.974723i \(0.428279\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −0.562043 −0.0206194 −0.0103097 0.999947i \(-0.503282\pi\)
−0.0103097 + 0.999947i \(0.503282\pi\)
\(744\) 0 0
\(745\) −25.5211 −0.935022
\(746\) 0 0
\(747\) −57.0118 −2.08595
\(748\) 0 0
\(749\) 12.9130 0.471831
\(750\) 0 0
\(751\) −22.7138 −0.828837 −0.414418 0.910086i \(-0.636015\pi\)
−0.414418 + 0.910086i \(0.636015\pi\)
\(752\) 0 0
\(753\) −39.4107 −1.43621
\(754\) 0 0
\(755\) 11.2941 0.411033
\(756\) 0 0
\(757\) 19.4820 0.708085 0.354042 0.935229i \(-0.384807\pi\)
0.354042 + 0.935229i \(0.384807\pi\)
\(758\) 0 0
\(759\) 99.7372 3.62023
\(760\) 0 0
\(761\) −42.7334 −1.54909 −0.774543 0.632522i \(-0.782020\pi\)
−0.774543 + 0.632522i \(0.782020\pi\)
\(762\) 0 0
\(763\) −8.04268 −0.291164
\(764\) 0 0
\(765\) −4.55150 −0.164560
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 34.1187 1.23035 0.615176 0.788390i \(-0.289085\pi\)
0.615176 + 0.788390i \(0.289085\pi\)
\(770\) 0 0
\(771\) 49.3469 1.77719
\(772\) 0 0
\(773\) −28.8705 −1.03840 −0.519200 0.854653i \(-0.673770\pi\)
−0.519200 + 0.854653i \(0.673770\pi\)
\(774\) 0 0
\(775\) −41.7997 −1.50149
\(776\) 0 0
\(777\) −11.6002 −0.416156
\(778\) 0 0
\(779\) 24.5198 0.878512
\(780\) 0 0
\(781\) 35.2182 1.26021
\(782\) 0 0
\(783\) −39.0008 −1.39377
\(784\) 0 0
\(785\) −45.1528 −1.61157
\(786\) 0 0
\(787\) −44.9696 −1.60299 −0.801497 0.597999i \(-0.795963\pi\)
−0.801497 + 0.597999i \(0.795963\pi\)
\(788\) 0 0
\(789\) 80.4484 2.86404
\(790\) 0 0
\(791\) 8.00469 0.284614
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 5.86620 0.208053
\(796\) 0 0
\(797\) −21.4184 −0.758679 −0.379340 0.925257i \(-0.623849\pi\)
−0.379340 + 0.925257i \(0.623849\pi\)
\(798\) 0 0
\(799\) −0.845748 −0.0299204
\(800\) 0 0
\(801\) 38.0544 1.34459
\(802\) 0 0
\(803\) 12.7456 0.449781
\(804\) 0 0
\(805\) −25.2496 −0.889932
\(806\) 0 0
\(807\) −25.3851 −0.893598
\(808\) 0 0
\(809\) −8.25498 −0.290230 −0.145115 0.989415i \(-0.546355\pi\)
−0.145115 + 0.989415i \(0.546355\pi\)
\(810\) 0 0
\(811\) −43.7679 −1.53690 −0.768450 0.639910i \(-0.778971\pi\)
−0.768450 + 0.639910i \(0.778971\pi\)
\(812\) 0 0
\(813\) 8.52548 0.299002
\(814\) 0 0
\(815\) 0.774775 0.0271392
\(816\) 0 0
\(817\) −70.7659 −2.47579
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −22.1084 −0.771589 −0.385795 0.922585i \(-0.626073\pi\)
−0.385795 + 0.922585i \(0.626073\pi\)
\(822\) 0 0
\(823\) −42.0711 −1.46650 −0.733252 0.679957i \(-0.761999\pi\)
−0.733252 + 0.679957i \(0.761999\pi\)
\(824\) 0 0
\(825\) −61.0234 −2.12456
\(826\) 0 0
\(827\) −44.4242 −1.54478 −0.772390 0.635148i \(-0.780939\pi\)
−0.772390 + 0.635148i \(0.780939\pi\)
\(828\) 0 0
\(829\) −17.9479 −0.623355 −0.311678 0.950188i \(-0.600891\pi\)
−0.311678 + 0.950188i \(0.600891\pi\)
\(830\) 0 0
\(831\) 37.6569 1.30630
\(832\) 0 0
\(833\) 0.194369 0.00673448
\(834\) 0 0
\(835\) −5.69201 −0.196980
\(836\) 0 0
\(837\) −122.160 −4.22248
\(838\) 0 0
\(839\) −3.57419 −0.123395 −0.0616973 0.998095i \(-0.519651\pi\)
−0.0616973 + 0.998095i \(0.519651\pi\)
\(840\) 0 0
\(841\) −21.6068 −0.745064
\(842\) 0 0
\(843\) 12.4878 0.430104
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −3.80865 −0.130867
\(848\) 0 0
\(849\) 22.1279 0.759429
\(850\) 0 0
\(851\) −28.8000 −0.987251
\(852\) 0 0
\(853\) 24.4780 0.838111 0.419055 0.907961i \(-0.362361\pi\)
0.419055 + 0.907961i \(0.362361\pi\)
\(854\) 0 0
\(855\) −144.158 −4.93011
\(856\) 0 0
\(857\) 26.9438 0.920384 0.460192 0.887820i \(-0.347781\pi\)
0.460192 + 0.887820i \(0.347781\pi\)
\(858\) 0 0
\(859\) −17.9537 −0.612573 −0.306287 0.951939i \(-0.599087\pi\)
−0.306287 + 0.951939i \(0.599087\pi\)
\(860\) 0 0
\(861\) −12.8689 −0.438572
\(862\) 0 0
\(863\) −11.0841 −0.377308 −0.188654 0.982044i \(-0.560412\pi\)
−0.188654 + 0.982044i \(0.560412\pi\)
\(864\) 0 0
\(865\) 33.9939 1.15583
\(866\) 0 0
\(867\) −54.8050 −1.86127
\(868\) 0 0
\(869\) 34.5858 1.17324
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 71.6165 2.42385
\(874\) 0 0
\(875\) −0.289701 −0.00979367
\(876\) 0 0
\(877\) −4.60737 −0.155580 −0.0777899 0.996970i \(-0.524786\pi\)
−0.0777899 + 0.996970i \(0.524786\pi\)
\(878\) 0 0
\(879\) −4.81075 −0.162263
\(880\) 0 0
\(881\) −34.3107 −1.15596 −0.577979 0.816052i \(-0.696158\pi\)
−0.577979 + 0.816052i \(0.696158\pi\)
\(882\) 0 0
\(883\) −42.5926 −1.43336 −0.716678 0.697404i \(-0.754338\pi\)
−0.716678 + 0.697404i \(0.754338\pi\)
\(884\) 0 0
\(885\) 21.2224 0.713382
\(886\) 0 0
\(887\) 41.6052 1.39697 0.698483 0.715627i \(-0.253859\pi\)
0.698483 + 0.715627i \(0.253859\pi\)
\(888\) 0 0
\(889\) −1.32877 −0.0445654
\(890\) 0 0
\(891\) −92.4572 −3.09743
\(892\) 0 0
\(893\) −26.7871 −0.896397
\(894\) 0 0
\(895\) −27.3108 −0.912901
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 23.1572 0.772337
\(900\) 0 0
\(901\) −0.112112 −0.00373501
\(902\) 0 0
\(903\) 37.1407 1.23597
\(904\) 0 0
\(905\) −31.5043 −1.04724
\(906\) 0 0
\(907\) 15.6716 0.520367 0.260183 0.965559i \(-0.416217\pi\)
0.260183 + 0.965559i \(0.416217\pi\)
\(908\) 0 0
\(909\) −18.9077 −0.627129
\(910\) 0 0
\(911\) −33.5478 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(912\) 0 0
\(913\) 29.4908 0.976002
\(914\) 0 0
\(915\) −34.6306 −1.14485
\(916\) 0 0
\(917\) 0.592761 0.0195747
\(918\) 0 0
\(919\) 3.33761 0.110098 0.0550488 0.998484i \(-0.482469\pi\)
0.0550488 + 0.998484i \(0.482469\pi\)
\(920\) 0 0
\(921\) 7.53236 0.248200
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 17.6210 0.579376
\(926\) 0 0
\(927\) −24.9510 −0.819499
\(928\) 0 0
\(929\) 9.09688 0.298459 0.149230 0.988803i \(-0.452321\pi\)
0.149230 + 0.988803i \(0.452321\pi\)
\(930\) 0 0
\(931\) 6.15618 0.201761
\(932\) 0 0
\(933\) −38.2047 −1.25077
\(934\) 0 0
\(935\) 2.35438 0.0769964
\(936\) 0 0
\(937\) 9.08442 0.296775 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(938\) 0 0
\(939\) −59.4785 −1.94101
\(940\) 0 0
\(941\) −8.23345 −0.268403 −0.134201 0.990954i \(-0.542847\pi\)
−0.134201 + 0.990954i \(0.542847\pi\)
\(942\) 0 0
\(943\) −31.9498 −1.04043
\(944\) 0 0
\(945\) 45.1492 1.46871
\(946\) 0 0
\(947\) 5.05532 0.164276 0.0821380 0.996621i \(-0.473825\pi\)
0.0821380 + 0.996621i \(0.473825\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 27.2139 0.882471
\(952\) 0 0
\(953\) 39.3158 1.27356 0.636782 0.771044i \(-0.280265\pi\)
0.636782 + 0.771044i \(0.280265\pi\)
\(954\) 0 0
\(955\) 75.6429 2.44775
\(956\) 0 0
\(957\) 33.8072 1.09283
\(958\) 0 0
\(959\) −2.56034 −0.0826778
\(960\) 0 0
\(961\) 41.5344 1.33982
\(962\) 0 0
\(963\) −96.0646 −3.09564
\(964\) 0 0
\(965\) 10.3026 0.331653
\(966\) 0 0
\(967\) −21.2101 −0.682071 −0.341036 0.940050i \(-0.610778\pi\)
−0.341036 + 0.940050i \(0.610778\pi\)
\(968\) 0 0
\(969\) 3.86611 0.124197
\(970\) 0 0
\(971\) −23.5410 −0.755466 −0.377733 0.925915i \(-0.623296\pi\)
−0.377733 + 0.925915i \(0.623296\pi\)
\(972\) 0 0
\(973\) 18.0230 0.577791
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.3992 0.396684 0.198342 0.980133i \(-0.436444\pi\)
0.198342 + 0.980133i \(0.436444\pi\)
\(978\) 0 0
\(979\) −19.6846 −0.629123
\(980\) 0 0
\(981\) 59.8324 1.91030
\(982\) 0 0
\(983\) −36.0862 −1.15097 −0.575486 0.817812i \(-0.695187\pi\)
−0.575486 + 0.817812i \(0.695187\pi\)
\(984\) 0 0
\(985\) 40.1406 1.27898
\(986\) 0 0
\(987\) 14.0589 0.447500
\(988\) 0 0
\(989\) 92.2095 2.93209
\(990\) 0 0
\(991\) 52.8491 1.67881 0.839403 0.543510i \(-0.182905\pi\)
0.839403 + 0.543510i \(0.182905\pi\)
\(992\) 0 0
\(993\) 58.3409 1.85139
\(994\) 0 0
\(995\) −86.0047 −2.72653
\(996\) 0 0
\(997\) 1.40828 0.0446006 0.0223003 0.999751i \(-0.492901\pi\)
0.0223003 + 0.999751i \(0.492901\pi\)
\(998\) 0 0
\(999\) 51.4977 1.62932
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.a.s.1.8 8
13.5 odd 4 4732.2.g.k.337.16 16
13.6 odd 12 364.2.u.a.309.1 yes 16
13.8 odd 4 4732.2.g.k.337.15 16
13.11 odd 12 364.2.u.a.225.1 16
13.12 even 2 4732.2.a.t.1.8 8
39.11 even 12 3276.2.cf.c.2773.7 16
39.32 even 12 3276.2.cf.c.1765.2 16
52.11 even 12 1456.2.cc.f.225.8 16
52.19 even 12 1456.2.cc.f.673.8 16
91.6 even 12 2548.2.u.c.1765.8 16
91.11 odd 12 2548.2.bq.e.1941.8 16
91.19 even 12 2548.2.bq.c.361.1 16
91.24 even 12 2548.2.bq.c.1941.1 16
91.32 odd 12 2548.2.bb.d.569.1 16
91.37 odd 12 2548.2.bb.d.1733.1 16
91.45 even 12 2548.2.bb.c.569.8 16
91.58 odd 12 2548.2.bq.e.361.8 16
91.76 even 12 2548.2.u.c.589.8 16
91.89 even 12 2548.2.bb.c.1733.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 13.11 odd 12
364.2.u.a.309.1 yes 16 13.6 odd 12
1456.2.cc.f.225.8 16 52.11 even 12
1456.2.cc.f.673.8 16 52.19 even 12
2548.2.u.c.589.8 16 91.76 even 12
2548.2.u.c.1765.8 16 91.6 even 12
2548.2.bb.c.569.8 16 91.45 even 12
2548.2.bb.c.1733.8 16 91.89 even 12
2548.2.bb.d.569.1 16 91.32 odd 12
2548.2.bb.d.1733.1 16 91.37 odd 12
2548.2.bq.c.361.1 16 91.19 even 12
2548.2.bq.c.1941.1 16 91.24 even 12
2548.2.bq.e.361.8 16 91.58 odd 12
2548.2.bq.e.1941.8 16 91.11 odd 12
3276.2.cf.c.1765.2 16 39.32 even 12
3276.2.cf.c.2773.7 16 39.11 even 12
4732.2.a.s.1.8 8 1.1 even 1 trivial
4732.2.a.t.1.8 8 13.12 even 2
4732.2.g.k.337.15 16 13.8 odd 4
4732.2.g.k.337.16 16 13.5 odd 4