Properties

Label 2548.2.bq.e.1941.8
Level $2548$
Weight $2$
Character 2548.1941
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2548,2,Mod(361,2548)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2548, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2548.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,28,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 1941.8
Root \(3.23100i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1941
Dual form 2548.2.bq.e.361.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.23100 q^{3} +(2.72598 + 1.57385i) q^{5} +7.43937 q^{9} +3.84820i q^{11} +(1.38576 - 3.32861i) q^{13} +(8.80765 + 5.08510i) q^{15} +(0.0971843 - 0.168328i) q^{17} +6.15618i q^{19} +(-4.01081 - 6.94693i) q^{23} +(2.45398 + 4.25042i) q^{25} +14.3436 q^{27} +(1.35952 - 2.35475i) q^{29} +(-7.37569 + 4.25836i) q^{31} +12.4335i q^{33} +(-3.10928 + 1.79515i) q^{37} +(4.47739 - 10.7548i) q^{39} +(-3.44934 - 1.99148i) q^{41} +(-5.74755 - 9.95506i) q^{43} +(20.2796 + 11.7084i) q^{45} +(-3.76830 - 2.17563i) q^{47} +(0.314003 - 0.543869i) q^{51} +(0.288402 + 0.499526i) q^{53} +(-6.05647 + 10.4901i) q^{55} +19.8906i q^{57} +(-1.80715 - 1.04336i) q^{59} +3.40510 q^{61} +(9.01628 - 6.89277i) q^{65} -5.42026i q^{67} +(-12.9589 - 22.4456i) q^{69} +(-7.92574 + 4.57593i) q^{71} +(2.86835 - 1.65604i) q^{73} +(7.92882 + 13.7331i) q^{75} +(4.49376 - 7.78342i) q^{79} +24.0261 q^{81} -7.66353i q^{83} +(0.529845 - 0.305906i) q^{85} +(4.39260 - 7.60821i) q^{87} +(-4.42996 + 2.55764i) q^{89} +(-23.8309 + 13.7588i) q^{93} +(-9.68888 + 16.7816i) q^{95} +(8.33696 - 4.81334i) q^{97} +28.6282i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} + 10 q^{13} + 6 q^{15} + 2 q^{17} + 22 q^{25} - 12 q^{27} - 22 q^{29} - 30 q^{31} - 12 q^{37} - 6 q^{39} + 36 q^{41} + 6 q^{43} + 30 q^{45} + 18 q^{47} + 2 q^{51} - 4 q^{53} + 2 q^{55} + 18 q^{59}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.23100 1.86542 0.932710 0.360628i \(-0.117438\pi\)
0.932710 + 0.360628i \(0.117438\pi\)
\(4\) 0 0
\(5\) 2.72598 + 1.57385i 1.21910 + 0.703845i 0.964725 0.263261i \(-0.0847982\pi\)
0.254371 + 0.967107i \(0.418131\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 7.43937 2.47979
\(10\) 0 0
\(11\) 3.84820i 1.16028i 0.814518 + 0.580138i \(0.197001\pi\)
−0.814518 + 0.580138i \(0.802999\pi\)
\(12\) 0 0
\(13\) 1.38576 3.32861i 0.384340 0.923191i
\(14\) 0 0
\(15\) 8.80765 + 5.08510i 2.27412 + 1.31297i
\(16\) 0 0
\(17\) 0.0971843 0.168328i 0.0235707 0.0408256i −0.853999 0.520274i \(-0.825830\pi\)
0.877570 + 0.479448i \(0.159163\pi\)
\(18\) 0 0
\(19\) 6.15618i 1.41232i 0.708050 + 0.706162i \(0.249575\pi\)
−0.708050 + 0.706162i \(0.750425\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.01081 6.94693i −0.836313 1.44854i −0.892957 0.450141i \(-0.851374\pi\)
0.0566448 0.998394i \(-0.481960\pi\)
\(24\) 0 0
\(25\) 2.45398 + 4.25042i 0.490796 + 0.850084i
\(26\) 0 0
\(27\) 14.3436 2.76043
\(28\) 0 0
\(29\) 1.35952 2.35475i 0.252456 0.437267i −0.711745 0.702438i \(-0.752095\pi\)
0.964201 + 0.265171i \(0.0854283\pi\)
\(30\) 0 0
\(31\) −7.37569 + 4.25836i −1.32471 + 0.764823i −0.984476 0.175517i \(-0.943840\pi\)
−0.340236 + 0.940340i \(0.610507\pi\)
\(32\) 0 0
\(33\) 12.4335i 2.16440i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.10928 + 1.79515i −0.511163 + 0.295120i −0.733312 0.679893i \(-0.762026\pi\)
0.222149 + 0.975013i \(0.428693\pi\)
\(38\) 0 0
\(39\) 4.47739 10.7548i 0.716956 1.72214i
\(40\) 0 0
\(41\) −3.44934 1.99148i −0.538696 0.311016i 0.205854 0.978583i \(-0.434003\pi\)
−0.744550 + 0.667566i \(0.767336\pi\)
\(42\) 0 0
\(43\) −5.74755 9.95506i −0.876494 1.51813i −0.855163 0.518359i \(-0.826543\pi\)
−0.0213310 0.999772i \(-0.506790\pi\)
\(44\) 0 0
\(45\) 20.2796 + 11.7084i 3.02310 + 1.74539i
\(46\) 0 0
\(47\) −3.76830 2.17563i −0.549663 0.317348i 0.199323 0.979934i \(-0.436126\pi\)
−0.748986 + 0.662586i \(0.769459\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.314003 0.543869i 0.0439692 0.0761568i
\(52\) 0 0
\(53\) 0.288402 + 0.499526i 0.0396150 + 0.0686152i 0.885153 0.465300i \(-0.154054\pi\)
−0.845538 + 0.533915i \(0.820720\pi\)
\(54\) 0 0
\(55\) −6.05647 + 10.4901i −0.816655 + 1.41449i
\(56\) 0 0
\(57\) 19.8906i 2.63458i
\(58\) 0 0
\(59\) −1.80715 1.04336i −0.235271 0.135834i 0.377730 0.925916i \(-0.376705\pi\)
−0.613002 + 0.790082i \(0.710038\pi\)
\(60\) 0 0
\(61\) 3.40510 0.435979 0.217989 0.975951i \(-0.430050\pi\)
0.217989 + 0.975951i \(0.430050\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.01628 6.89277i 1.11833 0.854943i
\(66\) 0 0
\(67\) 5.42026i 0.662190i −0.943597 0.331095i \(-0.892582\pi\)
0.943597 0.331095i \(-0.107418\pi\)
\(68\) 0 0
\(69\) −12.9589 22.4456i −1.56007 2.70213i
\(70\) 0 0
\(71\) −7.92574 + 4.57593i −0.940612 + 0.543063i −0.890152 0.455663i \(-0.849402\pi\)
−0.0504599 + 0.998726i \(0.516069\pi\)
\(72\) 0 0
\(73\) 2.86835 1.65604i 0.335715 0.193825i −0.322661 0.946515i \(-0.604577\pi\)
0.658376 + 0.752690i \(0.271244\pi\)
\(74\) 0 0
\(75\) 7.92882 + 13.7331i 0.915541 + 1.58576i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.49376 7.78342i 0.505587 0.875703i −0.494392 0.869239i \(-0.664609\pi\)
0.999979 0.00646364i \(-0.00205746\pi\)
\(80\) 0 0
\(81\) 24.0261 2.66957
\(82\) 0 0
\(83\) 7.66353i 0.841181i −0.907251 0.420591i \(-0.861823\pi\)
0.907251 0.420591i \(-0.138177\pi\)
\(84\) 0 0
\(85\) 0.529845 0.305906i 0.0574698 0.0331802i
\(86\) 0 0
\(87\) 4.39260 7.60821i 0.470936 0.815686i
\(88\) 0 0
\(89\) −4.42996 + 2.55764i −0.469574 + 0.271109i −0.716062 0.698037i \(-0.754057\pi\)
0.246487 + 0.969146i \(0.420724\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −23.8309 + 13.7588i −2.47114 + 1.42672i
\(94\) 0 0
\(95\) −9.68888 + 16.7816i −0.994058 + 1.72176i
\(96\) 0 0
\(97\) 8.33696 4.81334i 0.846490 0.488721i −0.0129752 0.999916i \(-0.504130\pi\)
0.859465 + 0.511195i \(0.170797\pi\)
\(98\) 0 0
\(99\) 28.6282i 2.87724i
\(100\) 0 0
\(101\) 2.54158 0.252896 0.126448 0.991973i \(-0.459642\pi\)
0.126448 + 0.991973i \(0.459642\pi\)
\(102\) 0 0
\(103\) −1.67696 + 2.90458i −0.165236 + 0.286197i −0.936739 0.350029i \(-0.886172\pi\)
0.771503 + 0.636225i \(0.219505\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.45650 + 11.1830i 0.624174 + 1.08110i 0.988700 + 0.149907i \(0.0478975\pi\)
−0.364526 + 0.931193i \(0.618769\pi\)
\(108\) 0 0
\(109\) 6.96516 4.02134i 0.667141 0.385174i −0.127851 0.991793i \(-0.540808\pi\)
0.794993 + 0.606619i \(0.207475\pi\)
\(110\) 0 0
\(111\) −10.0461 + 5.80012i −0.953534 + 0.550523i
\(112\) 0 0
\(113\) 4.00235 + 6.93227i 0.376509 + 0.652133i 0.990552 0.137140i \(-0.0437910\pi\)
−0.614043 + 0.789273i \(0.710458\pi\)
\(114\) 0 0
\(115\) 25.2496i 2.35454i
\(116\) 0 0
\(117\) 10.3092 24.7628i 0.953083 2.28932i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.80865 −0.346241
\(122\) 0 0
\(123\) −11.1448 6.43446i −1.00489 0.580176i
\(124\) 0 0
\(125\) 0.289701i 0.0259116i
\(126\) 0 0
\(127\) 0.664383 1.15075i 0.0589545 0.102112i −0.835042 0.550186i \(-0.814557\pi\)
0.893996 + 0.448074i \(0.147890\pi\)
\(128\) 0 0
\(129\) −18.5704 32.1648i −1.63503 2.83195i
\(130\) 0 0
\(131\) 0.296380 0.513346i 0.0258949 0.0448512i −0.852788 0.522258i \(-0.825090\pi\)
0.878682 + 0.477407i \(0.158423\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 39.1004 + 22.5746i 3.36523 + 1.94291i
\(136\) 0 0
\(137\) 2.21732 + 1.28017i 0.189439 + 0.109372i 0.591720 0.806144i \(-0.298449\pi\)
−0.402281 + 0.915516i \(0.631783\pi\)
\(138\) 0 0
\(139\) 9.01150 + 15.6084i 0.764345 + 1.32388i 0.940592 + 0.339538i \(0.110271\pi\)
−0.176247 + 0.984346i \(0.556396\pi\)
\(140\) 0 0
\(141\) −12.1754 7.02946i −1.02535 0.591987i
\(142\) 0 0
\(143\) 12.8092 + 5.33268i 1.07116 + 0.445941i
\(144\) 0 0
\(145\) 7.41204 4.27934i 0.615536 0.355380i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.10789i 0.664224i 0.943240 + 0.332112i \(0.107761\pi\)
−0.943240 + 0.332112i \(0.892239\pi\)
\(150\) 0 0
\(151\) 3.10734 1.79402i 0.252872 0.145995i −0.368207 0.929744i \(-0.620028\pi\)
0.621078 + 0.783748i \(0.286695\pi\)
\(152\) 0 0
\(153\) 0.722990 1.25226i 0.0584503 0.101239i
\(154\) 0 0
\(155\) −26.8080 −2.15327
\(156\) 0 0
\(157\) −7.17236 12.4229i −0.572417 0.991455i −0.996317 0.0857459i \(-0.972673\pi\)
0.423900 0.905709i \(-0.360661\pi\)
\(158\) 0 0
\(159\) 0.931826 + 1.61397i 0.0738986 + 0.127996i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.246141i 0.0192792i 0.999954 + 0.00963961i \(0.00306843\pi\)
−0.999954 + 0.00963961i \(0.996932\pi\)
\(164\) 0 0
\(165\) −19.5685 + 33.8936i −1.52340 + 2.63861i
\(166\) 0 0
\(167\) 1.56604 + 0.904156i 0.121184 + 0.0699657i 0.559367 0.828920i \(-0.311044\pi\)
−0.438183 + 0.898886i \(0.644378\pi\)
\(168\) 0 0
\(169\) −9.15934 9.22532i −0.704565 0.709640i
\(170\) 0 0
\(171\) 45.7981i 3.50227i
\(172\) 0 0
\(173\) 10.7996 0.821080 0.410540 0.911843i \(-0.365340\pi\)
0.410540 + 0.911843i \(0.365340\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.83892 3.37110i −0.438880 0.253387i
\(178\) 0 0
\(179\) −8.67647 −0.648510 −0.324255 0.945970i \(-0.605114\pi\)
−0.324255 + 0.945970i \(0.605114\pi\)
\(180\) 0 0
\(181\) −10.0087 −0.743940 −0.371970 0.928245i \(-0.621318\pi\)
−0.371970 + 0.928245i \(0.621318\pi\)
\(182\) 0 0
\(183\) 11.0019 0.813283
\(184\) 0 0
\(185\) −11.3011 −0.830876
\(186\) 0 0
\(187\) 0.647761 + 0.373985i 0.0473690 + 0.0273485i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0312 −1.73884 −0.869420 0.494074i \(-0.835507\pi\)
−0.869420 + 0.494074i \(0.835507\pi\)
\(192\) 0 0
\(193\) 3.27308i 0.235601i 0.993037 + 0.117801i \(0.0375844\pi\)
−0.993037 + 0.117801i \(0.962416\pi\)
\(194\) 0 0
\(195\) 29.1316 22.2705i 2.08616 1.59483i
\(196\) 0 0
\(197\) 11.0439 + 6.37619i 0.786844 + 0.454285i 0.838850 0.544362i \(-0.183228\pi\)
−0.0520061 + 0.998647i \(0.516562\pi\)
\(198\) 0 0
\(199\) 13.6616 23.6625i 0.968442 1.67739i 0.268373 0.963315i \(-0.413514\pi\)
0.700069 0.714076i \(-0.253153\pi\)
\(200\) 0 0
\(201\) 17.5129i 1.23526i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.26855 10.8575i −0.437815 0.758317i
\(206\) 0 0
\(207\) −29.8379 51.6808i −2.07388 3.59206i
\(208\) 0 0
\(209\) −23.6902 −1.63869
\(210\) 0 0
\(211\) −13.2929 + 23.0239i −0.915118 + 1.58503i −0.108390 + 0.994108i \(0.534570\pi\)
−0.806728 + 0.590923i \(0.798764\pi\)
\(212\) 0 0
\(213\) −25.6081 + 14.7848i −1.75464 + 1.01304i
\(214\) 0 0
\(215\) 36.1831i 2.46766i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.26764 5.35068i 0.626249 0.361565i
\(220\) 0 0
\(221\) −0.425626 0.556751i −0.0286307 0.0374512i
\(222\) 0 0
\(223\) 13.1063 + 7.56691i 0.877661 + 0.506718i 0.869887 0.493252i \(-0.164192\pi\)
0.00777474 + 0.999970i \(0.497525\pi\)
\(224\) 0 0
\(225\) 18.2561 + 31.6205i 1.21707 + 2.10803i
\(226\) 0 0
\(227\) 18.5376 + 10.7027i 1.23038 + 0.710362i 0.967110 0.254359i \(-0.0818644\pi\)
0.263274 + 0.964721i \(0.415198\pi\)
\(228\) 0 0
\(229\) −7.24104 4.18062i −0.478501 0.276263i 0.241290 0.970453i \(-0.422429\pi\)
−0.719792 + 0.694190i \(0.755763\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0832 + 22.6607i −0.857107 + 1.48455i 0.0175695 + 0.999846i \(0.494407\pi\)
−0.874676 + 0.484707i \(0.838926\pi\)
\(234\) 0 0
\(235\) −6.84821 11.8614i −0.446728 0.773756i
\(236\) 0 0
\(237\) 14.5193 25.1482i 0.943132 1.63355i
\(238\) 0 0
\(239\) 18.3562i 1.18736i −0.804700 0.593682i \(-0.797674\pi\)
0.804700 0.593682i \(-0.202326\pi\)
\(240\) 0 0
\(241\) 2.88804 + 1.66741i 0.186035 + 0.107407i 0.590125 0.807312i \(-0.299078\pi\)
−0.404090 + 0.914719i \(0.632412\pi\)
\(242\) 0 0
\(243\) 34.5975 2.21943
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 20.4915 + 8.53098i 1.30385 + 0.542813i
\(248\) 0 0
\(249\) 24.7609i 1.56916i
\(250\) 0 0
\(251\) −6.09884 10.5635i −0.384956 0.666763i 0.606807 0.794849i \(-0.292450\pi\)
−0.991763 + 0.128086i \(0.959117\pi\)
\(252\) 0 0
\(253\) 26.7332 15.4344i 1.68070 0.970353i
\(254\) 0 0
\(255\) 1.71193 0.988384i 0.107205 0.0618950i
\(256\) 0 0
\(257\) 7.63648 + 13.2268i 0.476350 + 0.825063i 0.999633 0.0270962i \(-0.00862605\pi\)
−0.523282 + 0.852159i \(0.675293\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.1140 17.5179i 0.626038 1.08433i
\(262\) 0 0
\(263\) 24.8989 1.53533 0.767666 0.640850i \(-0.221418\pi\)
0.767666 + 0.640850i \(0.221418\pi\)
\(264\) 0 0
\(265\) 1.81560i 0.111531i
\(266\) 0 0
\(267\) −14.3132 + 8.26373i −0.875953 + 0.505732i
\(268\) 0 0
\(269\) 3.92836 6.80413i 0.239517 0.414855i −0.721059 0.692874i \(-0.756344\pi\)
0.960576 + 0.278019i \(0.0896777\pi\)
\(270\) 0 0
\(271\) −2.28514 + 1.31933i −0.138812 + 0.0801433i −0.567798 0.823168i \(-0.692204\pi\)
0.428986 + 0.903311i \(0.358871\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.3565 + 9.44342i −0.986333 + 0.569459i
\(276\) 0 0
\(277\) 5.82743 10.0934i 0.350136 0.606454i −0.636137 0.771576i \(-0.719469\pi\)
0.986273 + 0.165122i \(0.0528019\pi\)
\(278\) 0 0
\(279\) −54.8705 + 31.6795i −3.28501 + 1.89660i
\(280\) 0 0
\(281\) 3.86501i 0.230567i −0.993333 0.115283i \(-0.963222\pi\)
0.993333 0.115283i \(-0.0367776\pi\)
\(282\) 0 0
\(283\) −6.84863 −0.407109 −0.203554 0.979064i \(-0.565249\pi\)
−0.203554 + 0.979064i \(0.565249\pi\)
\(284\) 0 0
\(285\) −31.3048 + 54.2215i −1.85433 + 3.21180i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.48111 + 14.6897i 0.498889 + 0.864101i
\(290\) 0 0
\(291\) 26.9367 15.5519i 1.57906 0.911670i
\(292\) 0 0
\(293\) 1.28946 0.744468i 0.0753309 0.0434923i −0.461861 0.886952i \(-0.652818\pi\)
0.537192 + 0.843460i \(0.319485\pi\)
\(294\) 0 0
\(295\) −3.28418 5.68836i −0.191212 0.331189i
\(296\) 0 0
\(297\) 55.1971i 3.20286i
\(298\) 0 0
\(299\) −28.6817 + 3.72367i −1.65870 + 0.215346i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 8.21183 0.471757
\(304\) 0 0
\(305\) 9.28225 + 5.35911i 0.531500 + 0.306862i
\(306\) 0 0
\(307\) 2.33128i 0.133053i −0.997785 0.0665265i \(-0.978808\pi\)
0.997785 0.0665265i \(-0.0211917\pi\)
\(308\) 0 0
\(309\) −5.41826 + 9.38470i −0.308234 + 0.533877i
\(310\) 0 0
\(311\) −5.91221 10.2403i −0.335251 0.580672i 0.648282 0.761400i \(-0.275488\pi\)
−0.983533 + 0.180729i \(0.942154\pi\)
\(312\) 0 0
\(313\) 9.20434 15.9424i 0.520260 0.901117i −0.479462 0.877563i \(-0.659168\pi\)
0.999723 0.0235548i \(-0.00749841\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.29431 4.21137i −0.409689 0.236534i 0.280967 0.959717i \(-0.409345\pi\)
−0.690656 + 0.723183i \(0.742678\pi\)
\(318\) 0 0
\(319\) 9.06156 + 5.23170i 0.507350 + 0.292919i
\(320\) 0 0
\(321\) 20.8610 + 36.1323i 1.16435 + 2.01671i
\(322\) 0 0
\(323\) 1.03626 + 0.598284i 0.0576590 + 0.0332894i
\(324\) 0 0
\(325\) 17.5486 2.27830i 0.973423 0.126377i
\(326\) 0 0
\(327\) 22.5044 12.9929i 1.24450 0.718512i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.0566i 0.992481i 0.868185 + 0.496240i \(0.165287\pi\)
−0.868185 + 0.496240i \(0.834713\pi\)
\(332\) 0 0
\(333\) −23.1311 + 13.3548i −1.26758 + 0.731836i
\(334\) 0 0
\(335\) 8.53065 14.7755i 0.466079 0.807273i
\(336\) 0 0
\(337\) −3.64765 −0.198700 −0.0993500 0.995053i \(-0.531676\pi\)
−0.0993500 + 0.995053i \(0.531676\pi\)
\(338\) 0 0
\(339\) 12.9316 + 22.3982i 0.702347 + 1.21650i
\(340\) 0 0
\(341\) −16.3870 28.3831i −0.887406 1.53703i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 81.5815i 4.39220i
\(346\) 0 0
\(347\) −7.29727 + 12.6392i −0.391738 + 0.678510i −0.992679 0.120783i \(-0.961459\pi\)
0.600941 + 0.799294i \(0.294793\pi\)
\(348\) 0 0
\(349\) −15.4877 8.94182i −0.829037 0.478645i 0.0244861 0.999700i \(-0.492205\pi\)
−0.853523 + 0.521056i \(0.825538\pi\)
\(350\) 0 0
\(351\) 19.8768 47.7443i 1.06094 2.54840i
\(352\) 0 0
\(353\) 6.38272i 0.339718i −0.985468 0.169859i \(-0.945669\pi\)
0.985468 0.169859i \(-0.0543312\pi\)
\(354\) 0 0
\(355\) −28.8072 −1.52893
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.4089 + 15.2472i 1.39381 + 0.804717i 0.993735 0.111765i \(-0.0356505\pi\)
0.400076 + 0.916482i \(0.368984\pi\)
\(360\) 0 0
\(361\) −18.8985 −0.994660
\(362\) 0 0
\(363\) −12.3057 −0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) −7.16337 −0.373925 −0.186962 0.982367i \(-0.559864\pi\)
−0.186962 + 0.982367i \(0.559864\pi\)
\(368\) 0 0
\(369\) −25.6609 14.8153i −1.33585 0.771255i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.16467 −0.0603045 −0.0301523 0.999545i \(-0.509599\pi\)
−0.0301523 + 0.999545i \(0.509599\pi\)
\(374\) 0 0
\(375\) 0.936023i 0.0483360i
\(376\) 0 0
\(377\) −5.95410 7.78843i −0.306652 0.401125i
\(378\) 0 0
\(379\) −25.1318 14.5099i −1.29093 0.745322i −0.312115 0.950044i \(-0.601037\pi\)
−0.978820 + 0.204723i \(0.934371\pi\)
\(380\) 0 0
\(381\) 2.14662 3.71806i 0.109975 0.190482i
\(382\) 0 0
\(383\) 21.9571i 1.12196i 0.827831 + 0.560978i \(0.189575\pi\)
−0.827831 + 0.560978i \(0.810425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −42.7582 74.0593i −2.17352 3.76465i
\(388\) 0 0
\(389\) 14.5986 + 25.2856i 0.740180 + 1.28203i 0.952413 + 0.304811i \(0.0985932\pi\)
−0.212233 + 0.977219i \(0.568074\pi\)
\(390\) 0 0
\(391\) −1.55915 −0.0788498
\(392\) 0 0
\(393\) 0.957605 1.65862i 0.0483048 0.0836664i
\(394\) 0 0
\(395\) 24.4998 14.1450i 1.23272 0.711710i
\(396\) 0 0
\(397\) 31.9503i 1.60354i 0.597632 + 0.801771i \(0.296108\pi\)
−0.597632 + 0.801771i \(0.703892\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.9176 + 18.4276i −1.59389 + 0.920232i −0.601257 + 0.799056i \(0.705333\pi\)
−0.992631 + 0.121176i \(0.961334\pi\)
\(402\) 0 0
\(403\) 3.95349 + 30.4519i 0.196938 + 1.51692i
\(404\) 0 0
\(405\) 65.4947 + 37.8134i 3.25446 + 1.87896i
\(406\) 0 0
\(407\) −6.90808 11.9651i −0.342421 0.593090i
\(408\) 0 0
\(409\) −4.89732 2.82747i −0.242157 0.139809i 0.374011 0.927424i \(-0.377982\pi\)
−0.616168 + 0.787615i \(0.711316\pi\)
\(410\) 0 0
\(411\) 7.16417 + 4.13623i 0.353382 + 0.204025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0612 20.8906i 0.592061 1.02548i
\(416\) 0 0
\(417\) 29.1162 + 50.4307i 1.42582 + 2.46960i
\(418\) 0 0
\(419\) 12.9031 22.3488i 0.630358 1.09181i −0.357120 0.934059i \(-0.616241\pi\)
0.987478 0.157754i \(-0.0504254\pi\)
\(420\) 0 0
\(421\) 28.8606i 1.40658i −0.710903 0.703290i \(-0.751714\pi\)
0.710903 0.703290i \(-0.248286\pi\)
\(422\) 0 0
\(423\) −28.0338 16.1853i −1.36305 0.786957i
\(424\) 0 0
\(425\) 0.953954 0.0462736
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 41.3865 + 17.2299i 1.99816 + 0.831867i
\(430\) 0 0
\(431\) 31.6712i 1.52555i 0.646665 + 0.762774i \(0.276163\pi\)
−0.646665 + 0.762774i \(0.723837\pi\)
\(432\) 0 0
\(433\) 15.6517 + 27.1095i 0.752172 + 1.30280i 0.946768 + 0.321916i \(0.104327\pi\)
−0.194597 + 0.980883i \(0.562340\pi\)
\(434\) 0 0
\(435\) 23.9483 13.8266i 1.14823 0.662933i
\(436\) 0 0
\(437\) 42.7666 24.6913i 2.04580 1.18114i
\(438\) 0 0
\(439\) 18.4786 + 32.0059i 0.881935 + 1.52756i 0.849187 + 0.528092i \(0.177093\pi\)
0.0327479 + 0.999464i \(0.489574\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.1436 + 24.4974i −0.671981 + 1.16391i 0.305360 + 0.952237i \(0.401223\pi\)
−0.977341 + 0.211669i \(0.932110\pi\)
\(444\) 0 0
\(445\) −16.1013 −0.763275
\(446\) 0 0
\(447\) 26.1966i 1.23906i
\(448\) 0 0
\(449\) 21.0690 12.1642i 0.994308 0.574064i 0.0877485 0.996143i \(-0.472033\pi\)
0.906559 + 0.422079i \(0.138699\pi\)
\(450\) 0 0
\(451\) 7.66360 13.2737i 0.360865 0.625036i
\(452\) 0 0
\(453\) 10.0398 5.79649i 0.471712 0.272343i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.34199 0.774798i 0.0627756 0.0362435i −0.468284 0.883578i \(-0.655127\pi\)
0.531059 + 0.847335i \(0.321794\pi\)
\(458\) 0 0
\(459\) 1.39397 2.41443i 0.0650651 0.112696i
\(460\) 0 0
\(461\) 11.2195 6.47760i 0.522545 0.301692i −0.215430 0.976519i \(-0.569115\pi\)
0.737975 + 0.674828i \(0.235782\pi\)
\(462\) 0 0
\(463\) 28.1690i 1.30912i 0.756008 + 0.654562i \(0.227147\pi\)
−0.756008 + 0.654562i \(0.772853\pi\)
\(464\) 0 0
\(465\) −86.6166 −4.01675
\(466\) 0 0
\(467\) 14.6454 25.3666i 0.677709 1.17383i −0.297960 0.954578i \(-0.596306\pi\)
0.975669 0.219248i \(-0.0703605\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −23.1739 40.1384i −1.06780 1.84948i
\(472\) 0 0
\(473\) 38.3091 22.1177i 1.76145 1.01697i
\(474\) 0 0
\(475\) −26.1664 + 15.1072i −1.20059 + 0.693164i
\(476\) 0 0
\(477\) 2.14553 + 3.71616i 0.0982369 + 0.170151i
\(478\) 0 0
\(479\) 19.4711i 0.889658i 0.895616 + 0.444829i \(0.146735\pi\)
−0.895616 + 0.444829i \(0.853265\pi\)
\(480\) 0 0
\(481\) 1.66663 + 12.8372i 0.0759917 + 0.585328i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 30.3018 1.37594
\(486\) 0 0
\(487\) −3.92783 2.26773i −0.177987 0.102761i 0.408360 0.912821i \(-0.366101\pi\)
−0.586346 + 0.810060i \(0.699434\pi\)
\(488\) 0 0
\(489\) 0.795281i 0.0359638i
\(490\) 0 0
\(491\) 9.07433 15.7172i 0.409519 0.709307i −0.585317 0.810804i \(-0.699030\pi\)
0.994836 + 0.101497i \(0.0323633\pi\)
\(492\) 0 0
\(493\) −0.264248 0.457690i −0.0119011 0.0206133i
\(494\) 0 0
\(495\) −45.0563 + 78.0399i −2.02513 + 3.50763i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.76368 3.32766i −0.258018 0.148967i 0.365412 0.930846i \(-0.380928\pi\)
−0.623430 + 0.781879i \(0.714261\pi\)
\(500\) 0 0
\(501\) 5.05989 + 2.92133i 0.226059 + 0.130515i
\(502\) 0 0
\(503\) −7.45978 12.9207i −0.332615 0.576106i 0.650409 0.759584i \(-0.274598\pi\)
−0.983024 + 0.183478i \(0.941264\pi\)
\(504\) 0 0
\(505\) 6.92829 + 4.00005i 0.308305 + 0.178000i
\(506\) 0 0
\(507\) −29.5938 29.8070i −1.31431 1.32378i
\(508\) 0 0
\(509\) 15.3869 8.88365i 0.682014 0.393761i −0.118599 0.992942i \(-0.537840\pi\)
0.800613 + 0.599181i \(0.204507\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 88.3018i 3.89862i
\(514\) 0 0
\(515\) −9.14272 + 5.27855i −0.402876 + 0.232601i
\(516\) 0 0
\(517\) 8.37226 14.5012i 0.368211 0.637761i
\(518\) 0 0
\(519\) 34.8936 1.53166
\(520\) 0 0
\(521\) −19.0289 32.9591i −0.833673 1.44396i −0.895106 0.445853i \(-0.852900\pi\)
0.0614331 0.998111i \(-0.480433\pi\)
\(522\) 0 0
\(523\) −6.94526 12.0295i −0.303695 0.526015i 0.673275 0.739392i \(-0.264887\pi\)
−0.976970 + 0.213377i \(0.931554\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.65538i 0.0721096i
\(528\) 0 0
\(529\) −20.6733 + 35.8071i −0.898837 + 1.55683i
\(530\) 0 0
\(531\) −13.4441 7.76195i −0.583424 0.336840i
\(532\) 0 0
\(533\) −11.4088 + 8.72181i −0.494170 + 0.377783i
\(534\) 0 0
\(535\) 40.6462i 1.75729i
\(536\) 0 0
\(537\) −28.0337 −1.20974
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −36.2391 20.9226i −1.55804 0.899535i −0.997445 0.0714444i \(-0.977239\pi\)
−0.560595 0.828090i \(-0.689428\pi\)
\(542\) 0 0
\(543\) −32.3381 −1.38776
\(544\) 0 0
\(545\) 25.3159 1.08441
\(546\) 0 0
\(547\) −22.3475 −0.955509 −0.477754 0.878493i \(-0.658549\pi\)
−0.477754 + 0.878493i \(0.658549\pi\)
\(548\) 0 0
\(549\) 25.3318 1.08114
\(550\) 0 0
\(551\) 14.4963 + 8.36943i 0.617562 + 0.356550i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −36.5140 −1.54993
\(556\) 0 0
\(557\) 30.6572i 1.29899i −0.760368 0.649493i \(-0.774981\pi\)
0.760368 0.649493i \(-0.225019\pi\)
\(558\) 0 0
\(559\) −41.1013 + 5.33608i −1.73840 + 0.225692i
\(560\) 0 0
\(561\) 2.09292 + 1.20835i 0.0883630 + 0.0510164i
\(562\) 0 0
\(563\) −16.6237 + 28.7930i −0.700604 + 1.21348i 0.267651 + 0.963516i \(0.413753\pi\)
−0.968255 + 0.249966i \(0.919581\pi\)
\(564\) 0 0
\(565\) 25.1963i 1.06002i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.80511 + 10.0547i 0.243363 + 0.421517i 0.961670 0.274209i \(-0.0884161\pi\)
−0.718307 + 0.695726i \(0.755083\pi\)
\(570\) 0 0
\(571\) −8.34968 14.4621i −0.349423 0.605219i 0.636724 0.771092i \(-0.280289\pi\)
−0.986147 + 0.165873i \(0.946956\pi\)
\(572\) 0 0
\(573\) −77.6450 −3.24366
\(574\) 0 0
\(575\) 19.6849 34.0953i 0.820918 1.42187i
\(576\) 0 0
\(577\) 32.2666 18.6291i 1.34328 0.775541i 0.355990 0.934490i \(-0.384144\pi\)
0.987287 + 0.158948i \(0.0508103\pi\)
\(578\) 0 0
\(579\) 10.5753i 0.439495i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.92228 + 1.10983i −0.0796126 + 0.0459643i
\(584\) 0 0
\(585\) 67.0754 51.2778i 2.77323 2.12008i
\(586\) 0 0
\(587\) 36.1912 + 20.8950i 1.49377 + 0.862429i 0.999974 0.00714861i \(-0.00227549\pi\)
0.493796 + 0.869578i \(0.335609\pi\)
\(588\) 0 0
\(589\) −26.2152 45.4061i −1.08018 1.87092i
\(590\) 0 0
\(591\) 35.6828 + 20.6015i 1.46779 + 0.847432i
\(592\) 0 0
\(593\) −3.75571 2.16836i −0.154228 0.0890438i 0.420900 0.907107i \(-0.361714\pi\)
−0.575128 + 0.818063i \(0.695048\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 44.1405 76.4536i 1.80655 3.12904i
\(598\) 0 0
\(599\) −11.3789 19.7088i −0.464929 0.805280i 0.534270 0.845314i \(-0.320587\pi\)
−0.999198 + 0.0400339i \(0.987253\pi\)
\(600\) 0 0
\(601\) 13.7634 23.8389i 0.561421 0.972410i −0.435951 0.899970i \(-0.643588\pi\)
0.997373 0.0724402i \(-0.0230786\pi\)
\(602\) 0 0
\(603\) 40.3233i 1.64209i
\(604\) 0 0
\(605\) −10.3823 5.99423i −0.422101 0.243700i
\(606\) 0 0
\(607\) −9.06967 −0.368126 −0.184063 0.982914i \(-0.558925\pi\)
−0.184063 + 0.982914i \(0.558925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.4638 + 9.52832i −0.504231 + 0.385475i
\(612\) 0 0
\(613\) 9.37895i 0.378812i 0.981899 + 0.189406i \(0.0606563\pi\)
−0.981899 + 0.189406i \(0.939344\pi\)
\(614\) 0 0
\(615\) −20.2537 35.0804i −0.816708 1.41458i
\(616\) 0 0
\(617\) −26.0786 + 15.0565i −1.04988 + 0.606151i −0.922617 0.385718i \(-0.873954\pi\)
−0.127267 + 0.991869i \(0.540620\pi\)
\(618\) 0 0
\(619\) −34.5494 + 19.9471i −1.38866 + 0.801742i −0.993164 0.116727i \(-0.962760\pi\)
−0.395493 + 0.918469i \(0.629426\pi\)
\(620\) 0 0
\(621\) −57.5295 99.6441i −2.30858 3.99858i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.7259 22.0418i 0.509034 0.881673i
\(626\) 0 0
\(627\) −76.5431 −3.05684
\(628\) 0 0
\(629\) 0.697840i 0.0278247i
\(630\) 0 0
\(631\) −21.3804 + 12.3440i −0.851140 + 0.491406i −0.861035 0.508545i \(-0.830184\pi\)
0.00989522 + 0.999951i \(0.496850\pi\)
\(632\) 0 0
\(633\) −42.9492 + 74.3903i −1.70708 + 2.95675i
\(634\) 0 0
\(635\) 3.62219 2.09127i 0.143742 0.0829896i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −58.9625 + 34.0420i −2.33252 + 1.34668i
\(640\) 0 0
\(641\) −9.30883 + 16.1234i −0.367677 + 0.636834i −0.989202 0.146560i \(-0.953180\pi\)
0.621525 + 0.783394i \(0.286513\pi\)
\(642\) 0 0
\(643\) −27.4384 + 15.8415i −1.08206 + 0.624729i −0.931452 0.363864i \(-0.881457\pi\)
−0.150611 + 0.988593i \(0.548124\pi\)
\(644\) 0 0
\(645\) 116.908i 4.60323i
\(646\) 0 0
\(647\) −29.6583 −1.16599 −0.582994 0.812477i \(-0.698119\pi\)
−0.582994 + 0.812477i \(0.698119\pi\)
\(648\) 0 0
\(649\) 4.01506 6.95429i 0.157605 0.272980i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.34483 10.9896i −0.248292 0.430055i 0.714760 0.699370i \(-0.246536\pi\)
−0.963052 + 0.269315i \(0.913203\pi\)
\(654\) 0 0
\(655\) 1.61585 0.932914i 0.0631367 0.0364520i
\(656\) 0 0
\(657\) 21.3387 12.3199i 0.832502 0.480645i
\(658\) 0 0
\(659\) 12.2763 + 21.2632i 0.478217 + 0.828296i 0.999688 0.0249730i \(-0.00794998\pi\)
−0.521471 + 0.853269i \(0.674617\pi\)
\(660\) 0 0
\(661\) 25.5574i 0.994067i −0.867731 0.497033i \(-0.834423\pi\)
0.867731 0.497033i \(-0.165577\pi\)
\(662\) 0 0
\(663\) −1.37520 1.79886i −0.0534082 0.0698621i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −21.8111 −0.844529
\(668\) 0 0
\(669\) 42.3464 + 24.4487i 1.63721 + 0.945242i
\(670\) 0 0
\(671\) 13.1035i 0.505856i
\(672\) 0 0
\(673\) −3.39829 + 5.88601i −0.130994 + 0.226889i −0.924060 0.382247i \(-0.875150\pi\)
0.793066 + 0.609136i \(0.208484\pi\)
\(674\) 0 0
\(675\) 35.1989 + 60.9664i 1.35481 + 2.34660i
\(676\) 0 0
\(677\) 13.0478 22.5995i 0.501468 0.868569i −0.498530 0.866872i \(-0.666127\pi\)
0.999999 0.00169631i \(-0.000539952\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 59.8950 + 34.5804i 2.29518 + 1.32512i
\(682\) 0 0
\(683\) −42.1666 24.3449i −1.61346 0.931532i −0.988560 0.150827i \(-0.951806\pi\)
−0.624900 0.780705i \(-0.714860\pi\)
\(684\) 0 0
\(685\) 4.02958 + 6.97944i 0.153962 + 0.266671i
\(686\) 0 0
\(687\) −23.3958 13.5076i −0.892606 0.515346i
\(688\) 0 0
\(689\) 2.06238 0.267754i 0.0785706 0.0102006i
\(690\) 0 0
\(691\) 3.10942 1.79522i 0.118288 0.0682935i −0.439689 0.898150i \(-0.644911\pi\)
0.557977 + 0.829857i \(0.311578\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 56.7308i 2.15192i
\(696\) 0 0
\(697\) −0.670443 + 0.387080i −0.0253948 + 0.0146617i
\(698\) 0 0
\(699\) −42.2717 + 73.2168i −1.59886 + 2.76931i
\(700\) 0 0
\(701\) −15.8746 −0.599575 −0.299787 0.954006i \(-0.596916\pi\)
−0.299787 + 0.954006i \(0.596916\pi\)
\(702\) 0 0
\(703\) −11.0512 19.1413i −0.416805 0.721928i
\(704\) 0 0
\(705\) −22.1266 38.3244i −0.833335 1.44338i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.6500i 0.850637i −0.905044 0.425318i \(-0.860162\pi\)
0.905044 0.425318i \(-0.139838\pi\)
\(710\) 0 0
\(711\) 33.4307 57.9037i 1.25375 2.17156i
\(712\) 0 0
\(713\) 59.1650 + 34.1589i 2.21575 + 1.27926i
\(714\) 0 0
\(715\) 26.5248 + 34.6965i 0.991969 + 1.29757i
\(716\) 0 0
\(717\) 59.3089i 2.21493i
\(718\) 0 0
\(719\) −10.2526 −0.382358 −0.191179 0.981555i \(-0.561231\pi\)
−0.191179 + 0.981555i \(0.561231\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.33125 + 5.38740i 0.347033 + 0.200359i
\(724\) 0 0
\(725\) 13.3449 0.495618
\(726\) 0 0
\(727\) −5.60059 −0.207715 −0.103857 0.994592i \(-0.533119\pi\)
−0.103857 + 0.994592i \(0.533119\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) −2.23429 −0.0826382
\(732\) 0 0
\(733\) −35.6418 20.5778i −1.31646 0.760058i −0.333302 0.942820i \(-0.608163\pi\)
−0.983157 + 0.182762i \(0.941496\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.8582 0.768323
\(738\) 0 0
\(739\) 12.1469i 0.446833i −0.974723 0.223416i \(-0.928279\pi\)
0.974723 0.223416i \(-0.0717209\pi\)
\(740\) 0 0
\(741\) 66.2082 + 27.5636i 2.43222 + 1.01257i
\(742\) 0 0
\(743\) 0.486744 + 0.281022i 0.0178569 + 0.0103097i 0.508902 0.860825i \(-0.330052\pi\)
−0.491045 + 0.871134i \(0.663385\pi\)
\(744\) 0 0
\(745\) −12.7606 + 22.1020i −0.467511 + 0.809753i
\(746\) 0 0
\(747\) 57.0118i 2.08595i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −11.3569 19.6707i −0.414418 0.717794i 0.580949 0.813940i \(-0.302682\pi\)
−0.995367 + 0.0961463i \(0.969348\pi\)
\(752\) 0 0
\(753\) −19.7054 34.1307i −0.718104 1.24379i
\(754\) 0 0
\(755\) 11.2941 0.411033
\(756\) 0 0
\(757\) −9.74099 + 16.8719i −0.354042 + 0.613219i −0.986954 0.161005i \(-0.948526\pi\)
0.632911 + 0.774224i \(0.281860\pi\)
\(758\) 0 0
\(759\) 86.3750 49.8686i 3.13521 1.81012i
\(760\) 0 0
\(761\) 42.7334i 1.54909i 0.632522 + 0.774543i \(0.282020\pi\)
−0.632522 + 0.774543i \(0.717980\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.94171 2.27575i 0.142513 0.0822799i
\(766\) 0 0
\(767\) −5.97723 + 4.56947i −0.215825 + 0.164994i
\(768\) 0 0
\(769\) −29.5477 17.0593i −1.06552 0.615176i −0.138563 0.990354i \(-0.544248\pi\)
−0.926953 + 0.375178i \(0.877582\pi\)
\(770\) 0 0
\(771\) 24.6735 + 42.7357i 0.888593 + 1.53909i
\(772\) 0 0
\(773\) 25.0026 + 14.4353i 0.899281 + 0.519200i 0.876967 0.480551i \(-0.159563\pi\)
0.0223144 + 0.999751i \(0.492897\pi\)
\(774\) 0 0
\(775\) −36.1996 20.8999i −1.30033 0.750745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.2599 21.2347i 0.439256 0.760813i
\(780\) 0 0
\(781\) −17.6091 30.4998i −0.630103 1.09137i
\(782\) 0 0
\(783\) 19.5004 33.7757i 0.696887 1.20704i
\(784\) 0 0
\(785\) 45.1528i 1.61157i
\(786\) 0 0
\(787\) −38.9448 22.4848i −1.38823 0.801497i −0.395117 0.918631i \(-0.629296\pi\)
−0.993116 + 0.117134i \(0.962629\pi\)
\(788\) 0 0
\(789\) 80.4484 2.86404
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.71865 11.3343i 0.167564 0.402492i
\(794\) 0 0
\(795\) 5.86620i 0.208053i
\(796\) 0 0
\(797\) −10.7092 18.5489i −0.379340 0.657036i 0.611627 0.791147i \(-0.290515\pi\)
−0.990966 + 0.134111i \(0.957182\pi\)
\(798\) 0 0
\(799\) −0.732440 + 0.422874i −0.0259118 + 0.0149602i
\(800\) 0 0
\(801\) −32.9561 + 19.0272i −1.16445 + 0.672293i
\(802\) 0 0
\(803\) 6.37278 + 11.0380i 0.224891 + 0.389522i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.6925 21.9841i 0.446799 0.773878i
\(808\) 0 0
\(809\) −8.25498 −0.290230 −0.145115 0.989415i \(-0.546355\pi\)
−0.145115 + 0.989415i \(0.546355\pi\)
\(810\) 0 0
\(811\) 43.7679i 1.53690i −0.639910 0.768450i \(-0.721029\pi\)
0.639910 0.768450i \(-0.278971\pi\)
\(812\) 0 0
\(813\) −7.38329 + 4.26274i −0.258943 + 0.149501i
\(814\) 0 0
\(815\) −0.387387 + 0.670975i −0.0135696 + 0.0235032i
\(816\) 0 0
\(817\) 61.2851 35.3830i 2.14409 1.23789i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.1465 + 11.0542i −0.668216 + 0.385795i −0.795400 0.606084i \(-0.792739\pi\)
0.127184 + 0.991879i \(0.459406\pi\)
\(822\) 0 0
\(823\) −21.0355 + 36.4346i −0.733252 + 1.27003i 0.222234 + 0.974993i \(0.428665\pi\)
−0.955486 + 0.295037i \(0.904668\pi\)
\(824\) 0 0
\(825\) −52.8478 + 30.5117i −1.83992 + 1.06228i
\(826\) 0 0
\(827\) 44.4242i 1.54478i 0.635148 + 0.772390i \(0.280939\pi\)
−0.635148 + 0.772390i \(0.719061\pi\)
\(828\) 0 0
\(829\) 17.9479 0.623355 0.311678 0.950188i \(-0.399109\pi\)
0.311678 + 0.950188i \(0.399109\pi\)
\(830\) 0 0
\(831\) 18.8284 32.6118i 0.653151 1.13129i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.84600 + 4.92942i 0.0984900 + 0.170590i
\(836\) 0 0
\(837\) −105.794 + 61.0802i −3.65677 + 2.11124i
\(838\) 0 0
\(839\) 3.09534 1.78709i 0.106863 0.0616973i −0.445616 0.895224i \(-0.647015\pi\)
0.552479 + 0.833527i \(0.313682\pi\)
\(840\) 0 0
\(841\) 10.8034 + 18.7121i 0.372532 + 0.645244i
\(842\) 0 0
\(843\) 12.4878i 0.430104i
\(844\) 0 0
\(845\) −10.4490 39.5634i −0.359455 1.36102i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −22.1279 −0.759429
\(850\) 0 0
\(851\) 24.9415 + 14.4000i 0.854984 + 0.493625i
\(852\) 0 0
\(853\) 24.4780i 0.838111i −0.907961 0.419055i \(-0.862361\pi\)
0.907961 0.419055i \(-0.137639\pi\)
\(854\) 0 0
\(855\) −72.0791 + 124.845i −2.46505 + 4.26960i
\(856\) 0 0
\(857\) 13.4719 + 23.3340i 0.460192 + 0.797076i 0.998970 0.0453720i \(-0.0144473\pi\)
−0.538778 + 0.842448i \(0.681114\pi\)
\(858\) 0 0
\(859\) 8.97686 15.5484i 0.306287 0.530504i −0.671260 0.741222i \(-0.734247\pi\)
0.977547 + 0.210718i \(0.0675801\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.59914 + 5.54206i 0.326758 + 0.188654i 0.654401 0.756148i \(-0.272921\pi\)
−0.327643 + 0.944802i \(0.606254\pi\)
\(864\) 0 0
\(865\) 29.4396 + 16.9969i 1.00098 + 0.577913i
\(866\) 0 0
\(867\) 27.4025 + 47.4625i 0.930637 + 1.61191i
\(868\) 0 0
\(869\) 29.9521 + 17.2929i 1.01606 + 0.586621i
\(870\) 0 0
\(871\) −18.0420 7.51118i −0.611328 0.254506i
\(872\) 0 0
\(873\) 62.0217 35.8082i 2.09912 1.21193i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.60737i 0.155580i −0.996970 0.0777899i \(-0.975214\pi\)
0.996970 0.0777899i \(-0.0247863\pi\)
\(878\) 0 0
\(879\) 4.16624 2.40538i 0.140524 0.0811314i
\(880\) 0 0
\(881\) −17.1554 + 29.7140i −0.577979 + 1.00109i 0.417732 + 0.908570i \(0.362825\pi\)
−0.995711 + 0.0925186i \(0.970508\pi\)
\(882\) 0 0
\(883\) 42.5926 1.43336 0.716678 0.697404i \(-0.245662\pi\)
0.716678 + 0.697404i \(0.245662\pi\)
\(884\) 0 0
\(885\) −10.6112 18.3791i −0.356691 0.617807i
\(886\) 0 0
\(887\) −20.8026 36.0312i −0.698483 1.20981i −0.968992 0.247091i \(-0.920525\pi\)
0.270509 0.962717i \(-0.412808\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 92.4572i 3.09743i
\(892\) 0 0
\(893\) 13.3936 23.1983i 0.448198 0.776302i
\(894\) 0 0
\(895\) −23.6519 13.6554i −0.790595 0.456450i
\(896\) 0 0
\(897\) −92.6706 + 12.0312i −3.09418 + 0.401710i
\(898\) 0 0
\(899\) 23.1572i 0.772337i
\(900\) 0 0
\(901\) 0.112112 0.00373501
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −27.2835 15.7521i −0.906934 0.523619i
\(906\) 0 0
\(907\) −15.6716 −0.520367 −0.260183 0.965559i \(-0.583783\pi\)
−0.260183 + 0.965559i \(0.583783\pi\)
\(908\) 0 0
\(909\) 18.9077 0.627129
\(910\) 0 0
\(911\) −33.5478 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(912\) 0 0
\(913\) 29.4908 0.976002
\(914\) 0 0
\(915\) 29.9910 + 17.3153i 0.991470 + 0.572426i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.33761 0.110098 0.0550488 0.998484i \(-0.482469\pi\)
0.0550488 + 0.998484i \(0.482469\pi\)
\(920\) 0 0
\(921\) 7.53236i 0.248200i
\(922\) 0 0
\(923\) 4.24833 + 32.7229i 0.139835 + 1.07709i
\(924\) 0 0
\(925\) −15.2603 8.81051i −0.501754 0.289688i
\(926\) 0 0
\(927\) −12.4755 + 21.6082i −0.409750 + 0.709707i
\(928\) 0 0
\(929\) 9.09688i 0.298459i 0.988803 + 0.149230i \(0.0476793\pi\)
−0.988803 + 0.149230i \(0.952321\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −19.1024 33.0863i −0.625384 1.08320i
\(934\) 0 0
\(935\) 1.17719 + 2.03895i 0.0384982 + 0.0666808i
\(936\) 0 0
\(937\) 9.08442 0.296775 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(938\) 0 0
\(939\) 29.7392 51.5099i 0.970504 1.68096i
\(940\) 0 0
\(941\) −7.13037 + 4.11672i −0.232444 + 0.134201i −0.611699 0.791091i \(-0.709514\pi\)
0.379255 + 0.925292i \(0.376180\pi\)
\(942\) 0 0
\(943\) 31.9498i 1.04043i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.37804 + 2.52766i −0.142267 + 0.0821380i −0.569444 0.822030i \(-0.692841\pi\)
0.427177 + 0.904168i \(0.359508\pi\)
\(948\) 0 0
\(949\) −1.53748 11.8425i −0.0499088 0.384424i
\(950\) 0 0
\(951\) −23.5679 13.6069i −0.764242 0.441235i
\(952\) 0 0
\(953\) 19.6579 + 34.0485i 0.636782 + 1.10294i 0.986135 + 0.165948i \(0.0530684\pi\)
−0.349352 + 0.936992i \(0.613598\pi\)
\(954\) 0 0
\(955\) −65.5087 37.8215i −2.11981 1.22387i
\(956\) 0 0
\(957\) 29.2779 + 16.9036i 0.946421 + 0.546416i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20.7672 35.9698i 0.669909 1.16032i
\(962\) 0 0
\(963\) 48.0323 + 83.1944i 1.54782 + 2.68090i
\(964\) 0 0
\(965\) −5.15132 + 8.92234i −0.165827 + 0.287220i
\(966\) 0 0
\(967\) 21.2101i 0.682071i −0.940050 0.341036i \(-0.889222\pi\)
0.940050 0.341036i \(-0.110778\pi\)
\(968\) 0 0
\(969\) 3.34815 + 1.93306i 0.107558 + 0.0620987i
\(970\) 0 0
\(971\) −23.5410 −0.755466 −0.377733 0.925915i \(-0.623296\pi\)
−0.377733 + 0.925915i \(0.623296\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 56.6997 7.36118i 1.81584 0.235747i
\(976\) 0 0
\(977\) 12.3992i 0.396684i 0.980133 + 0.198342i \(0.0635557\pi\)
−0.980133 + 0.198342i \(0.936444\pi\)
\(978\) 0 0
\(979\) −9.84230 17.0474i −0.314561 0.544836i
\(980\) 0 0
\(981\) 51.8164 29.9162i 1.65437 0.955151i
\(982\) 0 0
\(983\) 31.2516 18.0431i 0.996770 0.575486i 0.0894792 0.995989i \(-0.471480\pi\)
0.907291 + 0.420503i \(0.138146\pi\)
\(984\) 0 0
\(985\) 20.0703 + 34.7628i 0.639492 + 1.10763i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −46.1047 + 79.8558i −1.46605 + 2.53927i
\(990\) 0 0
\(991\) 52.8491 1.67881 0.839403 0.543510i \(-0.182905\pi\)
0.839403 + 0.543510i \(0.182905\pi\)
\(992\) 0 0
\(993\) 58.3409i 1.85139i
\(994\) 0 0
\(995\) 74.4823 43.0024i 2.36125 1.36327i
\(996\) 0 0
\(997\) −0.704139 + 1.21960i −0.0223003 + 0.0386252i −0.876960 0.480563i \(-0.840432\pi\)
0.854660 + 0.519188i \(0.173766\pi\)
\(998\) 0 0
\(999\) −44.5983 + 25.7489i −1.41103 + 0.814658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.e.1941.8 16
7.2 even 3 364.2.u.a.225.1 16
7.3 odd 6 2548.2.bb.c.1733.8 16
7.4 even 3 2548.2.bb.d.1733.1 16
7.5 odd 6 2548.2.u.c.589.8 16
7.6 odd 2 2548.2.bq.c.1941.1 16
13.10 even 6 2548.2.bb.d.569.1 16
21.2 odd 6 3276.2.cf.c.2773.7 16
28.23 odd 6 1456.2.cc.f.225.8 16
91.9 even 3 4732.2.g.k.337.15 16
91.10 odd 6 2548.2.bq.c.361.1 16
91.23 even 6 364.2.u.a.309.1 yes 16
91.30 even 6 4732.2.g.k.337.16 16
91.58 odd 12 4732.2.a.s.1.8 8
91.62 odd 6 2548.2.bb.c.569.8 16
91.72 odd 12 4732.2.a.t.1.8 8
91.75 odd 6 2548.2.u.c.1765.8 16
91.88 even 6 inner 2548.2.bq.e.361.8 16
273.23 odd 6 3276.2.cf.c.1765.2 16
364.23 odd 6 1456.2.cc.f.673.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 7.2 even 3
364.2.u.a.309.1 yes 16 91.23 even 6
1456.2.cc.f.225.8 16 28.23 odd 6
1456.2.cc.f.673.8 16 364.23 odd 6
2548.2.u.c.589.8 16 7.5 odd 6
2548.2.u.c.1765.8 16 91.75 odd 6
2548.2.bb.c.569.8 16 91.62 odd 6
2548.2.bb.c.1733.8 16 7.3 odd 6
2548.2.bb.d.569.1 16 13.10 even 6
2548.2.bb.d.1733.1 16 7.4 even 3
2548.2.bq.c.361.1 16 91.10 odd 6
2548.2.bq.c.1941.1 16 7.6 odd 2
2548.2.bq.e.361.8 16 91.88 even 6 inner
2548.2.bq.e.1941.8 16 1.1 even 1 trivial
3276.2.cf.c.1765.2 16 273.23 odd 6
3276.2.cf.c.2773.7 16 21.2 odd 6
4732.2.a.s.1.8 8 91.58 odd 12
4732.2.a.t.1.8 8 91.72 odd 12
4732.2.g.k.337.15 16 91.9 even 3
4732.2.g.k.337.16 16 91.30 even 6