Properties

Label 1456.2.cc.f.673.8
Level $1456$
Weight $2$
Character 1456.673
Analytic conductor $11.626$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1456,2,Mod(225,1456)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1456, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1456.225"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1456 = 2^{4} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1456.cc (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6262185343\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 673.8
Root \(3.23100i\) of defining polynomial
Character \(\chi\) \(=\) 1456.673
Dual form 1456.2.cc.f.225.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61550 + 2.79813i) q^{3} +3.14769i q^{5} +(-0.866025 - 0.500000i) q^{7} +(-3.71968 + 6.44268i) q^{9} +(3.33264 - 1.92410i) q^{11} +(1.38576 + 3.32861i) q^{13} +(-8.80765 + 5.08510i) q^{15} +(0.0971843 - 0.168328i) q^{17} +(-5.33141 - 3.07809i) q^{19} -3.23100i q^{21} +(4.01081 + 6.94693i) q^{23} -4.90796 q^{25} -14.3436 q^{27} +(1.35952 + 2.35475i) q^{29} -8.51671i q^{31} +(10.7678 + 6.21677i) q^{33} +(1.57385 - 2.72598i) q^{35} +(3.10928 - 1.79515i) q^{37} +(-7.07520 + 9.25491i) q^{39} +(-3.44934 + 1.99148i) q^{41} +(5.74755 - 9.95506i) q^{43} +(-20.2796 - 11.7084i) q^{45} +4.35126i q^{47} +(0.500000 + 0.866025i) q^{49} +0.628005 q^{51} -0.576803 q^{53} +(6.05647 + 10.4901i) q^{55} -19.8906i q^{57} +(-1.80715 - 1.04336i) q^{59} +(-1.70255 + 2.94891i) q^{61} +(6.44268 - 3.71968i) q^{63} +(-10.4775 + 4.36194i) q^{65} +(-4.69408 + 2.71013i) q^{67} +(-12.9589 + 22.4456i) q^{69} +(7.92574 + 4.57593i) q^{71} -3.31209i q^{73} +(-7.92882 - 13.7331i) q^{75} -3.84820 q^{77} +8.98752 q^{79} +(-12.0130 - 20.8072i) q^{81} -7.66353i q^{83} +(0.529845 + 0.305906i) q^{85} +(-4.39260 + 7.60821i) q^{87} +(4.42996 - 2.55764i) q^{89} +(0.464204 - 3.57554i) q^{91} +(23.8309 - 13.7588i) q^{93} +(9.68888 - 16.7816i) q^{95} +(8.33696 + 4.81334i) q^{97} +28.6282i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} - 6 q^{11} + 10 q^{13} - 6 q^{15} + 2 q^{17} - 44 q^{25} + 12 q^{27} - 22 q^{29} + 42 q^{33} + 6 q^{35} + 12 q^{37} - 24 q^{39} + 36 q^{41} - 6 q^{43} - 30 q^{45} + 8 q^{49} + 4 q^{51} + 8 q^{53}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1456\mathbb{Z}\right)^\times\).

\(n\) \(561\) \(911\) \(1093\) \(1249\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.61550 + 2.79813i 0.932710 + 1.61550i 0.778668 + 0.627436i \(0.215896\pi\)
0.154042 + 0.988064i \(0.450771\pi\)
\(4\) 0 0
\(5\) 3.14769i 1.40769i 0.710353 + 0.703845i \(0.248535\pi\)
−0.710353 + 0.703845i \(0.751465\pi\)
\(6\) 0 0
\(7\) −0.866025 0.500000i −0.327327 0.188982i
\(8\) 0 0
\(9\) −3.71968 + 6.44268i −1.23989 + 2.14756i
\(10\) 0 0
\(11\) 3.33264 1.92410i 1.00483 0.580138i 0.0951552 0.995462i \(-0.469665\pi\)
0.909673 + 0.415324i \(0.136332\pi\)
\(12\) 0 0
\(13\) 1.38576 + 3.32861i 0.384340 + 0.923191i
\(14\) 0 0
\(15\) −8.80765 + 5.08510i −2.27412 + 1.31297i
\(16\) 0 0
\(17\) 0.0971843 0.168328i 0.0235707 0.0408256i −0.853999 0.520274i \(-0.825830\pi\)
0.877570 + 0.479448i \(0.159163\pi\)
\(18\) 0 0
\(19\) −5.33141 3.07809i −1.22311 0.706162i −0.257529 0.966271i \(-0.582908\pi\)
−0.965579 + 0.260108i \(0.916242\pi\)
\(20\) 0 0
\(21\) 3.23100i 0.705062i
\(22\) 0 0
\(23\) 4.01081 + 6.94693i 0.836313 + 1.44854i 0.892957 + 0.450141i \(0.148626\pi\)
−0.0566448 + 0.998394i \(0.518040\pi\)
\(24\) 0 0
\(25\) −4.90796 −0.981593
\(26\) 0 0
\(27\) −14.3436 −2.76043
\(28\) 0 0
\(29\) 1.35952 + 2.35475i 0.252456 + 0.437267i 0.964201 0.265171i \(-0.0854283\pi\)
−0.711745 + 0.702438i \(0.752095\pi\)
\(30\) 0 0
\(31\) 8.51671i 1.52965i −0.644240 0.764823i \(-0.722826\pi\)
0.644240 0.764823i \(-0.277174\pi\)
\(32\) 0 0
\(33\) 10.7678 + 6.21677i 1.87443 + 1.08220i
\(34\) 0 0
\(35\) 1.57385 2.72598i 0.266029 0.460775i
\(36\) 0 0
\(37\) 3.10928 1.79515i 0.511163 0.295120i −0.222149 0.975013i \(-0.571307\pi\)
0.733312 + 0.679893i \(0.237974\pi\)
\(38\) 0 0
\(39\) −7.07520 + 9.25491i −1.13294 + 1.48197i
\(40\) 0 0
\(41\) −3.44934 + 1.99148i −0.538696 + 0.311016i −0.744550 0.667566i \(-0.767336\pi\)
0.205854 + 0.978583i \(0.434003\pi\)
\(42\) 0 0
\(43\) 5.74755 9.95506i 0.876494 1.51813i 0.0213310 0.999772i \(-0.493210\pi\)
0.855163 0.518359i \(-0.173457\pi\)
\(44\) 0 0
\(45\) −20.2796 11.7084i −3.02310 1.74539i
\(46\) 0 0
\(47\) 4.35126i 0.634696i 0.948309 + 0.317348i \(0.102792\pi\)
−0.948309 + 0.317348i \(0.897208\pi\)
\(48\) 0 0
\(49\) 0.500000 + 0.866025i 0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0.628005 0.0879383
\(52\) 0 0
\(53\) −0.576803 −0.0792300 −0.0396150 0.999215i \(-0.512613\pi\)
−0.0396150 + 0.999215i \(0.512613\pi\)
\(54\) 0 0
\(55\) 6.05647 + 10.4901i 0.816655 + 1.41449i
\(56\) 0 0
\(57\) 19.8906i 2.63458i
\(58\) 0 0
\(59\) −1.80715 1.04336i −0.235271 0.135834i 0.377730 0.925916i \(-0.376705\pi\)
−0.613002 + 0.790082i \(0.710038\pi\)
\(60\) 0 0
\(61\) −1.70255 + 2.94891i −0.217989 + 0.377569i −0.954193 0.299191i \(-0.903283\pi\)
0.736204 + 0.676760i \(0.236617\pi\)
\(62\) 0 0
\(63\) 6.44268 3.71968i 0.811702 0.468636i
\(64\) 0 0
\(65\) −10.4775 + 4.36194i −1.29957 + 0.541032i
\(66\) 0 0
\(67\) −4.69408 + 2.71013i −0.573474 + 0.331095i −0.758535 0.651632i \(-0.774085\pi\)
0.185062 + 0.982727i \(0.440751\pi\)
\(68\) 0 0
\(69\) −12.9589 + 22.4456i −1.56007 + 2.70213i
\(70\) 0 0
\(71\) 7.92574 + 4.57593i 0.940612 + 0.543063i 0.890152 0.455663i \(-0.150598\pi\)
0.0504599 + 0.998726i \(0.483931\pi\)
\(72\) 0 0
\(73\) 3.31209i 0.387650i −0.981036 0.193825i \(-0.937911\pi\)
0.981036 0.193825i \(-0.0620894\pi\)
\(74\) 0 0
\(75\) −7.92882 13.7331i −0.915541 1.58576i
\(76\) 0 0
\(77\) −3.84820 −0.438543
\(78\) 0 0
\(79\) 8.98752 1.01117 0.505587 0.862775i \(-0.331276\pi\)
0.505587 + 0.862775i \(0.331276\pi\)
\(80\) 0 0
\(81\) −12.0130 20.8072i −1.33478 2.31191i
\(82\) 0 0
\(83\) 7.66353i 0.841181i −0.907251 0.420591i \(-0.861823\pi\)
0.907251 0.420591i \(-0.138177\pi\)
\(84\) 0 0
\(85\) 0.529845 + 0.305906i 0.0574698 + 0.0331802i
\(86\) 0 0
\(87\) −4.39260 + 7.60821i −0.470936 + 0.815686i
\(88\) 0 0
\(89\) 4.42996 2.55764i 0.469574 0.271109i −0.246487 0.969146i \(-0.579276\pi\)
0.716062 + 0.698037i \(0.245943\pi\)
\(90\) 0 0
\(91\) 0.464204 3.57554i 0.0486618 0.374819i
\(92\) 0 0
\(93\) 23.8309 13.7588i 2.47114 1.42672i
\(94\) 0 0
\(95\) 9.68888 16.7816i 0.994058 1.72176i
\(96\) 0 0
\(97\) 8.33696 + 4.81334i 0.846490 + 0.488721i 0.859465 0.511195i \(-0.170797\pi\)
−0.0129752 + 0.999916i \(0.504130\pi\)
\(98\) 0 0
\(99\) 28.6282i 2.87724i
\(100\) 0 0
\(101\) −1.27079 2.20107i −0.126448 0.219015i 0.795850 0.605494i \(-0.207024\pi\)
−0.922298 + 0.386479i \(0.873691\pi\)
\(102\) 0 0
\(103\) −3.35392 −0.330471 −0.165236 0.986254i \(-0.552838\pi\)
−0.165236 + 0.986254i \(0.552838\pi\)
\(104\) 0 0
\(105\) 10.1702 0.992510
\(106\) 0 0
\(107\) −6.45650 11.1830i −0.624174 1.08110i −0.988700 0.149907i \(-0.952102\pi\)
0.364526 0.931193i \(-0.381231\pi\)
\(108\) 0 0
\(109\) 8.04268i 0.770349i −0.922844 0.385174i \(-0.874141\pi\)
0.922844 0.385174i \(-0.125859\pi\)
\(110\) 0 0
\(111\) 10.0461 + 5.80012i 0.953534 + 0.550523i
\(112\) 0 0
\(113\) 4.00235 6.93227i 0.376509 0.652133i −0.614043 0.789273i \(-0.710458\pi\)
0.990552 + 0.137140i \(0.0437910\pi\)
\(114\) 0 0
\(115\) −21.8668 + 12.6248i −2.03909 + 1.17727i
\(116\) 0 0
\(117\) −26.5998 3.45339i −2.45915 0.319266i
\(118\) 0 0
\(119\) −0.168328 + 0.0971843i −0.0154306 + 0.00890887i
\(120\) 0 0
\(121\) 1.90432 3.29839i 0.173120 0.299853i
\(122\) 0 0
\(123\) −11.1448 6.43446i −1.00489 0.580176i
\(124\) 0 0
\(125\) 0.289701i 0.0259116i
\(126\) 0 0
\(127\) −0.664383 1.15075i −0.0589545 0.102112i 0.835042 0.550186i \(-0.185443\pi\)
−0.893996 + 0.448074i \(0.852110\pi\)
\(128\) 0 0
\(129\) 37.1407 3.27006
\(130\) 0 0
\(131\) 0.592761 0.0517897 0.0258949 0.999665i \(-0.491756\pi\)
0.0258949 + 0.999665i \(0.491756\pi\)
\(132\) 0 0
\(133\) 3.07809 + 5.33141i 0.266904 + 0.462292i
\(134\) 0 0
\(135\) 45.1492i 3.88583i
\(136\) 0 0
\(137\) −2.21732 1.28017i −0.189439 0.109372i 0.402281 0.915516i \(-0.368217\pi\)
−0.591720 + 0.806144i \(0.701551\pi\)
\(138\) 0 0
\(139\) −9.01150 + 15.6084i −0.764345 + 1.32388i 0.176247 + 0.984346i \(0.443604\pi\)
−0.940592 + 0.339538i \(0.889729\pi\)
\(140\) 0 0
\(141\) −12.1754 + 7.02946i −1.02535 + 0.591987i
\(142\) 0 0
\(143\) 11.0228 + 8.42673i 0.921775 + 0.704679i
\(144\) 0 0
\(145\) −7.41204 + 4.27934i −0.615536 + 0.355380i
\(146\) 0 0
\(147\) −1.61550 + 2.79813i −0.133244 + 0.230786i
\(148\) 0 0
\(149\) 7.02164 + 4.05394i 0.575235 + 0.332112i 0.759237 0.650814i \(-0.225572\pi\)
−0.184002 + 0.982926i \(0.558905\pi\)
\(150\) 0 0
\(151\) 3.58804i 0.291991i 0.989285 + 0.145995i \(0.0466385\pi\)
−0.989285 + 0.145995i \(0.953362\pi\)
\(152\) 0 0
\(153\) 0.722990 + 1.25226i 0.0584503 + 0.101239i
\(154\) 0 0
\(155\) 26.8080 2.15327
\(156\) 0 0
\(157\) 14.3447 1.14483 0.572417 0.819963i \(-0.306006\pi\)
0.572417 + 0.819963i \(0.306006\pi\)
\(158\) 0 0
\(159\) −0.931826 1.61397i −0.0738986 0.127996i
\(160\) 0 0
\(161\) 8.02163i 0.632193i
\(162\) 0 0
\(163\) −0.213164 0.123070i −0.0166963 0.00963961i 0.491629 0.870805i \(-0.336402\pi\)
−0.508325 + 0.861165i \(0.669735\pi\)
\(164\) 0 0
\(165\) −19.5685 + 33.8936i −1.52340 + 2.63861i
\(166\) 0 0
\(167\) −1.56604 + 0.904156i −0.121184 + 0.0699657i −0.559367 0.828920i \(-0.688956\pi\)
0.438183 + 0.898886i \(0.355622\pi\)
\(168\) 0 0
\(169\) −9.15934 + 9.22532i −0.704565 + 0.709640i
\(170\) 0 0
\(171\) 39.6623 22.8990i 3.03305 1.75113i
\(172\) 0 0
\(173\) −5.39981 + 9.35275i −0.410540 + 0.711076i −0.994949 0.100383i \(-0.967993\pi\)
0.584409 + 0.811459i \(0.301326\pi\)
\(174\) 0 0
\(175\) 4.25042 + 2.45398i 0.321302 + 0.185504i
\(176\) 0 0
\(177\) 6.74220i 0.506775i
\(178\) 0 0
\(179\) −4.33823 7.51404i −0.324255 0.561626i 0.657106 0.753798i \(-0.271780\pi\)
−0.981361 + 0.192172i \(0.938447\pi\)
\(180\) 0 0
\(181\) −10.0087 −0.743940 −0.371970 0.928245i \(-0.621318\pi\)
−0.371970 + 0.928245i \(0.621318\pi\)
\(182\) 0 0
\(183\) −11.0019 −0.813283
\(184\) 0 0
\(185\) 5.65057 + 9.78707i 0.415438 + 0.719559i
\(186\) 0 0
\(187\) 0.747970i 0.0546970i
\(188\) 0 0
\(189\) 12.4219 + 7.17180i 0.903562 + 0.521672i
\(190\) 0 0
\(191\) −12.0156 + 20.8117i −0.869420 + 1.50588i −0.00682903 + 0.999977i \(0.502174\pi\)
−0.862591 + 0.505902i \(0.831160\pi\)
\(192\) 0 0
\(193\) −2.83457 + 1.63654i −0.204037 + 0.117801i −0.598537 0.801095i \(-0.704251\pi\)
0.394500 + 0.918896i \(0.370918\pi\)
\(194\) 0 0
\(195\) −29.1316 22.2705i −2.08616 1.59483i
\(196\) 0 0
\(197\) 11.0439 6.37619i 0.786844 0.454285i −0.0520061 0.998647i \(-0.516562\pi\)
0.838850 + 0.544362i \(0.183228\pi\)
\(198\) 0 0
\(199\) −13.6616 + 23.6625i −0.968442 + 1.67739i −0.268373 + 0.963315i \(0.586486\pi\)
−0.700069 + 0.714076i \(0.746847\pi\)
\(200\) 0 0
\(201\) −15.1666 8.75643i −1.06977 0.617631i
\(202\) 0 0
\(203\) 2.71904i 0.190839i
\(204\) 0 0
\(205\) −6.26855 10.8575i −0.437815 0.758317i
\(206\) 0 0
\(207\) −59.6758 −4.14776
\(208\) 0 0
\(209\) −23.6902 −1.63869
\(210\) 0 0
\(211\) 13.2929 + 23.0239i 0.915118 + 1.58503i 0.806728 + 0.590923i \(0.201236\pi\)
0.108390 + 0.994108i \(0.465430\pi\)
\(212\) 0 0
\(213\) 29.5696i 2.02608i
\(214\) 0 0
\(215\) 31.3355 + 18.0915i 2.13706 + 1.23383i
\(216\) 0 0
\(217\) −4.25836 + 7.37569i −0.289076 + 0.500694i
\(218\) 0 0
\(219\) 9.26764 5.35068i 0.626249 0.361565i
\(220\) 0 0
\(221\) 0.694974 + 0.0902268i 0.0467490 + 0.00606931i
\(222\) 0 0
\(223\) −13.1063 + 7.56691i −0.877661 + 0.506718i −0.869887 0.493252i \(-0.835808\pi\)
−0.00777474 + 0.999970i \(0.502475\pi\)
\(224\) 0 0
\(225\) 18.2561 31.6205i 1.21707 2.10803i
\(226\) 0 0
\(227\) 18.5376 + 10.7027i 1.23038 + 0.710362i 0.967110 0.254359i \(-0.0818644\pi\)
0.263274 + 0.964721i \(0.415198\pi\)
\(228\) 0 0
\(229\) 8.36123i 0.552526i −0.961082 0.276263i \(-0.910904\pi\)
0.961082 0.276263i \(-0.0890961\pi\)
\(230\) 0 0
\(231\) −6.21677 10.7678i −0.409033 0.708467i
\(232\) 0 0
\(233\) 26.1663 1.71421 0.857107 0.515138i \(-0.172260\pi\)
0.857107 + 0.515138i \(0.172260\pi\)
\(234\) 0 0
\(235\) −13.6964 −0.893456
\(236\) 0 0
\(237\) 14.5193 + 25.1482i 0.943132 + 1.63355i
\(238\) 0 0
\(239\) 18.3562i 1.18736i −0.804700 0.593682i \(-0.797674\pi\)
0.804700 0.593682i \(-0.202326\pi\)
\(240\) 0 0
\(241\) −2.88804 1.66741i −0.186035 0.107407i 0.404090 0.914719i \(-0.367588\pi\)
−0.590125 + 0.807312i \(0.700922\pi\)
\(242\) 0 0
\(243\) 17.2988 29.9623i 1.10972 1.92209i
\(244\) 0 0
\(245\) −2.72598 + 1.57385i −0.174157 + 0.100549i
\(246\) 0 0
\(247\) 2.85772 22.0117i 0.181833 1.40057i
\(248\) 0 0
\(249\) 21.4435 12.3804i 1.35893 0.784578i
\(250\) 0 0
\(251\) 6.09884 10.5635i 0.384956 0.666763i −0.606807 0.794849i \(-0.707550\pi\)
0.991763 + 0.128086i \(0.0408834\pi\)
\(252\) 0 0
\(253\) 26.7332 + 15.4344i 1.68070 + 0.970353i
\(254\) 0 0
\(255\) 1.97677i 0.123790i
\(256\) 0 0
\(257\) 7.63648 + 13.2268i 0.476350 + 0.825063i 0.999633 0.0270962i \(-0.00862605\pi\)
−0.523282 + 0.852159i \(0.675293\pi\)
\(258\) 0 0
\(259\) −3.59029 −0.223090
\(260\) 0 0
\(261\) −20.2279 −1.25208
\(262\) 0 0
\(263\) 12.4495 + 21.5631i 0.767666 + 1.32964i 0.938825 + 0.344394i \(0.111915\pi\)
−0.171159 + 0.985243i \(0.554751\pi\)
\(264\) 0 0
\(265\) 1.81560i 0.111531i
\(266\) 0 0
\(267\) 14.3132 + 8.26373i 0.875953 + 0.505732i
\(268\) 0 0
\(269\) 3.92836 6.80413i 0.239517 0.414855i −0.721059 0.692874i \(-0.756344\pi\)
0.960576 + 0.278019i \(0.0896777\pi\)
\(270\) 0 0
\(271\) −2.28514 + 1.31933i −0.138812 + 0.0801433i −0.567798 0.823168i \(-0.692204\pi\)
0.428986 + 0.903311i \(0.358871\pi\)
\(272\) 0 0
\(273\) 10.7548 4.47739i 0.650907 0.270984i
\(274\) 0 0
\(275\) −16.3565 + 9.44342i −0.986333 + 0.569459i
\(276\) 0 0
\(277\) 5.82743 10.0934i 0.350136 0.606454i −0.636137 0.771576i \(-0.719469\pi\)
0.986273 + 0.165122i \(0.0528019\pi\)
\(278\) 0 0
\(279\) 54.8705 + 31.6795i 3.28501 + 1.89660i
\(280\) 0 0
\(281\) 3.86501i 0.230567i 0.993333 + 0.115283i \(0.0367776\pi\)
−0.993333 + 0.115283i \(0.963222\pi\)
\(282\) 0 0
\(283\) −3.42431 5.93109i −0.203554 0.352566i 0.746117 0.665815i \(-0.231916\pi\)
−0.949671 + 0.313249i \(0.898583\pi\)
\(284\) 0 0
\(285\) 62.6095 3.70867
\(286\) 0 0
\(287\) 3.98295 0.235106
\(288\) 0 0
\(289\) 8.48111 + 14.6897i 0.498889 + 0.864101i
\(290\) 0 0
\(291\) 31.1038i 1.82334i
\(292\) 0 0
\(293\) 1.28946 + 0.744468i 0.0753309 + 0.0434923i 0.537192 0.843460i \(-0.319485\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(294\) 0 0
\(295\) 3.28418 5.68836i 0.191212 0.331189i
\(296\) 0 0
\(297\) −47.8021 + 27.5985i −2.77376 + 1.60143i
\(298\) 0 0
\(299\) −17.5656 + 22.9772i −1.01585 + 1.32881i
\(300\) 0 0
\(301\) −9.95506 + 5.74755i −0.573800 + 0.331284i
\(302\) 0 0
\(303\) 4.10592 7.11166i 0.235879 0.408554i
\(304\) 0 0
\(305\) −9.28225 5.35911i −0.531500 0.306862i
\(306\) 0 0
\(307\) 2.33128i 0.133053i −0.997785 0.0665265i \(-0.978808\pi\)
0.997785 0.0665265i \(-0.0211917\pi\)
\(308\) 0 0
\(309\) −5.41826 9.38470i −0.308234 0.533877i
\(310\) 0 0
\(311\) −11.8244 −0.670502 −0.335251 0.942129i \(-0.608821\pi\)
−0.335251 + 0.942129i \(0.608821\pi\)
\(312\) 0 0
\(313\) −18.4087 −1.04052 −0.520260 0.854008i \(-0.674165\pi\)
−0.520260 + 0.854008i \(0.674165\pi\)
\(314\) 0 0
\(315\) 11.7084 + 20.2796i 0.659695 + 1.14262i
\(316\) 0 0
\(317\) 8.42274i 0.473068i −0.971623 0.236534i \(-0.923988\pi\)
0.971623 0.236534i \(-0.0760115\pi\)
\(318\) 0 0
\(319\) 9.06156 + 5.23170i 0.507350 + 0.292919i
\(320\) 0 0
\(321\) 20.8610 36.1323i 1.16435 2.01671i
\(322\) 0 0
\(323\) −1.03626 + 0.598284i −0.0576590 + 0.0332894i
\(324\) 0 0
\(325\) −6.80126 16.3367i −0.377266 0.906198i
\(326\) 0 0
\(327\) 22.5044 12.9929i 1.24450 0.718512i
\(328\) 0 0
\(329\) 2.17563 3.76830i 0.119946 0.207753i
\(330\) 0 0
\(331\) −15.6375 9.02830i −0.859513 0.496240i 0.00433587 0.999991i \(-0.498620\pi\)
−0.863849 + 0.503750i \(0.831953\pi\)
\(332\) 0 0
\(333\) 26.7095i 1.46367i
\(334\) 0 0
\(335\) −8.53065 14.7755i −0.466079 0.807273i
\(336\) 0 0
\(337\) −3.64765 −0.198700 −0.0993500 0.995053i \(-0.531676\pi\)
−0.0993500 + 0.995053i \(0.531676\pi\)
\(338\) 0 0
\(339\) 25.8632 1.40469
\(340\) 0 0
\(341\) −16.3870 28.3831i −0.887406 1.53703i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) −70.6517 40.7908i −3.80376 2.19610i
\(346\) 0 0
\(347\) 7.29727 12.6392i 0.391738 0.678510i −0.600941 0.799294i \(-0.705207\pi\)
0.992679 + 0.120783i \(0.0385406\pi\)
\(348\) 0 0
\(349\) −15.4877 + 8.94182i −0.829037 + 0.478645i −0.853523 0.521056i \(-0.825538\pi\)
0.0244861 + 0.999700i \(0.492205\pi\)
\(350\) 0 0
\(351\) −19.8768 47.7443i −1.06094 2.54840i
\(352\) 0 0
\(353\) 5.52760 3.19136i 0.294204 0.169859i −0.345632 0.938370i \(-0.612335\pi\)
0.639836 + 0.768511i \(0.279002\pi\)
\(354\) 0 0
\(355\) −14.4036 + 24.9478i −0.764464 + 1.32409i
\(356\) 0 0
\(357\) −0.543869 0.314003i −0.0287846 0.0166188i
\(358\) 0 0
\(359\) 30.4944i 1.60943i −0.593659 0.804717i \(-0.702317\pi\)
0.593659 0.804717i \(-0.297683\pi\)
\(360\) 0 0
\(361\) 9.44927 + 16.3666i 0.497330 + 0.861400i
\(362\) 0 0
\(363\) 12.3057 0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) −3.58169 6.20366i −0.186962 0.323829i 0.757274 0.653098i \(-0.226531\pi\)
−0.944236 + 0.329269i \(0.893198\pi\)
\(368\) 0 0
\(369\) 29.6306i 1.54251i
\(370\) 0 0
\(371\) 0.499526 + 0.288402i 0.0259341 + 0.0149731i
\(372\) 0 0
\(373\) 0.582337 1.00864i 0.0301523 0.0522252i −0.850556 0.525885i \(-0.823734\pi\)
0.880708 + 0.473660i \(0.157067\pi\)
\(374\) 0 0
\(375\) −0.810620 + 0.468011i −0.0418602 + 0.0241680i
\(376\) 0 0
\(377\) −5.95410 + 7.78843i −0.306652 + 0.401125i
\(378\) 0 0
\(379\) 25.1318 14.5099i 1.29093 0.745322i 0.312115 0.950044i \(-0.398963\pi\)
0.978820 + 0.204723i \(0.0656293\pi\)
\(380\) 0 0
\(381\) 2.14662 3.71806i 0.109975 0.190482i
\(382\) 0 0
\(383\) −19.0154 10.9786i −0.971642 0.560978i −0.0719059 0.997411i \(-0.522908\pi\)
−0.899737 + 0.436433i \(0.856241\pi\)
\(384\) 0 0
\(385\) 12.1129i 0.617333i
\(386\) 0 0
\(387\) 42.7582 + 74.0593i 2.17352 + 3.76465i
\(388\) 0 0
\(389\) −29.1973 −1.48036 −0.740180 0.672409i \(-0.765260\pi\)
−0.740180 + 0.672409i \(0.765260\pi\)
\(390\) 0 0
\(391\) 1.55915 0.0788498
\(392\) 0 0
\(393\) 0.957605 + 1.65862i 0.0483048 + 0.0836664i
\(394\) 0 0
\(395\) 28.2899i 1.42342i
\(396\) 0 0
\(397\) 27.6698 + 15.9752i 1.38871 + 0.801771i 0.993170 0.116679i \(-0.0372248\pi\)
0.395538 + 0.918450i \(0.370558\pi\)
\(398\) 0 0
\(399\) −9.94531 + 17.2258i −0.497888 + 0.862368i
\(400\) 0 0
\(401\) 31.9176 18.4276i 1.59389 0.920232i 0.601257 0.799056i \(-0.294667\pi\)
0.992631 0.121176i \(-0.0386664\pi\)
\(402\) 0 0
\(403\) 28.3488 11.8021i 1.41216 0.587905i
\(404\) 0 0
\(405\) 65.4947 37.8134i 3.25446 1.87896i
\(406\) 0 0
\(407\) 6.90808 11.9651i 0.342421 0.593090i
\(408\) 0 0
\(409\) 4.89732 + 2.82747i 0.242157 + 0.139809i 0.616168 0.787615i \(-0.288684\pi\)
−0.374011 + 0.927424i \(0.622018\pi\)
\(410\) 0 0
\(411\) 8.27247i 0.408051i
\(412\) 0 0
\(413\) 1.04336 + 1.80715i 0.0513404 + 0.0889242i
\(414\) 0 0
\(415\) 24.1224 1.18412
\(416\) 0 0
\(417\) −58.2323 −2.85165
\(418\) 0 0
\(419\) −12.9031 22.3488i −0.630358 1.09181i −0.987478 0.157754i \(-0.949575\pi\)
0.357120 0.934059i \(-0.383759\pi\)
\(420\) 0 0
\(421\) 28.8606i 1.40658i 0.710903 + 0.703290i \(0.248286\pi\)
−0.710903 + 0.703290i \(0.751714\pi\)
\(422\) 0 0
\(423\) −28.0338 16.1853i −1.36305 0.786957i
\(424\) 0 0
\(425\) −0.476977 + 0.826149i −0.0231368 + 0.0400741i
\(426\) 0 0
\(427\) 2.94891 1.70255i 0.142708 0.0823923i
\(428\) 0 0
\(429\) −5.77170 + 44.4567i −0.278660 + 2.14639i
\(430\) 0 0
\(431\) 27.4281 15.8356i 1.32116 0.762774i 0.337249 0.941415i \(-0.390504\pi\)
0.983914 + 0.178641i \(0.0571702\pi\)
\(432\) 0 0
\(433\) 15.6517 27.1095i 0.752172 1.30280i −0.194597 0.980883i \(-0.562340\pi\)
0.946768 0.321916i \(-0.104327\pi\)
\(434\) 0 0
\(435\) −23.9483 13.8266i −1.14823 0.662933i
\(436\) 0 0
\(437\) 49.3826i 2.36229i
\(438\) 0 0
\(439\) −18.4786 32.0059i −0.881935 1.52756i −0.849187 0.528092i \(-0.822907\pi\)
−0.0327479 0.999464i \(-0.510426\pi\)
\(440\) 0 0
\(441\) −7.43937 −0.354256
\(442\) 0 0
\(443\) −28.2871 −1.34396 −0.671981 0.740568i \(-0.734556\pi\)
−0.671981 + 0.740568i \(0.734556\pi\)
\(444\) 0 0
\(445\) 8.05065 + 13.9441i 0.381638 + 0.661016i
\(446\) 0 0
\(447\) 26.1966i 1.23906i
\(448\) 0 0
\(449\) 21.0690 + 12.1642i 0.994308 + 0.574064i 0.906559 0.422079i \(-0.138699\pi\)
0.0877485 + 0.996143i \(0.472033\pi\)
\(450\) 0 0
\(451\) −7.66360 + 13.2737i −0.360865 + 0.625036i
\(452\) 0 0
\(453\) −10.0398 + 5.79649i −0.471712 + 0.272343i
\(454\) 0 0
\(455\) 11.2547 + 1.46117i 0.527629 + 0.0685008i
\(456\) 0 0
\(457\) −1.34199 + 0.774798i −0.0627756 + 0.0362435i −0.531059 0.847335i \(-0.678206\pi\)
0.468284 + 0.883578i \(0.344873\pi\)
\(458\) 0 0
\(459\) −1.39397 + 2.41443i −0.0650651 + 0.112696i
\(460\) 0 0
\(461\) 11.2195 + 6.47760i 0.522545 + 0.301692i 0.737975 0.674828i \(-0.235782\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(462\) 0 0
\(463\) 28.1690i 1.30912i 0.756008 + 0.654562i \(0.227147\pi\)
−0.756008 + 0.654562i \(0.772853\pi\)
\(464\) 0 0
\(465\) 43.3083 + 75.0122i 2.00837 + 3.47861i
\(466\) 0 0
\(467\) 29.2908 1.35542 0.677709 0.735330i \(-0.262973\pi\)
0.677709 + 0.735330i \(0.262973\pi\)
\(468\) 0 0
\(469\) 5.42026 0.250284
\(470\) 0 0
\(471\) 23.1739 + 40.1384i 1.06780 + 1.84948i
\(472\) 0 0
\(473\) 44.2355i 2.03395i
\(474\) 0 0
\(475\) 26.1664 + 15.1072i 1.20059 + 0.693164i
\(476\) 0 0
\(477\) 2.14553 3.71616i 0.0982369 0.170151i
\(478\) 0 0
\(479\) 16.8625 9.73555i 0.770466 0.444829i −0.0625747 0.998040i \(-0.519931\pi\)
0.833041 + 0.553211i \(0.186598\pi\)
\(480\) 0 0
\(481\) 10.2841 + 7.86197i 0.468913 + 0.358475i
\(482\) 0 0
\(483\) 22.4456 12.9589i 1.02131 0.589652i
\(484\) 0 0
\(485\) −15.1509 + 26.2422i −0.687968 + 1.19160i
\(486\) 0 0
\(487\) −3.92783 2.26773i −0.177987 0.102761i 0.408360 0.912821i \(-0.366101\pi\)
−0.586346 + 0.810060i \(0.699434\pi\)
\(488\) 0 0
\(489\) 0.795281i 0.0359638i
\(490\) 0 0
\(491\) −9.07433 15.7172i −0.409519 0.709307i 0.585317 0.810804i \(-0.300970\pi\)
−0.994836 + 0.101497i \(0.967637\pi\)
\(492\) 0 0
\(493\) 0.528495 0.0238022
\(494\) 0 0
\(495\) −90.1127 −4.05026
\(496\) 0 0
\(497\) −4.57593 7.92574i −0.205258 0.355518i
\(498\) 0 0
\(499\) 6.65532i 0.297933i 0.988842 + 0.148967i \(0.0475947\pi\)
−0.988842 + 0.148967i \(0.952405\pi\)
\(500\) 0 0
\(501\) −5.05989 2.92133i −0.226059 0.130515i
\(502\) 0 0
\(503\) 7.45978 12.9207i 0.332615 0.576106i −0.650409 0.759584i \(-0.725402\pi\)
0.983024 + 0.183478i \(0.0587357\pi\)
\(504\) 0 0
\(505\) 6.92829 4.00005i 0.308305 0.178000i
\(506\) 0 0
\(507\) −40.6105 10.7255i −1.80358 0.476337i
\(508\) 0 0
\(509\) −15.3869 + 8.88365i −0.682014 + 0.393761i −0.800613 0.599181i \(-0.795493\pi\)
0.118599 + 0.992942i \(0.462160\pi\)
\(510\) 0 0
\(511\) −1.65604 + 2.86835i −0.0732590 + 0.126888i
\(512\) 0 0
\(513\) 76.4716 + 44.1509i 3.37630 + 1.94931i
\(514\) 0 0
\(515\) 10.5571i 0.465201i
\(516\) 0 0
\(517\) 8.37226 + 14.5012i 0.368211 + 0.637761i
\(518\) 0 0
\(519\) −34.8936 −1.53166
\(520\) 0 0
\(521\) 38.0579 1.66735 0.833673 0.552258i \(-0.186234\pi\)
0.833673 + 0.552258i \(0.186234\pi\)
\(522\) 0 0
\(523\) 6.94526 + 12.0295i 0.303695 + 0.526015i 0.976970 0.213377i \(-0.0684463\pi\)
−0.673275 + 0.739392i \(0.735113\pi\)
\(524\) 0 0
\(525\) 15.8576i 0.692084i
\(526\) 0 0
\(527\) −1.43360 0.827691i −0.0624487 0.0360548i
\(528\) 0 0
\(529\) −20.6733 + 35.8071i −0.898837 + 1.55683i
\(530\) 0 0
\(531\) 13.4441 7.76195i 0.583424 0.336840i
\(532\) 0 0
\(533\) −11.4088 8.72181i −0.494170 0.377783i
\(534\) 0 0
\(535\) 35.2006 20.3231i 1.52185 0.878643i
\(536\) 0 0
\(537\) 14.0168 24.2779i 0.604871 1.04767i
\(538\) 0 0
\(539\) 3.33264 + 1.92410i 0.143547 + 0.0828769i
\(540\) 0 0
\(541\) 41.8453i 1.79907i −0.436850 0.899535i \(-0.643906\pi\)
0.436850 0.899535i \(-0.356094\pi\)
\(542\) 0 0
\(543\) −16.1690 28.0056i −0.693880 1.20184i
\(544\) 0 0
\(545\) 25.3159 1.08441
\(546\) 0 0
\(547\) 22.3475 0.955509 0.477754 0.878493i \(-0.341451\pi\)
0.477754 + 0.878493i \(0.341451\pi\)
\(548\) 0 0
\(549\) −12.6659 21.9380i −0.540568 0.936291i
\(550\) 0 0
\(551\) 16.7389i 0.713100i
\(552\) 0 0
\(553\) −7.78342 4.49376i −0.330985 0.191094i
\(554\) 0 0
\(555\) −18.2570 + 31.6220i −0.774966 + 1.34228i
\(556\) 0 0
\(557\) 26.5499 15.3286i 1.12495 0.649493i 0.182293 0.983244i \(-0.441648\pi\)
0.942661 + 0.333752i \(0.108315\pi\)
\(558\) 0 0
\(559\) 41.1013 + 5.33608i 1.73840 + 0.225692i
\(560\) 0 0
\(561\) 2.09292 1.20835i 0.0883630 0.0510164i
\(562\) 0 0
\(563\) 16.6237 28.7930i 0.700604 1.21348i −0.267651 0.963516i \(-0.586247\pi\)
0.968255 0.249966i \(-0.0804193\pi\)
\(564\) 0 0
\(565\) 21.8206 + 12.5982i 0.918001 + 0.530008i
\(566\) 0 0
\(567\) 24.0261i 1.00900i
\(568\) 0 0
\(569\) 5.80511 + 10.0547i 0.243363 + 0.421517i 0.961670 0.274209i \(-0.0884161\pi\)
−0.718307 + 0.695726i \(0.755083\pi\)
\(570\) 0 0
\(571\) −16.6994 −0.698847 −0.349423 0.936965i \(-0.613623\pi\)
−0.349423 + 0.936965i \(0.613623\pi\)
\(572\) 0 0
\(573\) −77.6450 −3.24366
\(574\) 0 0
\(575\) −19.6849 34.0953i −0.820918 1.42187i
\(576\) 0 0
\(577\) 37.2583i 1.55108i −0.631297 0.775541i \(-0.717477\pi\)
0.631297 0.775541i \(-0.282523\pi\)
\(578\) 0 0
\(579\) −9.15849 5.28765i −0.380614 0.219747i
\(580\) 0 0
\(581\) −3.83176 + 6.63681i −0.158968 + 0.275341i
\(582\) 0 0
\(583\) −1.92228 + 1.10983i −0.0796126 + 0.0459643i
\(584\) 0 0
\(585\) 10.8702 83.7279i 0.449427 3.46172i
\(586\) 0 0
\(587\) −36.1912 + 20.8950i −1.49377 + 0.862429i −0.999974 0.00714861i \(-0.997725\pi\)
−0.493796 + 0.869578i \(0.664391\pi\)
\(588\) 0 0
\(589\) −26.2152 + 45.4061i −1.08018 + 1.87092i
\(590\) 0 0
\(591\) 35.6828 + 20.6015i 1.46779 + 0.847432i
\(592\) 0 0
\(593\) 4.33672i 0.178088i −0.996028 0.0890438i \(-0.971619\pi\)
0.996028 0.0890438i \(-0.0283811\pi\)
\(594\) 0 0
\(595\) −0.305906 0.529845i −0.0125409 0.0217215i
\(596\) 0 0
\(597\) −88.2810 −3.61310
\(598\) 0 0
\(599\) −22.7578 −0.929858 −0.464929 0.885348i \(-0.653920\pi\)
−0.464929 + 0.885348i \(0.653920\pi\)
\(600\) 0 0
\(601\) 13.7634 + 23.8389i 0.561421 + 0.972410i 0.997373 + 0.0724402i \(0.0230786\pi\)
−0.435951 + 0.899970i \(0.643588\pi\)
\(602\) 0 0
\(603\) 40.3233i 1.64209i
\(604\) 0 0
\(605\) 10.3823 + 5.99423i 0.422101 + 0.243700i
\(606\) 0 0
\(607\) −4.53483 + 7.85456i −0.184063 + 0.318807i −0.943260 0.332054i \(-0.892258\pi\)
0.759197 + 0.650861i \(0.225592\pi\)
\(608\) 0 0
\(609\) 7.60821 4.39260i 0.308300 0.177997i
\(610\) 0 0
\(611\) −14.4837 + 6.02980i −0.585946 + 0.243939i
\(612\) 0 0
\(613\) −8.12241 + 4.68947i −0.328061 + 0.189406i −0.654980 0.755646i \(-0.727323\pi\)
0.326919 + 0.945052i \(0.393990\pi\)
\(614\) 0 0
\(615\) 20.2537 35.0804i 0.816708 1.41458i
\(616\) 0 0
\(617\) −26.0786 15.0565i −1.04988 0.606151i −0.127267 0.991869i \(-0.540620\pi\)
−0.922617 + 0.385718i \(0.873954\pi\)
\(618\) 0 0
\(619\) 39.8942i 1.60348i −0.597671 0.801742i \(-0.703907\pi\)
0.597671 0.801742i \(-0.296093\pi\)
\(620\) 0 0
\(621\) −57.5295 99.6441i −2.30858 3.99858i
\(622\) 0 0
\(623\) −5.11527 −0.204939
\(624\) 0 0
\(625\) −25.4517 −1.01807
\(626\) 0 0
\(627\) −38.2715 66.2883i −1.52842 2.64730i
\(628\) 0 0
\(629\) 0.697840i 0.0278247i
\(630\) 0 0
\(631\) 21.3804 + 12.3440i 0.851140 + 0.491406i 0.861035 0.508545i \(-0.169816\pi\)
−0.00989522 + 0.999951i \(0.503150\pi\)
\(632\) 0 0
\(633\) −42.9492 + 74.3903i −1.70708 + 2.95675i
\(634\) 0 0
\(635\) 3.62219 2.09127i 0.143742 0.0829896i
\(636\) 0 0
\(637\) −2.18978 + 2.86441i −0.0867624 + 0.113492i
\(638\) 0 0
\(639\) −58.9625 + 34.0420i −2.33252 + 1.34668i
\(640\) 0 0
\(641\) −9.30883 + 16.1234i −0.367677 + 0.636834i −0.989202 0.146560i \(-0.953180\pi\)
0.621525 + 0.783394i \(0.286513\pi\)
\(642\) 0 0
\(643\) 27.4384 + 15.8415i 1.08206 + 0.624729i 0.931452 0.363864i \(-0.118543\pi\)
0.150611 + 0.988593i \(0.451876\pi\)
\(644\) 0 0
\(645\) 116.908i 4.60323i
\(646\) 0 0
\(647\) −14.8291 25.6848i −0.582994 1.00977i −0.995122 0.0986488i \(-0.968548\pi\)
0.412129 0.911126i \(-0.364785\pi\)
\(648\) 0 0
\(649\) −8.03013 −0.315210
\(650\) 0 0
\(651\) −27.5175 −1.07850
\(652\) 0 0
\(653\) −6.34483 10.9896i −0.248292 0.430055i 0.714760 0.699370i \(-0.246536\pi\)
−0.963052 + 0.269315i \(0.913203\pi\)
\(654\) 0 0
\(655\) 1.86583i 0.0729039i
\(656\) 0 0
\(657\) 21.3387 + 12.3199i 0.832502 + 0.480645i
\(658\) 0 0
\(659\) −12.2763 + 21.2632i −0.478217 + 0.828296i −0.999688 0.0249730i \(-0.992050\pi\)
0.521471 + 0.853269i \(0.325383\pi\)
\(660\) 0 0
\(661\) 22.1333 12.7787i 0.860887 0.497033i −0.00342228 0.999994i \(-0.501089\pi\)
0.864309 + 0.502961i \(0.167756\pi\)
\(662\) 0 0
\(663\) 0.870264 + 2.09039i 0.0337983 + 0.0811839i
\(664\) 0 0
\(665\) −16.7816 + 9.68888i −0.650764 + 0.375719i
\(666\) 0 0
\(667\) −10.9055 + 18.8890i −0.422264 + 0.731383i
\(668\) 0 0
\(669\) −42.3464 24.4487i −1.63721 0.945242i
\(670\) 0 0
\(671\) 13.1035i 0.505856i
\(672\) 0 0
\(673\) −3.39829 5.88601i −0.130994 0.226889i 0.793066 0.609136i \(-0.208484\pi\)
−0.924060 + 0.382247i \(0.875150\pi\)
\(674\) 0 0
\(675\) 70.3979 2.70962
\(676\) 0 0
\(677\) −26.0956 −1.00294 −0.501468 0.865176i \(-0.667207\pi\)
−0.501468 + 0.865176i \(0.667207\pi\)
\(678\) 0 0
\(679\) −4.81334 8.33696i −0.184719 0.319943i
\(680\) 0 0
\(681\) 69.1608i 2.65025i
\(682\) 0 0
\(683\) −42.1666 24.3449i −1.61346 0.931532i −0.988560 0.150827i \(-0.951806\pi\)
−0.624900 0.780705i \(-0.714860\pi\)
\(684\) 0 0
\(685\) 4.02958 6.97944i 0.153962 0.266671i
\(686\) 0 0
\(687\) 23.3958 13.5076i 0.892606 0.515346i
\(688\) 0 0
\(689\) −0.799310 1.91995i −0.0304513 0.0731445i
\(690\) 0 0
\(691\) 3.10942 1.79522i 0.118288 0.0682935i −0.439689 0.898150i \(-0.644911\pi\)
0.557977 + 0.829857i \(0.311578\pi\)
\(692\) 0 0
\(693\) 14.3141 24.7927i 0.543747 0.941798i
\(694\) 0 0
\(695\) −49.1303 28.3654i −1.86362 1.07596i
\(696\) 0 0
\(697\) 0.774161i 0.0293234i
\(698\) 0 0
\(699\) 42.2717 + 73.2168i 1.59886 + 2.76931i
\(700\) 0 0
\(701\) −15.8746 −0.599575 −0.299787 0.954006i \(-0.596916\pi\)
−0.299787 + 0.954006i \(0.596916\pi\)
\(702\) 0 0
\(703\) −22.1025 −0.833611
\(704\) 0 0
\(705\) −22.1266 38.3244i −0.833335 1.44338i
\(706\) 0 0
\(707\) 2.54158i 0.0955858i
\(708\) 0 0
\(709\) −19.6154 11.3250i −0.736673 0.425318i 0.0841852 0.996450i \(-0.473171\pi\)
−0.820858 + 0.571132i \(0.806505\pi\)
\(710\) 0 0
\(711\) −33.4307 + 57.9037i −1.25375 + 2.17156i
\(712\) 0 0
\(713\) 59.1650 34.1589i 2.21575 1.27926i
\(714\) 0 0
\(715\) −26.5248 + 34.6965i −0.991969 + 1.29757i
\(716\) 0 0
\(717\) 51.3630 29.6544i 1.91819 1.10747i
\(718\) 0 0
\(719\) −5.12631 + 8.87903i −0.191179 + 0.331132i −0.945641 0.325212i \(-0.894564\pi\)
0.754462 + 0.656344i \(0.227898\pi\)
\(720\) 0 0
\(721\) 2.90458 + 1.67696i 0.108172 + 0.0624532i
\(722\) 0 0
\(723\) 10.7748i 0.400719i
\(724\) 0 0
\(725\) −6.67246 11.5570i −0.247809 0.429218i
\(726\) 0 0
\(727\) 5.60059 0.207715 0.103857 0.994592i \(-0.466881\pi\)
0.103857 + 0.994592i \(0.466881\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) −1.11714 1.93495i −0.0413191 0.0715667i
\(732\) 0 0
\(733\) 41.1556i 1.52012i −0.649855 0.760058i \(-0.725170\pi\)
0.649855 0.760058i \(-0.274830\pi\)
\(734\) 0 0
\(735\) −8.80765 5.08510i −0.324875 0.187567i
\(736\) 0 0
\(737\) −10.4291 + 18.0638i −0.384162 + 0.665388i
\(738\) 0 0
\(739\) −10.5196 + 6.07347i −0.386968 + 0.223416i −0.680846 0.732427i \(-0.738388\pi\)
0.293877 + 0.955843i \(0.405054\pi\)
\(740\) 0 0
\(741\) 66.2082 27.5636i 2.43222 1.01257i
\(742\) 0 0
\(743\) −0.486744 + 0.281022i −0.0178569 + 0.0103097i −0.508902 0.860825i \(-0.669948\pi\)
0.491045 + 0.871134i \(0.336615\pi\)
\(744\) 0 0
\(745\) −12.7606 + 22.1020i −0.467511 + 0.809753i
\(746\) 0 0
\(747\) 49.3737 + 28.5059i 1.80649 + 1.04298i
\(748\) 0 0
\(749\) 12.9130i 0.471831i
\(750\) 0 0
\(751\) 11.3569 + 19.6707i 0.414418 + 0.717794i 0.995367 0.0961463i \(-0.0306517\pi\)
−0.580949 + 0.813940i \(0.697318\pi\)
\(752\) 0 0
\(753\) 39.4107 1.43621
\(754\) 0 0
\(755\) −11.2941 −0.411033
\(756\) 0 0
\(757\) −9.74099 16.8719i −0.354042 0.613219i 0.632911 0.774224i \(-0.281860\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(758\) 0 0
\(759\) 99.7372i 3.62023i
\(760\) 0 0
\(761\) 37.0082 + 21.3667i 1.34155 + 0.774543i 0.987034 0.160509i \(-0.0513135\pi\)
0.354513 + 0.935051i \(0.384647\pi\)
\(762\) 0 0
\(763\) −4.02134 + 6.96516i −0.145582 + 0.252156i
\(764\) 0 0
\(765\) −3.94171 + 2.27575i −0.142513 + 0.0822799i
\(766\) 0 0
\(767\) 0.968665 7.46117i 0.0349765 0.269407i
\(768\) 0 0
\(769\) −29.5477 + 17.0593i −1.06552 + 0.615176i −0.926953 0.375178i \(-0.877582\pi\)
−0.138563 + 0.990354i \(0.544248\pi\)
\(770\) 0 0
\(771\) −24.6735 + 42.7357i −0.888593 + 1.53909i
\(772\) 0 0
\(773\) −25.0026 14.4353i −0.899281 0.519200i −0.0223144 0.999751i \(-0.507103\pi\)
−0.876967 + 0.480551i \(0.840437\pi\)
\(774\) 0 0
\(775\) 41.7997i 1.50149i
\(776\) 0 0
\(777\) −5.80012 10.0461i −0.208078 0.360402i
\(778\) 0 0
\(779\) 24.5198 0.878512
\(780\) 0 0
\(781\) 35.2182 1.26021
\(782\) 0 0
\(783\) −19.5004 33.7757i −0.696887 1.20704i
\(784\) 0 0
\(785\) 45.1528i 1.61157i
\(786\) 0 0
\(787\) −38.9448 22.4848i −1.38823 0.801497i −0.395117 0.918631i \(-0.629296\pi\)
−0.993116 + 0.117134i \(0.962629\pi\)
\(788\) 0 0
\(789\) −40.2242 + 69.6704i −1.43202 + 2.48033i
\(790\) 0 0
\(791\) −6.93227 + 4.00235i −0.246483 + 0.142307i
\(792\) 0 0
\(793\) −12.1751 1.58066i −0.432350 0.0561310i
\(794\) 0 0
\(795\) 5.08028 2.93310i 0.180179 0.104026i
\(796\) 0 0
\(797\) −10.7092 + 18.5489i −0.379340 + 0.657036i −0.990966 0.134111i \(-0.957182\pi\)
0.611627 + 0.791147i \(0.290515\pi\)
\(798\) 0 0
\(799\) 0.732440 + 0.422874i 0.0259118 + 0.0149602i
\(800\) 0 0
\(801\) 38.0544i 1.34459i
\(802\) 0 0
\(803\) −6.37278 11.0380i −0.224891 0.389522i
\(804\) 0 0
\(805\) 25.2496 0.889932
\(806\) 0 0
\(807\) 25.3851 0.893598
\(808\) 0 0
\(809\) 4.12749 + 7.14902i 0.145115 + 0.251346i 0.929416 0.369034i \(-0.120312\pi\)
−0.784301 + 0.620381i \(0.786978\pi\)
\(810\) 0 0
\(811\) 43.7679i 1.53690i −0.639910 0.768450i \(-0.721029\pi\)
0.639910 0.768450i \(-0.278971\pi\)
\(812\) 0 0
\(813\) −7.38329 4.26274i −0.258943 0.149501i
\(814\) 0 0
\(815\) 0.387387 0.670975i 0.0135696 0.0235032i
\(816\) 0 0
\(817\) −61.2851 + 35.3830i −2.14409 + 1.23789i
\(818\) 0 0
\(819\) 21.3094 + 16.2906i 0.744611 + 0.569240i
\(820\) 0 0
\(821\) 19.1465 11.0542i 0.668216 0.385795i −0.127184 0.991879i \(-0.540594\pi\)
0.795400 + 0.606084i \(0.207261\pi\)
\(822\) 0 0
\(823\) 21.0355 36.4346i 0.733252 1.27003i −0.222234 0.974993i \(-0.571335\pi\)
0.955486 0.295037i \(-0.0953319\pi\)
\(824\) 0 0
\(825\) −52.8478 30.5117i −1.83992 1.06228i
\(826\) 0 0
\(827\) 44.4242i 1.54478i 0.635148 + 0.772390i \(0.280939\pi\)
−0.635148 + 0.772390i \(0.719061\pi\)
\(828\) 0 0
\(829\) −8.97394 15.5433i −0.311678 0.539842i 0.667048 0.745015i \(-0.267558\pi\)
−0.978726 + 0.205173i \(0.934224\pi\)
\(830\) 0 0
\(831\) 37.6569 1.30630
\(832\) 0 0
\(833\) 0.194369 0.00673448
\(834\) 0 0
\(835\) −2.84600 4.92942i −0.0984900 0.170590i
\(836\) 0 0
\(837\) 122.160i 4.22248i
\(838\) 0 0
\(839\) −3.09534 1.78709i −0.106863 0.0616973i 0.445616 0.895224i \(-0.352985\pi\)
−0.552479 + 0.833527i \(0.686318\pi\)
\(840\) 0 0
\(841\) 10.8034 18.7121i 0.372532 0.645244i
\(842\) 0 0
\(843\) −10.8148 + 6.24392i −0.372481 + 0.215052i
\(844\) 0 0
\(845\) −29.0385 28.8308i −0.998953 0.991809i
\(846\) 0 0
\(847\) −3.29839 + 1.90432i −0.113334 + 0.0654334i
\(848\) 0 0
\(849\) 11.0640 19.1633i 0.379714 0.657684i
\(850\) 0 0
\(851\) 24.9415 + 14.4000i 0.854984 + 0.493625i
\(852\) 0 0
\(853\) 24.4780i 0.838111i 0.907961 + 0.419055i \(0.137639\pi\)
−0.907961 + 0.419055i \(0.862361\pi\)
\(854\) 0 0
\(855\) 72.0791 + 124.845i 2.46505 + 4.26960i
\(856\) 0 0
\(857\) −26.9438 −0.920384 −0.460192 0.887820i \(-0.652219\pi\)
−0.460192 + 0.887820i \(0.652219\pi\)
\(858\) 0 0
\(859\) 17.9537 0.612573 0.306287 0.951939i \(-0.400913\pi\)
0.306287 + 0.951939i \(0.400913\pi\)
\(860\) 0 0
\(861\) 6.43446 + 11.1448i 0.219286 + 0.379814i
\(862\) 0 0
\(863\) 11.0841i 0.377308i −0.982044 0.188654i \(-0.939588\pi\)
0.982044 0.188654i \(-0.0604125\pi\)
\(864\) 0 0
\(865\) −29.4396 16.9969i −1.00098 0.577913i
\(866\) 0 0
\(867\) −27.4025 + 47.4625i −0.930637 + 1.61191i
\(868\) 0 0
\(869\) 29.9521 17.2929i 1.01606 0.586621i
\(870\) 0 0
\(871\) −15.5258 11.8692i −0.526073 0.402173i
\(872\) 0 0
\(873\) −62.0217 + 35.8082i −2.09912 + 1.21193i
\(874\) 0 0
\(875\) 0.144850 0.250888i 0.00489683 0.00848156i
\(876\) 0 0
\(877\) −3.99010 2.30368i −0.134736 0.0777899i 0.431117 0.902296i \(-0.358120\pi\)
−0.565853 + 0.824506i \(0.691453\pi\)
\(878\) 0 0
\(879\) 4.81075i 0.162263i
\(880\) 0 0
\(881\) −17.1554 29.7140i −0.577979 1.00109i −0.995711 0.0925186i \(-0.970508\pi\)
0.417732 0.908570i \(-0.362825\pi\)
\(882\) 0 0
\(883\) −42.5926 −1.43336 −0.716678 0.697404i \(-0.754338\pi\)
−0.716678 + 0.697404i \(0.754338\pi\)
\(884\) 0 0
\(885\) 21.2224 0.713382
\(886\) 0 0
\(887\) 20.8026 + 36.0312i 0.698483 + 1.20981i 0.968992 + 0.247091i \(0.0794745\pi\)
−0.270509 + 0.962717i \(0.587192\pi\)
\(888\) 0 0
\(889\) 1.32877i 0.0445654i
\(890\) 0 0
\(891\) −80.0703 46.2286i −2.68246 1.54872i
\(892\) 0 0
\(893\) 13.3936 23.1983i 0.448198 0.776302i
\(894\) 0 0
\(895\) 23.6519 13.6554i 0.790595 0.456450i
\(896\) 0 0
\(897\) −92.6706 12.0312i −3.09418 0.401710i
\(898\) 0 0
\(899\) 20.0548 11.5786i 0.668864 0.386169i
\(900\) 0 0
\(901\) −0.0560562 + 0.0970922i −0.00186750 + 0.00323461i
\(902\) 0 0
\(903\) −32.1648 18.5704i −1.07038 0.617983i
\(904\) 0 0
\(905\) 31.5043i 1.04724i
\(906\) 0 0
\(907\) −7.83580 13.5720i −0.260183 0.450651i 0.706107 0.708105i \(-0.250450\pi\)
−0.966290 + 0.257454i \(0.917116\pi\)
\(908\) 0 0
\(909\) 18.9077 0.627129
\(910\) 0 0
\(911\) 33.5478 1.11149 0.555743 0.831354i \(-0.312434\pi\)
0.555743 + 0.831354i \(0.312434\pi\)
\(912\) 0 0
\(913\) −14.7454 25.5398i −0.488001 0.845243i
\(914\) 0 0
\(915\) 34.6306i 1.14485i
\(916\) 0 0
\(917\) −0.513346 0.296380i −0.0169522 0.00978734i
\(918\) 0 0
\(919\) 1.66880 2.89045i 0.0550488 0.0953473i −0.837188 0.546915i \(-0.815802\pi\)
0.892237 + 0.451568i \(0.149135\pi\)
\(920\) 0 0
\(921\) 6.52321 3.76618i 0.214947 0.124100i
\(922\) 0 0
\(923\) −4.24833 + 32.7229i −0.139835 + 1.07709i
\(924\) 0 0
\(925\) −15.2603 + 8.81051i −0.501754 + 0.289688i
\(926\) 0 0
\(927\) 12.4755 21.6082i 0.409750 0.709707i
\(928\) 0 0
\(929\) 7.87813 + 4.54844i 0.258473 + 0.149230i 0.623638 0.781713i \(-0.285654\pi\)
−0.365165 + 0.930943i \(0.618987\pi\)
\(930\) 0 0
\(931\) 6.15618i 0.201761i
\(932\) 0 0
\(933\) −19.1024 33.0863i −0.625384 1.08320i
\(934\) 0 0
\(935\) 2.35438 0.0769964
\(936\) 0 0
\(937\) 9.08442 0.296775 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(938\) 0 0
\(939\) −29.7392 51.5099i −0.970504 1.68096i
\(940\) 0 0
\(941\) 8.23345i 0.268403i 0.990954 + 0.134201i \(0.0428469\pi\)
−0.990954 + 0.134201i \(0.957153\pi\)
\(942\) 0 0
\(943\) −27.6693 15.9749i −0.901036 0.520214i
\(944\) 0 0
\(945\) −22.5746 + 39.1004i −0.734353 + 1.27194i
\(946\) 0 0
\(947\) −4.37804 + 2.52766i −0.142267 + 0.0821380i −0.569444 0.822030i \(-0.692841\pi\)
0.427177 + 0.904168i \(0.359508\pi\)
\(948\) 0 0
\(949\) 11.0247 4.58975i 0.357875 0.148990i
\(950\) 0 0
\(951\) 23.5679 13.6069i 0.764242 0.441235i
\(952\) 0 0
\(953\) 19.6579 34.0485i 0.636782 1.10294i −0.349352 0.936992i \(-0.613598\pi\)
0.986135 0.165948i \(-0.0530684\pi\)
\(954\) 0 0
\(955\) −65.5087 37.8215i −2.11981 1.22387i
\(956\) 0 0
\(957\) 33.8072i 1.09283i
\(958\) 0 0
\(959\) 1.28017 + 2.21732i 0.0413389 + 0.0716010i
\(960\) 0 0
\(961\) −41.5344 −1.33982
\(962\) 0 0
\(963\) 96.0646 3.09564
\(964\) 0 0
\(965\) −5.15132 8.92234i −0.165827 0.287220i
\(966\) 0 0
\(967\) 21.2101i 0.682071i −0.940050 0.341036i \(-0.889222\pi\)
0.940050 0.341036i \(-0.110778\pi\)
\(968\) 0 0
\(969\) −3.34815 1.93306i −0.107558 0.0620987i
\(970\) 0 0
\(971\) −11.7705 + 20.3871i −0.377733 + 0.654252i −0.990732 0.135831i \(-0.956630\pi\)
0.612999 + 0.790084i \(0.289963\pi\)
\(972\) 0 0
\(973\) 15.6084 9.01150i 0.500381 0.288895i
\(974\) 0 0
\(975\) 34.7248 45.4228i 1.11208 1.45469i
\(976\) 0 0
\(977\) −10.7380 + 6.19958i −0.343539 + 0.198342i −0.661836 0.749649i \(-0.730222\pi\)
0.318297 + 0.947991i \(0.396889\pi\)
\(978\) 0 0
\(979\) 9.84230 17.0474i 0.314561 0.544836i
\(980\) 0 0
\(981\) 51.8164 + 29.9162i 1.65437 + 0.955151i
\(982\) 0 0
\(983\) 36.0862i 1.15097i 0.817812 + 0.575486i \(0.195187\pi\)
−0.817812 + 0.575486i \(0.804813\pi\)
\(984\) 0 0
\(985\) 20.0703 + 34.7628i 0.639492 + 1.10763i
\(986\) 0 0
\(987\) 14.0589 0.447500
\(988\) 0 0
\(989\) 92.2095 2.93209
\(990\) 0 0
\(991\) 26.4245 + 45.7686i 0.839403 + 1.45389i 0.890395 + 0.455189i \(0.150428\pi\)
−0.0509920 + 0.998699i \(0.516238\pi\)
\(992\) 0 0
\(993\) 58.3409i 1.85139i
\(994\) 0 0
\(995\) −74.4823 43.0024i −2.36125 1.36327i
\(996\) 0 0
\(997\) −0.704139 + 1.21960i −0.0223003 + 0.0386252i −0.876960 0.480563i \(-0.840432\pi\)
0.854660 + 0.519188i \(0.173766\pi\)
\(998\) 0 0
\(999\) −44.5983 + 25.7489i −1.41103 + 0.814658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1456.2.cc.f.673.8 16
4.3 odd 2 364.2.u.a.309.1 yes 16
12.11 even 2 3276.2.cf.c.1765.2 16
13.4 even 6 inner 1456.2.cc.f.225.8 16
28.3 even 6 2548.2.bb.c.569.8 16
28.11 odd 6 2548.2.bb.d.569.1 16
28.19 even 6 2548.2.bq.c.361.1 16
28.23 odd 6 2548.2.bq.e.361.8 16
28.27 even 2 2548.2.u.c.1765.8 16
52.3 odd 6 4732.2.g.k.337.16 16
52.11 even 12 4732.2.a.s.1.8 8
52.15 even 12 4732.2.a.t.1.8 8
52.23 odd 6 4732.2.g.k.337.15 16
52.43 odd 6 364.2.u.a.225.1 16
156.95 even 6 3276.2.cf.c.2773.7 16
364.95 odd 6 2548.2.bq.e.1941.8 16
364.199 even 6 2548.2.bq.c.1941.1 16
364.251 even 6 2548.2.u.c.589.8 16
364.303 odd 6 2548.2.bb.d.1733.1 16
364.355 even 6 2548.2.bb.c.1733.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 52.43 odd 6
364.2.u.a.309.1 yes 16 4.3 odd 2
1456.2.cc.f.225.8 16 13.4 even 6 inner
1456.2.cc.f.673.8 16 1.1 even 1 trivial
2548.2.u.c.589.8 16 364.251 even 6
2548.2.u.c.1765.8 16 28.27 even 2
2548.2.bb.c.569.8 16 28.3 even 6
2548.2.bb.c.1733.8 16 364.355 even 6
2548.2.bb.d.569.1 16 28.11 odd 6
2548.2.bb.d.1733.1 16 364.303 odd 6
2548.2.bq.c.361.1 16 28.19 even 6
2548.2.bq.c.1941.1 16 364.199 even 6
2548.2.bq.e.361.8 16 28.23 odd 6
2548.2.bq.e.1941.8 16 364.95 odd 6
3276.2.cf.c.1765.2 16 12.11 even 2
3276.2.cf.c.2773.7 16 156.95 even 6
4732.2.a.s.1.8 8 52.11 even 12
4732.2.a.t.1.8 8 52.15 even 12
4732.2.g.k.337.15 16 52.23 odd 6
4732.2.g.k.337.16 16 52.3 odd 6