Properties

Label 2548.2.bb.d.569.1
Level $2548$
Weight $2$
Character 2548.569
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2548,2,Mod(569,2548)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2548, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2548.569"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bb (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-14,0,-6,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 569.1
Root \(-3.23100i\) of defining polynomial
Character \(\chi\) \(=\) 2548.569
Dual form 2548.2.bb.d.1733.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61550 + 2.79813i) q^{3} +(-2.72598 - 1.57385i) q^{5} +(-3.71968 - 6.44268i) q^{9} +(3.33264 + 1.92410i) q^{11} +(1.38576 + 3.32861i) q^{13} +(8.80765 - 5.08510i) q^{15} -0.194369 q^{17} +(-5.33141 + 3.07809i) q^{19} +8.02163 q^{23} +(2.45398 + 4.25042i) q^{25} +14.3436 q^{27} +(1.35952 + 2.35475i) q^{29} +(7.37569 - 4.25836i) q^{31} +(-10.7678 + 6.21677i) q^{33} +3.59029i q^{37} +(-11.5526 - 1.49984i) q^{39} +(-3.44934 + 1.99148i) q^{41} +(-5.74755 + 9.95506i) q^{43} +23.4168i q^{45} +(3.76830 + 2.17563i) q^{47} +(0.314003 - 0.543869i) q^{51} +(0.288402 + 0.499526i) q^{53} +(-6.05647 - 10.4901i) q^{55} -19.8906i q^{57} -2.08672i q^{59} +(-1.70255 - 2.94891i) q^{61} +(1.46117 - 11.2547i) q^{65} +(-4.69408 - 2.71013i) q^{67} +(-12.9589 + 22.4456i) q^{69} +(-7.92574 - 4.57593i) q^{71} +(-2.86835 + 1.65604i) q^{73} -15.8576 q^{75} +(4.49376 - 7.78342i) q^{79} +(-12.0130 + 20.8072i) q^{81} +7.66353i q^{83} +(0.529845 + 0.305906i) q^{85} -8.78521 q^{87} +5.11527i q^{89} +27.5175i q^{93} +19.3778 q^{95} +(8.33696 + 4.81334i) q^{97} -28.6282i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 14 q^{9} - 6 q^{11} + 10 q^{13} + 6 q^{15} - 4 q^{17} + 22 q^{25} - 12 q^{27} - 22 q^{29} + 30 q^{31} - 42 q^{33} - 18 q^{39} + 36 q^{41} + 6 q^{43} - 18 q^{47} + 2 q^{51} - 4 q^{53} + 2 q^{55} + 4 q^{61}+ \cdots - 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61550 + 2.79813i −0.932710 + 1.61550i −0.154042 + 0.988064i \(0.549229\pi\)
−0.778668 + 0.627436i \(0.784104\pi\)
\(4\) 0 0
\(5\) −2.72598 1.57385i −1.21910 0.703845i −0.254371 0.967107i \(-0.581869\pi\)
−0.964725 + 0.263261i \(0.915202\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.71968 6.44268i −1.23989 2.14756i
\(10\) 0 0
\(11\) 3.33264 + 1.92410i 1.00483 + 0.580138i 0.909673 0.415324i \(-0.136332\pi\)
0.0951552 + 0.995462i \(0.469665\pi\)
\(12\) 0 0
\(13\) 1.38576 + 3.32861i 0.384340 + 0.923191i
\(14\) 0 0
\(15\) 8.80765 5.08510i 2.27412 1.31297i
\(16\) 0 0
\(17\) −0.194369 −0.0471413 −0.0235707 0.999722i \(-0.507503\pi\)
−0.0235707 + 0.999722i \(0.507503\pi\)
\(18\) 0 0
\(19\) −5.33141 + 3.07809i −1.22311 + 0.706162i −0.965579 0.260108i \(-0.916242\pi\)
−0.257529 + 0.966271i \(0.582908\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 8.02163 1.67263 0.836313 0.548253i \(-0.184707\pi\)
0.836313 + 0.548253i \(0.184707\pi\)
\(24\) 0 0
\(25\) 2.45398 + 4.25042i 0.490796 + 0.850084i
\(26\) 0 0
\(27\) 14.3436 2.76043
\(28\) 0 0
\(29\) 1.35952 + 2.35475i 0.252456 + 0.437267i 0.964201 0.265171i \(-0.0854283\pi\)
−0.711745 + 0.702438i \(0.752095\pi\)
\(30\) 0 0
\(31\) 7.37569 4.25836i 1.32471 0.764823i 0.340236 0.940340i \(-0.389493\pi\)
0.984476 + 0.175517i \(0.0561596\pi\)
\(32\) 0 0
\(33\) −10.7678 + 6.21677i −1.87443 + 1.08220i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.59029i 0.590240i 0.955460 + 0.295120i \(0.0953597\pi\)
−0.955460 + 0.295120i \(0.904640\pi\)
\(38\) 0 0
\(39\) −11.5526 1.49984i −1.84989 0.240167i
\(40\) 0 0
\(41\) −3.44934 + 1.99148i −0.538696 + 0.311016i −0.744550 0.667566i \(-0.767336\pi\)
0.205854 + 0.978583i \(0.434003\pi\)
\(42\) 0 0
\(43\) −5.74755 + 9.95506i −0.876494 + 1.51813i −0.0213310 + 0.999772i \(0.506790\pi\)
−0.855163 + 0.518359i \(0.826543\pi\)
\(44\) 0 0
\(45\) 23.4168i 3.49078i
\(46\) 0 0
\(47\) 3.76830 + 2.17563i 0.549663 + 0.317348i 0.748986 0.662586i \(-0.230541\pi\)
−0.199323 + 0.979934i \(0.563874\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.314003 0.543869i 0.0439692 0.0761568i
\(52\) 0 0
\(53\) 0.288402 + 0.499526i 0.0396150 + 0.0686152i 0.885153 0.465300i \(-0.154054\pi\)
−0.845538 + 0.533915i \(0.820720\pi\)
\(54\) 0 0
\(55\) −6.05647 10.4901i −0.816655 1.41449i
\(56\) 0 0
\(57\) 19.8906i 2.63458i
\(58\) 0 0
\(59\) 2.08672i 0.271668i −0.990732 0.135834i \(-0.956629\pi\)
0.990732 0.135834i \(-0.0433714\pi\)
\(60\) 0 0
\(61\) −1.70255 2.94891i −0.217989 0.377569i 0.736204 0.676760i \(-0.236617\pi\)
−0.954193 + 0.299191i \(0.903283\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.46117 11.2547i 0.181236 1.39598i
\(66\) 0 0
\(67\) −4.69408 2.71013i −0.573474 0.331095i 0.185062 0.982727i \(-0.440751\pi\)
−0.758535 + 0.651632i \(0.774085\pi\)
\(68\) 0 0
\(69\) −12.9589 + 22.4456i −1.56007 + 2.70213i
\(70\) 0 0
\(71\) −7.92574 4.57593i −0.940612 0.543063i −0.0504599 0.998726i \(-0.516069\pi\)
−0.890152 + 0.455663i \(0.849402\pi\)
\(72\) 0 0
\(73\) −2.86835 + 1.65604i −0.335715 + 0.193825i −0.658376 0.752690i \(-0.728756\pi\)
0.322661 + 0.946515i \(0.395423\pi\)
\(74\) 0 0
\(75\) −15.8576 −1.83108
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.49376 7.78342i 0.505587 0.875703i −0.494392 0.869239i \(-0.664609\pi\)
0.999979 0.00646364i \(-0.00205746\pi\)
\(80\) 0 0
\(81\) −12.0130 + 20.8072i −1.33478 + 2.31191i
\(82\) 0 0
\(83\) 7.66353i 0.841181i 0.907251 + 0.420591i \(0.138177\pi\)
−0.907251 + 0.420591i \(0.861823\pi\)
\(84\) 0 0
\(85\) 0.529845 + 0.305906i 0.0574698 + 0.0331802i
\(86\) 0 0
\(87\) −8.78521 −0.941873
\(88\) 0 0
\(89\) 5.11527i 0.542218i 0.962549 + 0.271109i \(0.0873904\pi\)
−0.962549 + 0.271109i \(0.912610\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 27.5175i 2.85343i
\(94\) 0 0
\(95\) 19.3778 1.98812
\(96\) 0 0
\(97\) 8.33696 + 4.81334i 0.846490 + 0.488721i 0.859465 0.511195i \(-0.170797\pi\)
−0.0129752 + 0.999916i \(0.504130\pi\)
\(98\) 0 0
\(99\) 28.6282i 2.87724i
\(100\) 0 0
\(101\) −1.27079 + 2.20107i −0.126448 + 0.219015i −0.922298 0.386479i \(-0.873691\pi\)
0.795850 + 0.605494i \(0.207024\pi\)
\(102\) 0 0
\(103\) −1.67696 + 2.90458i −0.165236 + 0.286197i −0.936739 0.350029i \(-0.886172\pi\)
0.771503 + 0.636225i \(0.219505\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.9130 −1.24835 −0.624174 0.781286i \(-0.714564\pi\)
−0.624174 + 0.781286i \(0.714564\pi\)
\(108\) 0 0
\(109\) −6.96516 + 4.02134i −0.667141 + 0.385174i −0.794993 0.606619i \(-0.792525\pi\)
0.127851 + 0.991793i \(0.459192\pi\)
\(110\) 0 0
\(111\) −10.0461 5.80012i −0.953534 0.550523i
\(112\) 0 0
\(113\) 4.00235 6.93227i 0.376509 0.652133i −0.614043 0.789273i \(-0.710458\pi\)
0.990552 + 0.137140i \(0.0437910\pi\)
\(114\) 0 0
\(115\) −21.8668 12.6248i −2.03909 1.17727i
\(116\) 0 0
\(117\) 16.2906 21.3094i 1.50607 1.97005i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1.90432 + 3.29839i 0.173120 + 0.299853i
\(122\) 0 0
\(123\) 12.8689i 1.16035i
\(124\) 0 0
\(125\) 0.289701i 0.0259116i
\(126\) 0 0
\(127\) 0.664383 + 1.15075i 0.0589545 + 0.102112i 0.893996 0.448074i \(-0.147890\pi\)
−0.835042 + 0.550186i \(0.814557\pi\)
\(128\) 0 0
\(129\) −18.5704 32.1648i −1.63503 2.83195i
\(130\) 0 0
\(131\) 0.296380 0.513346i 0.0258949 0.0448512i −0.852788 0.522258i \(-0.825090\pi\)
0.878682 + 0.477407i \(0.158423\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −39.1004 22.5746i −3.36523 1.94291i
\(136\) 0 0
\(137\) 2.56034i 0.218745i 0.994001 + 0.109372i \(0.0348841\pi\)
−0.994001 + 0.109372i \(0.965116\pi\)
\(138\) 0 0
\(139\) 9.01150 15.6084i 0.764345 1.32388i −0.176247 0.984346i \(-0.556396\pi\)
0.940592 0.339538i \(-0.110271\pi\)
\(140\) 0 0
\(141\) −12.1754 + 7.02946i −1.02535 + 0.591987i
\(142\) 0 0
\(143\) −1.78635 + 13.7594i −0.149382 + 1.15062i
\(144\) 0 0
\(145\) 8.55869i 0.710760i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.02164 + 4.05394i −0.575235 + 0.332112i −0.759237 0.650814i \(-0.774428\pi\)
0.184002 + 0.982926i \(0.441095\pi\)
\(150\) 0 0
\(151\) −3.10734 + 1.79402i −0.252872 + 0.145995i −0.621078 0.783748i \(-0.713305\pi\)
0.368207 + 0.929744i \(0.379972\pi\)
\(152\) 0 0
\(153\) 0.722990 + 1.25226i 0.0584503 + 0.101239i
\(154\) 0 0
\(155\) −26.8080 −2.15327
\(156\) 0 0
\(157\) −7.17236 12.4229i −0.572417 0.991455i −0.996317 0.0857459i \(-0.972673\pi\)
0.423900 0.905709i \(-0.360661\pi\)
\(158\) 0 0
\(159\) −1.86365 −0.147797
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −0.213164 + 0.123070i −0.0166963 + 0.00963961i −0.508325 0.861165i \(-0.669735\pi\)
0.491629 + 0.870805i \(0.336402\pi\)
\(164\) 0 0
\(165\) 39.1370 3.04681
\(166\) 0 0
\(167\) 1.56604 0.904156i 0.121184 0.0699657i −0.438183 0.898886i \(-0.644378\pi\)
0.559367 + 0.828920i \(0.311044\pi\)
\(168\) 0 0
\(169\) −9.15934 + 9.22532i −0.704565 + 0.709640i
\(170\) 0 0
\(171\) 39.6623 + 22.8990i 3.03305 + 1.75113i
\(172\) 0 0
\(173\) −5.39981 9.35275i −0.410540 0.711076i 0.584409 0.811459i \(-0.301326\pi\)
−0.994949 + 0.100383i \(0.967993\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.83892 + 3.37110i 0.438880 + 0.253387i
\(178\) 0 0
\(179\) 4.33823 7.51404i 0.324255 0.561626i −0.657106 0.753798i \(-0.728220\pi\)
0.981361 + 0.192172i \(0.0615532\pi\)
\(180\) 0 0
\(181\) −10.0087 −0.743940 −0.371970 0.928245i \(-0.621318\pi\)
−0.371970 + 0.928245i \(0.621318\pi\)
\(182\) 0 0
\(183\) 11.0019 0.813283
\(184\) 0 0
\(185\) 5.65057 9.78707i 0.415438 0.719559i
\(186\) 0 0
\(187\) −0.647761 0.373985i −0.0473690 0.0273485i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0156 + 20.8117i 0.869420 + 1.50588i 0.862591 + 0.505902i \(0.168840\pi\)
0.00682903 + 0.999977i \(0.497826\pi\)
\(192\) 0 0
\(193\) 2.83457 + 1.63654i 0.204037 + 0.117801i 0.598537 0.801095i \(-0.295749\pi\)
−0.394500 + 0.918896i \(0.629082\pi\)
\(194\) 0 0
\(195\) 29.1316 + 22.2705i 2.08616 + 1.59483i
\(196\) 0 0
\(197\) 11.0439 6.37619i 0.786844 0.454285i −0.0520061 0.998647i \(-0.516562\pi\)
0.838850 + 0.544362i \(0.183228\pi\)
\(198\) 0 0
\(199\) −27.3231 −1.93688 −0.968442 0.249239i \(-0.919819\pi\)
−0.968442 + 0.249239i \(0.919819\pi\)
\(200\) 0 0
\(201\) 15.1666 8.75643i 1.06977 0.617631i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 12.5371 0.875629
\(206\) 0 0
\(207\) −29.8379 51.6808i −2.07388 3.59206i
\(208\) 0 0
\(209\) −23.6902 −1.63869
\(210\) 0 0
\(211\) −13.2929 23.0239i −0.915118 1.58503i −0.806728 0.590923i \(-0.798764\pi\)
−0.108390 0.994108i \(-0.534570\pi\)
\(212\) 0 0
\(213\) 25.6081 14.7848i 1.75464 1.01304i
\(214\) 0 0
\(215\) 31.3355 18.0915i 2.13706 1.23383i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 10.7014i 0.723130i
\(220\) 0 0
\(221\) −0.269348 0.646978i −0.0181183 0.0435205i
\(222\) 0 0
\(223\) 13.1063 7.56691i 0.877661 0.506718i 0.00777474 0.999970i \(-0.497525\pi\)
0.869887 + 0.493252i \(0.164192\pi\)
\(224\) 0 0
\(225\) 18.2561 31.6205i 1.21707 2.10803i
\(226\) 0 0
\(227\) 21.4054i 1.42072i 0.703836 + 0.710362i \(0.251469\pi\)
−0.703836 + 0.710362i \(0.748531\pi\)
\(228\) 0 0
\(229\) 7.24104 + 4.18062i 0.478501 + 0.276263i 0.719792 0.694190i \(-0.244237\pi\)
−0.241290 + 0.970453i \(0.577571\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0832 + 22.6607i −0.857107 + 1.48455i 0.0175695 + 0.999846i \(0.494407\pi\)
−0.874676 + 0.484707i \(0.838926\pi\)
\(234\) 0 0
\(235\) −6.84821 11.8614i −0.446728 0.773756i
\(236\) 0 0
\(237\) 14.5193 + 25.1482i 0.943132 + 1.63355i
\(238\) 0 0
\(239\) 18.3562i 1.18736i 0.804700 + 0.593682i \(0.202326\pi\)
−0.804700 + 0.593682i \(0.797674\pi\)
\(240\) 0 0
\(241\) 3.33482i 0.214814i 0.994215 + 0.107407i \(0.0342549\pi\)
−0.994215 + 0.107407i \(0.965745\pi\)
\(242\) 0 0
\(243\) −17.2988 29.9623i −1.10972 1.92209i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −17.6338 13.4807i −1.12201 0.857757i
\(248\) 0 0
\(249\) −21.4435 12.3804i −1.35893 0.784578i
\(250\) 0 0
\(251\) −6.09884 + 10.5635i −0.384956 + 0.666763i −0.991763 0.128086i \(-0.959117\pi\)
0.606807 + 0.794849i \(0.292450\pi\)
\(252\) 0 0
\(253\) 26.7332 + 15.4344i 1.68070 + 0.970353i
\(254\) 0 0
\(255\) −1.71193 + 0.988384i −0.107205 + 0.0618950i
\(256\) 0 0
\(257\) −15.2730 −0.952701 −0.476350 0.879256i \(-0.658041\pi\)
−0.476350 + 0.879256i \(0.658041\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.1140 17.5179i 0.626038 1.08433i
\(262\) 0 0
\(263\) −12.4495 + 21.5631i −0.767666 + 1.32964i 0.171159 + 0.985243i \(0.445249\pi\)
−0.938825 + 0.344394i \(0.888085\pi\)
\(264\) 0 0
\(265\) 1.81560i 0.111531i
\(266\) 0 0
\(267\) −14.3132 8.26373i −0.875953 0.505732i
\(268\) 0 0
\(269\) −7.85673 −0.479033 −0.239517 0.970892i \(-0.576989\pi\)
−0.239517 + 0.970892i \(0.576989\pi\)
\(270\) 0 0
\(271\) 2.63865i 0.160287i 0.996783 + 0.0801433i \(0.0255378\pi\)
−0.996783 + 0.0801433i \(0.974462\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 18.8868i 1.13892i
\(276\) 0 0
\(277\) −11.6549 −0.700273 −0.350136 0.936699i \(-0.613865\pi\)
−0.350136 + 0.936699i \(0.613865\pi\)
\(278\) 0 0
\(279\) −54.8705 31.6795i −3.28501 1.89660i
\(280\) 0 0
\(281\) 3.86501i 0.230567i 0.993333 + 0.115283i \(0.0367776\pi\)
−0.993333 + 0.115283i \(0.963222\pi\)
\(282\) 0 0
\(283\) 3.42431 5.93109i 0.203554 0.352566i −0.746117 0.665815i \(-0.768084\pi\)
0.949671 + 0.313249i \(0.101417\pi\)
\(284\) 0 0
\(285\) −31.3048 + 54.2215i −1.85433 + 3.21180i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.9622 −0.997778
\(290\) 0 0
\(291\) −26.9367 + 15.5519i −1.57906 + 0.911670i
\(292\) 0 0
\(293\) 1.28946 + 0.744468i 0.0753309 + 0.0434923i 0.537192 0.843460i \(-0.319485\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(294\) 0 0
\(295\) −3.28418 + 5.68836i −0.191212 + 0.331189i
\(296\) 0 0
\(297\) 47.8021 + 27.5985i 2.77376 + 1.60143i
\(298\) 0 0
\(299\) 11.1160 + 26.7009i 0.642858 + 1.54415i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −4.10592 7.11166i −0.235879 0.408554i
\(304\) 0 0
\(305\) 10.7182i 0.613723i
\(306\) 0 0
\(307\) 2.33128i 0.133053i 0.997785 + 0.0665265i \(0.0211917\pi\)
−0.997785 + 0.0665265i \(0.978808\pi\)
\(308\) 0 0
\(309\) −5.41826 9.38470i −0.308234 0.533877i
\(310\) 0 0
\(311\) −5.91221 10.2403i −0.335251 0.580672i 0.648282 0.761400i \(-0.275488\pi\)
−0.983533 + 0.180729i \(0.942154\pi\)
\(312\) 0 0
\(313\) 9.20434 15.9424i 0.520260 0.901117i −0.479462 0.877563i \(-0.659168\pi\)
0.999723 0.0235548i \(-0.00749841\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.29431 + 4.21137i 0.409689 + 0.236534i 0.690656 0.723183i \(-0.257322\pi\)
−0.280967 + 0.959717i \(0.590655\pi\)
\(318\) 0 0
\(319\) 10.4634i 0.585838i
\(320\) 0 0
\(321\) 20.8610 36.1323i 1.16435 2.01671i
\(322\) 0 0
\(323\) 1.03626 0.598284i 0.0576590 0.0332894i
\(324\) 0 0
\(325\) −10.7474 + 14.0584i −0.596158 + 0.779821i
\(326\) 0 0
\(327\) 25.9859i 1.43702i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −15.6375 + 9.02830i −0.859513 + 0.496240i −0.863849 0.503750i \(-0.831953\pi\)
0.00433587 + 0.999991i \(0.498620\pi\)
\(332\) 0 0
\(333\) 23.1311 13.3548i 1.26758 0.731836i
\(334\) 0 0
\(335\) 8.53065 + 14.7755i 0.466079 + 0.807273i
\(336\) 0 0
\(337\) −3.64765 −0.198700 −0.0993500 0.995053i \(-0.531676\pi\)
−0.0993500 + 0.995053i \(0.531676\pi\)
\(338\) 0 0
\(339\) 12.9316 + 22.3982i 0.702347 + 1.21650i
\(340\) 0 0
\(341\) 32.7740 1.77481
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 70.6517 40.7908i 3.80376 2.19610i
\(346\) 0 0
\(347\) 14.5945 0.783476 0.391738 0.920077i \(-0.371874\pi\)
0.391738 + 0.920077i \(0.371874\pi\)
\(348\) 0 0
\(349\) −15.4877 + 8.94182i −0.829037 + 0.478645i −0.853523 0.521056i \(-0.825538\pi\)
0.0244861 + 0.999700i \(0.492205\pi\)
\(350\) 0 0
\(351\) 19.8768 + 47.7443i 1.06094 + 2.54840i
\(352\) 0 0
\(353\) −5.52760 3.19136i −0.294204 0.169859i 0.345632 0.938370i \(-0.387665\pi\)
−0.639836 + 0.768511i \(0.720998\pi\)
\(354\) 0 0
\(355\) 14.4036 + 24.9478i 0.764464 + 1.32409i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.4089 15.2472i −1.39381 0.804717i −0.400076 0.916482i \(-0.631016\pi\)
−0.993735 + 0.111765i \(0.964350\pi\)
\(360\) 0 0
\(361\) 9.44927 16.3666i 0.497330 0.861400i
\(362\) 0 0
\(363\) −12.3057 −0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) 3.58169 6.20366i 0.186962 0.323829i −0.757274 0.653098i \(-0.773469\pi\)
0.944236 + 0.329269i \(0.106802\pi\)
\(368\) 0 0
\(369\) 25.6609 + 14.8153i 1.33585 + 0.771255i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0.582337 + 1.00864i 0.0301523 + 0.0522252i 0.880708 0.473660i \(-0.157067\pi\)
−0.850556 + 0.525885i \(0.823734\pi\)
\(374\) 0 0
\(375\) −0.810620 0.468011i −0.0418602 0.0241680i
\(376\) 0 0
\(377\) −5.95410 + 7.78843i −0.306652 + 0.401125i
\(378\) 0 0
\(379\) −25.1318 + 14.5099i −1.29093 + 0.745322i −0.978820 0.204723i \(-0.934371\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(380\) 0 0
\(381\) −4.29325 −0.219950
\(382\) 0 0
\(383\) −19.0154 + 10.9786i −0.971642 + 0.560978i −0.899737 0.436433i \(-0.856241\pi\)
−0.0719059 + 0.997411i \(0.522908\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 85.5163 4.34704
\(388\) 0 0
\(389\) 14.5986 + 25.2856i 0.740180 + 1.28203i 0.952413 + 0.304811i \(0.0985932\pi\)
−0.212233 + 0.977219i \(0.568074\pi\)
\(390\) 0 0
\(391\) −1.55915 −0.0788498
\(392\) 0 0
\(393\) 0.957605 + 1.65862i 0.0483048 + 0.0836664i
\(394\) 0 0
\(395\) −24.4998 + 14.1450i −1.23272 + 0.711710i
\(396\) 0 0
\(397\) −27.6698 + 15.9752i −1.38871 + 0.801771i −0.993170 0.116679i \(-0.962775\pi\)
−0.395538 + 0.918450i \(0.629442\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 36.8552i 1.84046i 0.391374 + 0.920232i \(0.372000\pi\)
−0.391374 + 0.920232i \(0.628000\pi\)
\(402\) 0 0
\(403\) 24.3954 + 18.6498i 1.21522 + 0.929011i
\(404\) 0 0
\(405\) 65.4947 37.8134i 3.25446 1.87896i
\(406\) 0 0
\(407\) −6.90808 + 11.9651i −0.342421 + 0.593090i
\(408\) 0 0
\(409\) 5.65493i 0.279618i −0.990178 0.139809i \(-0.955351\pi\)
0.990178 0.139809i \(-0.0446489\pi\)
\(410\) 0 0
\(411\) −7.16417 4.13623i −0.353382 0.204025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0612 20.8906i 0.592061 1.02548i
\(416\) 0 0
\(417\) 29.1162 + 50.4307i 1.42582 + 2.46960i
\(418\) 0 0
\(419\) 12.9031 + 22.3488i 0.630358 + 1.09181i 0.987478 + 0.157754i \(0.0504254\pi\)
−0.357120 + 0.934059i \(0.616241\pi\)
\(420\) 0 0
\(421\) 28.8606i 1.40658i 0.710903 + 0.703290i \(0.248286\pi\)
−0.710903 + 0.703290i \(0.751714\pi\)
\(422\) 0 0
\(423\) 32.3706i 1.57391i
\(424\) 0 0
\(425\) −0.476977 0.826149i −0.0231368 0.0400741i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −35.6148 27.2268i −1.71950 1.31452i
\(430\) 0 0
\(431\) 27.4281 + 15.8356i 1.32116 + 0.762774i 0.983914 0.178641i \(-0.0571702\pi\)
0.337249 + 0.941415i \(0.390504\pi\)
\(432\) 0 0
\(433\) 15.6517 27.1095i 0.752172 1.30280i −0.194597 0.980883i \(-0.562340\pi\)
0.946768 0.321916i \(-0.104327\pi\)
\(434\) 0 0
\(435\) 23.9483 + 13.8266i 1.14823 + 0.662933i
\(436\) 0 0
\(437\) −42.7666 + 24.6913i −2.04580 + 1.18114i
\(438\) 0 0
\(439\) −36.9572 −1.76387 −0.881935 0.471371i \(-0.843759\pi\)
−0.881935 + 0.471371i \(0.843759\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.1436 + 24.4974i −0.671981 + 1.16391i 0.305360 + 0.952237i \(0.401223\pi\)
−0.977341 + 0.211669i \(0.932110\pi\)
\(444\) 0 0
\(445\) 8.05065 13.9441i 0.381638 0.661016i
\(446\) 0 0
\(447\) 26.1966i 1.23906i
\(448\) 0 0
\(449\) 21.0690 + 12.1642i 0.994308 + 0.574064i 0.906559 0.422079i \(-0.138699\pi\)
0.0877485 + 0.996143i \(0.472033\pi\)
\(450\) 0 0
\(451\) −15.3272 −0.721730
\(452\) 0 0
\(453\) 11.5930i 0.544686i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.54960i 0.0724870i −0.999343 0.0362435i \(-0.988461\pi\)
0.999343 0.0362435i \(-0.0115392\pi\)
\(458\) 0 0
\(459\) −2.78795 −0.130130
\(460\) 0 0
\(461\) 11.2195 + 6.47760i 0.522545 + 0.301692i 0.737975 0.674828i \(-0.235782\pi\)
−0.215430 + 0.976519i \(0.569115\pi\)
\(462\) 0 0
\(463\) 28.1690i 1.30912i −0.756008 0.654562i \(-0.772853\pi\)
0.756008 0.654562i \(-0.227147\pi\)
\(464\) 0 0
\(465\) 43.3083 75.0122i 2.00837 3.47861i
\(466\) 0 0
\(467\) 14.6454 25.3666i 0.677709 1.17383i −0.297960 0.954578i \(-0.596306\pi\)
0.975669 0.219248i \(-0.0703605\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 46.3478 2.13559
\(472\) 0 0
\(473\) −38.3091 + 22.1177i −1.76145 + 1.01697i
\(474\) 0 0
\(475\) −26.1664 15.1072i −1.20059 0.693164i
\(476\) 0 0
\(477\) 2.14553 3.71616i 0.0982369 0.170151i
\(478\) 0 0
\(479\) 16.8625 + 9.73555i 0.770466 + 0.444829i 0.833041 0.553211i \(-0.186598\pi\)
−0.0625747 + 0.998040i \(0.519931\pi\)
\(480\) 0 0
\(481\) −11.9507 + 4.97528i −0.544905 + 0.226853i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −15.1509 26.2422i −0.687968 1.19160i
\(486\) 0 0
\(487\) 4.53546i 0.205521i −0.994706 0.102761i \(-0.967232\pi\)
0.994706 0.102761i \(-0.0327676\pi\)
\(488\) 0 0
\(489\) 0.795281i 0.0359638i
\(490\) 0 0
\(491\) 9.07433 + 15.7172i 0.409519 + 0.709307i 0.994836 0.101497i \(-0.0323633\pi\)
−0.585317 + 0.810804i \(0.699030\pi\)
\(492\) 0 0
\(493\) −0.264248 0.457690i −0.0119011 0.0206133i
\(494\) 0 0
\(495\) −45.0563 + 78.0399i −2.02513 + 3.50763i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 5.76368 + 3.32766i 0.258018 + 0.148967i 0.623430 0.781879i \(-0.285739\pi\)
−0.365412 + 0.930846i \(0.619072\pi\)
\(500\) 0 0
\(501\) 5.84266i 0.261031i
\(502\) 0 0
\(503\) −7.45978 + 12.9207i −0.332615 + 0.576106i −0.983024 0.183478i \(-0.941264\pi\)
0.650409 + 0.759584i \(0.274598\pi\)
\(504\) 0 0
\(505\) 6.92829 4.00005i 0.308305 0.178000i
\(506\) 0 0
\(507\) −11.0167 40.5325i −0.489269 1.80011i
\(508\) 0 0
\(509\) 17.7673i 0.787522i −0.919213 0.393761i \(-0.871174\pi\)
0.919213 0.393761i \(-0.128826\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −76.4716 + 44.1509i −3.37630 + 1.94931i
\(514\) 0 0
\(515\) 9.14272 5.27855i 0.402876 0.232601i
\(516\) 0 0
\(517\) 8.37226 + 14.5012i 0.368211 + 0.637761i
\(518\) 0 0
\(519\) 34.8936 1.53166
\(520\) 0 0
\(521\) −19.0289 32.9591i −0.833673 1.44396i −0.895106 0.445853i \(-0.852900\pi\)
0.0614331 0.998111i \(-0.480433\pi\)
\(522\) 0 0
\(523\) 13.8905 0.607390 0.303695 0.952769i \(-0.401780\pi\)
0.303695 + 0.952769i \(0.401780\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.43360 + 0.827691i −0.0624487 + 0.0360548i
\(528\) 0 0
\(529\) 41.3465 1.79767
\(530\) 0 0
\(531\) −13.4441 + 7.76195i −0.583424 + 0.336840i
\(532\) 0 0
\(533\) −11.4088 8.72181i −0.494170 0.377783i
\(534\) 0 0
\(535\) 35.2006 + 20.3231i 1.52185 + 0.878643i
\(536\) 0 0
\(537\) 14.0168 + 24.2779i 0.604871 + 1.04767i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.2391 + 20.9226i 1.55804 + 0.899535i 0.997445 + 0.0714444i \(0.0227608\pi\)
0.560595 + 0.828090i \(0.310572\pi\)
\(542\) 0 0
\(543\) 16.1690 28.0056i 0.693880 1.20184i
\(544\) 0 0
\(545\) 25.3159 1.08441
\(546\) 0 0
\(547\) −22.3475 −0.955509 −0.477754 0.878493i \(-0.658549\pi\)
−0.477754 + 0.878493i \(0.658549\pi\)
\(548\) 0 0
\(549\) −12.6659 + 21.9380i −0.540568 + 0.936291i
\(550\) 0 0
\(551\) −14.4963 8.36943i −0.617562 0.356550i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 18.2570 + 31.6220i 0.774966 + 1.34228i
\(556\) 0 0
\(557\) −26.5499 15.3286i −1.12495 0.649493i −0.182293 0.983244i \(-0.558352\pi\)
−0.942661 + 0.333752i \(0.891685\pi\)
\(558\) 0 0
\(559\) −41.1013 5.33608i −1.73840 0.225692i
\(560\) 0 0
\(561\) 2.09292 1.20835i 0.0883630 0.0510164i
\(562\) 0 0
\(563\) 33.2473 1.40121 0.700604 0.713550i \(-0.252914\pi\)
0.700604 + 0.713550i \(0.252914\pi\)
\(564\) 0 0
\(565\) −21.8206 + 12.5982i −0.918001 + 0.530008i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.6102 −0.486725 −0.243363 0.969935i \(-0.578251\pi\)
−0.243363 + 0.969935i \(0.578251\pi\)
\(570\) 0 0
\(571\) −8.34968 14.4621i −0.349423 0.605219i 0.636724 0.771092i \(-0.280289\pi\)
−0.986147 + 0.165873i \(0.946956\pi\)
\(572\) 0 0
\(573\) −77.6450 −3.24366
\(574\) 0 0
\(575\) 19.6849 + 34.0953i 0.820918 + 1.42187i
\(576\) 0 0
\(577\) −32.2666 + 18.6291i −1.34328 + 0.775541i −0.987287 0.158948i \(-0.949190\pi\)
−0.355990 + 0.934490i \(0.615856\pi\)
\(578\) 0 0
\(579\) −9.15849 + 5.28765i −0.380614 + 0.219747i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.21965i 0.0919287i
\(584\) 0 0
\(585\) −77.9456 + 32.4501i −3.22265 + 1.34165i
\(586\) 0 0
\(587\) 36.1912 20.8950i 1.49377 0.862429i 0.493796 0.869578i \(-0.335609\pi\)
0.999974 + 0.00714861i \(0.00227549\pi\)
\(588\) 0 0
\(589\) −26.2152 + 45.4061i −1.08018 + 1.87092i
\(590\) 0 0
\(591\) 41.2030i 1.69486i
\(592\) 0 0
\(593\) 3.75571 + 2.16836i 0.154228 + 0.0890438i 0.575128 0.818063i \(-0.304952\pi\)
−0.420900 + 0.907107i \(0.638286\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 44.1405 76.4536i 1.80655 3.12904i
\(598\) 0 0
\(599\) −11.3789 19.7088i −0.464929 0.805280i 0.534270 0.845314i \(-0.320587\pi\)
−0.999198 + 0.0400339i \(0.987253\pi\)
\(600\) 0 0
\(601\) 13.7634 + 23.8389i 0.561421 + 0.972410i 0.997373 + 0.0724402i \(0.0230786\pi\)
−0.435951 + 0.899970i \(0.643588\pi\)
\(602\) 0 0
\(603\) 40.3233i 1.64209i
\(604\) 0 0
\(605\) 11.9885i 0.487400i
\(606\) 0 0
\(607\) 4.53483 + 7.85456i 0.184063 + 0.318807i 0.943260 0.332054i \(-0.107742\pi\)
−0.759197 + 0.650861i \(0.774408\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.01987 + 15.5581i −0.0817153 + 0.629414i
\(612\) 0 0
\(613\) 8.12241 + 4.68947i 0.328061 + 0.189406i 0.654980 0.755646i \(-0.272677\pi\)
−0.326919 + 0.945052i \(0.606010\pi\)
\(614\) 0 0
\(615\) −20.2537 + 35.0804i −0.816708 + 1.41458i
\(616\) 0 0
\(617\) −26.0786 15.0565i −1.04988 0.606151i −0.127267 0.991869i \(-0.540620\pi\)
−0.922617 + 0.385718i \(0.873954\pi\)
\(618\) 0 0
\(619\) 34.5494 19.9471i 1.38866 0.801742i 0.395493 0.918469i \(-0.370574\pi\)
0.993164 + 0.116727i \(0.0372404\pi\)
\(620\) 0 0
\(621\) 115.059 4.61716
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.7259 22.0418i 0.509034 0.881673i
\(626\) 0 0
\(627\) 38.2715 66.2883i 1.52842 2.64730i
\(628\) 0 0
\(629\) 0.697840i 0.0278247i
\(630\) 0 0
\(631\) −21.3804 12.3440i −0.851140 0.491406i 0.00989522 0.999951i \(-0.496850\pi\)
−0.861035 + 0.508545i \(0.830184\pi\)
\(632\) 0 0
\(633\) 85.8985 3.41416
\(634\) 0 0
\(635\) 4.18255i 0.165979i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 68.0840i 2.69336i
\(640\) 0 0
\(641\) 18.6177 0.735353 0.367677 0.929954i \(-0.380153\pi\)
0.367677 + 0.929954i \(0.380153\pi\)
\(642\) 0 0
\(643\) −27.4384 15.8415i −1.08206 0.624729i −0.150611 0.988593i \(-0.548124\pi\)
−0.931452 + 0.363864i \(0.881457\pi\)
\(644\) 0 0
\(645\) 116.908i 4.60323i
\(646\) 0 0
\(647\) 14.8291 25.6848i 0.582994 1.00977i −0.412129 0.911126i \(-0.635215\pi\)
0.995122 0.0986488i \(-0.0314521\pi\)
\(648\) 0 0
\(649\) 4.01506 6.95429i 0.157605 0.272980i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 12.6897 0.496585 0.248292 0.968685i \(-0.420131\pi\)
0.248292 + 0.968685i \(0.420131\pi\)
\(654\) 0 0
\(655\) −1.61585 + 0.932914i −0.0631367 + 0.0364520i
\(656\) 0 0
\(657\) 21.3387 + 12.3199i 0.832502 + 0.480645i
\(658\) 0 0
\(659\) 12.2763 21.2632i 0.478217 0.828296i −0.521471 0.853269i \(-0.674617\pi\)
0.999688 + 0.0249730i \(0.00794998\pi\)
\(660\) 0 0
\(661\) −22.1333 12.7787i −0.860887 0.497033i 0.00342228 0.999994i \(-0.498911\pi\)
−0.864309 + 0.502961i \(0.832244\pi\)
\(662\) 0 0
\(663\) 2.24546 + 0.291523i 0.0872065 + 0.0113218i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 10.9055 + 18.8890i 0.422264 + 0.731383i
\(668\) 0 0
\(669\) 48.8974i 1.89048i
\(670\) 0 0
\(671\) 13.1035i 0.505856i
\(672\) 0 0
\(673\) −3.39829 5.88601i −0.130994 0.226889i 0.793066 0.609136i \(-0.208484\pi\)
−0.924060 + 0.382247i \(0.875150\pi\)
\(674\) 0 0
\(675\) 35.1989 + 60.9664i 1.35481 + 2.34660i
\(676\) 0 0
\(677\) 13.0478 22.5995i 0.501468 0.868569i −0.498530 0.866872i \(-0.666127\pi\)
0.999999 0.00169631i \(-0.000539952\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −59.8950 34.5804i −2.29518 1.32512i
\(682\) 0 0
\(683\) 48.6898i 1.86306i −0.363660 0.931532i \(-0.618473\pi\)
0.363660 0.931532i \(-0.381527\pi\)
\(684\) 0 0
\(685\) 4.02958 6.97944i 0.153962 0.266671i
\(686\) 0 0
\(687\) −23.3958 + 13.5076i −0.892606 + 0.515346i
\(688\) 0 0
\(689\) −1.26307 + 1.65220i −0.0481193 + 0.0629438i
\(690\) 0 0
\(691\) 3.59045i 0.136587i −0.997665 0.0682935i \(-0.978245\pi\)
0.997665 0.0682935i \(-0.0217554\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −49.1303 + 28.3654i −1.86362 + 1.07596i
\(696\) 0 0
\(697\) 0.670443 0.387080i 0.0253948 0.0146617i
\(698\) 0 0
\(699\) −42.2717 73.2168i −1.59886 2.76931i
\(700\) 0 0
\(701\) −15.8746 −0.599575 −0.299787 0.954006i \(-0.596916\pi\)
−0.299787 + 0.954006i \(0.596916\pi\)
\(702\) 0 0
\(703\) −11.0512 19.1413i −0.416805 0.721928i
\(704\) 0 0
\(705\) 44.2532 1.66667
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 19.6154 11.3250i 0.736673 0.425318i −0.0841852 0.996450i \(-0.526829\pi\)
0.820858 + 0.571132i \(0.193495\pi\)
\(710\) 0 0
\(711\) −66.8614 −2.50750
\(712\) 0 0
\(713\) 59.1650 34.1589i 2.21575 1.27926i
\(714\) 0 0
\(715\) 26.5248 34.6965i 0.991969 1.29757i
\(716\) 0 0
\(717\) −51.3630 29.6544i −1.91819 1.10747i
\(718\) 0 0
\(719\) 5.12631 + 8.87903i 0.191179 + 0.331132i 0.945641 0.325212i \(-0.105436\pi\)
−0.754462 + 0.656344i \(0.772102\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −9.33125 5.38740i −0.347033 0.200359i
\(724\) 0 0
\(725\) −6.67246 + 11.5570i −0.247809 + 0.429218i
\(726\) 0 0
\(727\) −5.60059 −0.207715 −0.103857 0.994592i \(-0.533119\pi\)
−0.103857 + 0.994592i \(0.533119\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) 1.11714 1.93495i 0.0413191 0.0715667i
\(732\) 0 0
\(733\) 35.6418 + 20.5778i 1.31646 + 0.760058i 0.983157 0.182762i \(-0.0585038\pi\)
0.333302 + 0.942820i \(0.391837\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −10.4291 18.0638i −0.384162 0.665388i
\(738\) 0 0
\(739\) −10.5196 6.07347i −0.386968 0.223416i 0.293877 0.955843i \(-0.405054\pi\)
−0.680846 + 0.732427i \(0.738388\pi\)
\(740\) 0 0
\(741\) 66.2082 27.5636i 2.43222 1.01257i
\(742\) 0 0
\(743\) 0.486744 0.281022i 0.0178569 0.0103097i −0.491045 0.871134i \(-0.663385\pi\)
0.508902 + 0.860825i \(0.330052\pi\)
\(744\) 0 0
\(745\) 25.5211 0.935022
\(746\) 0 0
\(747\) 49.3737 28.5059i 1.80649 1.04298i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 22.7138 0.828837 0.414418 0.910086i \(-0.363985\pi\)
0.414418 + 0.910086i \(0.363985\pi\)
\(752\) 0 0
\(753\) −19.7054 34.1307i −0.718104 1.24379i
\(754\) 0 0
\(755\) 11.2941 0.411033
\(756\) 0 0
\(757\) −9.74099 16.8719i −0.354042 0.613219i 0.632911 0.774224i \(-0.281860\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(758\) 0 0
\(759\) −86.3750 + 49.8686i −3.13521 + 1.81012i
\(760\) 0 0
\(761\) −37.0082 + 21.3667i −1.34155 + 0.774543i −0.987034 0.160509i \(-0.948687\pi\)
−0.354513 + 0.935051i \(0.615353\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 4.55150i 0.164560i
\(766\) 0 0
\(767\) 6.94589 2.89169i 0.250802 0.104413i
\(768\) 0 0
\(769\) −29.5477 + 17.0593i −1.06552 + 0.615176i −0.926953 0.375178i \(-0.877582\pi\)
−0.138563 + 0.990354i \(0.544248\pi\)
\(770\) 0 0
\(771\) 24.6735 42.7357i 0.888593 1.53909i
\(772\) 0 0
\(773\) 28.8705i 1.03840i 0.854653 + 0.519200i \(0.173770\pi\)
−0.854653 + 0.519200i \(0.826230\pi\)
\(774\) 0 0
\(775\) 36.1996 + 20.8999i 1.30033 + 0.750745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.2599 21.2347i 0.439256 0.760813i
\(780\) 0 0
\(781\) −17.6091 30.4998i −0.630103 1.09137i
\(782\) 0 0
\(783\) 19.5004 + 33.7757i 0.696887 + 1.20704i
\(784\) 0 0
\(785\) 45.1528i 1.61157i
\(786\) 0 0
\(787\) 44.9696i 1.60299i −0.597999 0.801497i \(-0.704037\pi\)
0.597999 0.801497i \(-0.295963\pi\)
\(788\) 0 0
\(789\) −40.2242 69.6704i −1.43202 2.48033i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 7.45644 9.75361i 0.264786 0.346361i
\(794\) 0 0
\(795\) 5.08028 + 2.93310i 0.180179 + 0.104026i
\(796\) 0 0
\(797\) −10.7092 + 18.5489i −0.379340 + 0.657036i −0.990966 0.134111i \(-0.957182\pi\)
0.611627 + 0.791147i \(0.290515\pi\)
\(798\) 0 0
\(799\) −0.732440 0.422874i −0.0259118 0.0149602i
\(800\) 0 0
\(801\) 32.9561 19.0272i 1.16445 0.672293i
\(802\) 0 0
\(803\) −12.7456 −0.449781
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.6925 21.9841i 0.446799 0.773878i
\(808\) 0 0
\(809\) 4.12749 7.14902i 0.145115 0.251346i −0.784301 0.620381i \(-0.786978\pi\)
0.929416 + 0.369034i \(0.120312\pi\)
\(810\) 0 0
\(811\) 43.7679i 1.53690i 0.639910 + 0.768450i \(0.278971\pi\)
−0.639910 + 0.768450i \(0.721029\pi\)
\(812\) 0 0
\(813\) −7.38329 4.26274i −0.258943 0.149501i
\(814\) 0 0
\(815\) 0.774775 0.0271392
\(816\) 0 0
\(817\) 70.7659i 2.47579i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 22.1084i 0.771589i 0.922585 + 0.385795i \(0.126073\pi\)
−0.922585 + 0.385795i \(0.873927\pi\)
\(822\) 0 0
\(823\) 42.0711 1.46650 0.733252 0.679957i \(-0.238001\pi\)
0.733252 + 0.679957i \(0.238001\pi\)
\(824\) 0 0
\(825\) −52.8478 30.5117i −1.83992 1.06228i
\(826\) 0 0
\(827\) 44.4242i 1.54478i −0.635148 0.772390i \(-0.719061\pi\)
0.635148 0.772390i \(-0.280939\pi\)
\(828\) 0 0
\(829\) −8.97394 + 15.5433i −0.311678 + 0.539842i −0.978726 0.205173i \(-0.934224\pi\)
0.667048 + 0.745015i \(0.267558\pi\)
\(830\) 0 0
\(831\) 18.8284 32.6118i 0.653151 1.13129i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.69201 −0.196980
\(836\) 0 0
\(837\) 105.794 61.0802i 3.65677 2.11124i
\(838\) 0 0
\(839\) 3.09534 + 1.78709i 0.106863 + 0.0616973i 0.552479 0.833527i \(-0.313682\pi\)
−0.445616 + 0.895224i \(0.647015\pi\)
\(840\) 0 0
\(841\) 10.8034 18.7121i 0.372532 0.645244i
\(842\) 0 0
\(843\) −10.8148 6.24392i −0.372481 0.215052i
\(844\) 0 0
\(845\) 39.4874 10.7326i 1.35841 0.369214i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 11.0640 + 19.1633i 0.379714 + 0.657684i
\(850\) 0 0
\(851\) 28.8000i 0.987251i
\(852\) 0 0
\(853\) 24.4780i 0.838111i 0.907961 + 0.419055i \(0.137639\pi\)
−0.907961 + 0.419055i \(0.862361\pi\)
\(854\) 0 0
\(855\) −72.0791 124.845i −2.46505 4.26960i
\(856\) 0 0
\(857\) 13.4719 + 23.3340i 0.460192 + 0.797076i 0.998970 0.0453720i \(-0.0144473\pi\)
−0.538778 + 0.842448i \(0.681114\pi\)
\(858\) 0 0
\(859\) 8.97686 15.5484i 0.306287 0.530504i −0.671260 0.741222i \(-0.734247\pi\)
0.977547 + 0.210718i \(0.0675801\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −9.59914 5.54206i −0.326758 0.188654i 0.327643 0.944802i \(-0.393746\pi\)
−0.654401 + 0.756148i \(0.727079\pi\)
\(864\) 0 0
\(865\) 33.9939i 1.15583i
\(866\) 0 0
\(867\) 27.4025 47.4625i 0.930637 1.61191i
\(868\) 0 0
\(869\) 29.9521 17.2929i 1.01606 0.586621i
\(870\) 0 0
\(871\) 2.51611 19.3804i 0.0852551 0.656679i
\(872\) 0 0
\(873\) 71.6165i 2.42385i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.99010 2.30368i 0.134736 0.0777899i −0.431117 0.902296i \(-0.641880\pi\)
0.565853 + 0.824506i \(0.308547\pi\)
\(878\) 0 0
\(879\) −4.16624 + 2.40538i −0.140524 + 0.0811314i
\(880\) 0 0
\(881\) −17.1554 29.7140i −0.577979 1.00109i −0.995711 0.0925186i \(-0.970508\pi\)
0.417732 0.908570i \(-0.362825\pi\)
\(882\) 0 0
\(883\) 42.5926 1.43336 0.716678 0.697404i \(-0.245662\pi\)
0.716678 + 0.697404i \(0.245662\pi\)
\(884\) 0 0
\(885\) −10.6112 18.3791i −0.356691 0.617807i
\(886\) 0 0
\(887\) 41.6052 1.39697 0.698483 0.715627i \(-0.253859\pi\)
0.698483 + 0.715627i \(0.253859\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −80.0703 + 46.2286i −2.68246 + 1.54872i
\(892\) 0 0
\(893\) −26.7871 −0.896397
\(894\) 0 0
\(895\) −23.6519 + 13.6554i −0.790595 + 0.456450i
\(896\) 0 0
\(897\) −92.6706 12.0312i −3.09418 0.401710i
\(898\) 0 0
\(899\) 20.0548 + 11.5786i 0.668864 + 0.386169i
\(900\) 0 0
\(901\) −0.0560562 0.0970922i −0.00186750 0.00323461i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 27.2835 + 15.7521i 0.906934 + 0.523619i
\(906\) 0 0
\(907\) 7.83580 13.5720i 0.260183 0.450651i −0.706107 0.708105i \(-0.749550\pi\)
0.966290 + 0.257454i \(0.0828837\pi\)
\(908\) 0 0
\(909\) 18.9077 0.627129
\(910\) 0 0
\(911\) −33.5478 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(912\) 0 0
\(913\) −14.7454 + 25.5398i −0.488001 + 0.845243i
\(914\) 0 0
\(915\) −29.9910 17.3153i −0.991470 0.572426i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.66880 2.89045i −0.0550488 0.0953473i 0.837188 0.546915i \(-0.184198\pi\)
−0.892237 + 0.451568i \(0.850865\pi\)
\(920\) 0 0
\(921\) −6.52321 3.76618i −0.214947 0.124100i
\(922\) 0 0
\(923\) 4.24833 32.7229i 0.139835 1.07709i
\(924\) 0 0
\(925\) −15.2603 + 8.81051i −0.501754 + 0.289688i
\(926\) 0 0
\(927\) 24.9510 0.819499
\(928\) 0 0
\(929\) −7.87813 + 4.54844i −0.258473 + 0.149230i −0.623638 0.781713i \(-0.714346\pi\)
0.365165 + 0.930943i \(0.381013\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 38.2047 1.25077
\(934\) 0 0
\(935\) 1.17719 + 2.03895i 0.0384982 + 0.0666808i
\(936\) 0 0
\(937\) 9.08442 0.296775 0.148388 0.988929i \(-0.452592\pi\)
0.148388 + 0.988929i \(0.452592\pi\)
\(938\) 0 0
\(939\) 29.7392 + 51.5099i 0.970504 + 1.68096i
\(940\) 0 0
\(941\) 7.13037 4.11672i 0.232444 0.134201i −0.379255 0.925292i \(-0.623820\pi\)
0.611699 + 0.791091i \(0.290486\pi\)
\(942\) 0 0
\(943\) −27.6693 + 15.9749i −0.901036 + 0.520214i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.05532i 0.164276i 0.996621 + 0.0821380i \(0.0261748\pi\)
−0.996621 + 0.0821380i \(0.973825\pi\)
\(948\) 0 0
\(949\) −9.48717 7.25275i −0.307967 0.235434i
\(950\) 0 0
\(951\) −23.5679 + 13.6069i −0.764242 + 0.441235i
\(952\) 0 0
\(953\) 19.6579 34.0485i 0.636782 1.10294i −0.349352 0.936992i \(-0.613598\pi\)
0.986135 0.165948i \(-0.0530684\pi\)
\(954\) 0 0
\(955\) 75.6429i 2.44775i
\(956\) 0 0
\(957\) −29.2779 16.9036i −0.946421 0.546416i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20.7672 35.9698i 0.669909 1.16032i
\(962\) 0 0
\(963\) 48.0323 + 83.1944i 1.54782 + 2.68090i
\(964\) 0 0
\(965\) −5.15132 8.92234i −0.165827 0.287220i
\(966\) 0 0
\(967\) 21.2101i 0.682071i 0.940050 + 0.341036i \(0.110778\pi\)
−0.940050 + 0.341036i \(0.889222\pi\)
\(968\) 0 0
\(969\) 3.86611i 0.124197i
\(970\) 0 0
\(971\) 11.7705 + 20.3871i 0.377733 + 0.654252i 0.990732 0.135831i \(-0.0433705\pi\)
−0.612999 + 0.790084i \(0.710037\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −21.9749 52.7840i −0.703759 1.69044i
\(976\) 0 0
\(977\) 10.7380 + 6.19958i 0.343539 + 0.198342i 0.661836 0.749649i \(-0.269778\pi\)
−0.318297 + 0.947991i \(0.603111\pi\)
\(978\) 0 0
\(979\) −9.84230 + 17.0474i −0.314561 + 0.544836i
\(980\) 0 0
\(981\) 51.8164 + 29.9162i 1.65437 + 0.955151i
\(982\) 0 0
\(983\) −31.2516 + 18.0431i −0.996770 + 0.575486i −0.907291 0.420503i \(-0.861854\pi\)
−0.0894792 + 0.995989i \(0.528520\pi\)
\(984\) 0 0
\(985\) −40.1406 −1.27898
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −46.1047 + 79.8558i −1.46605 + 2.53927i
\(990\) 0 0
\(991\) −26.4245 + 45.7686i −0.839403 + 1.45389i 0.0509920 + 0.998699i \(0.483762\pi\)
−0.890395 + 0.455189i \(0.849572\pi\)
\(992\) 0 0
\(993\) 58.3409i 1.85139i
\(994\) 0 0
\(995\) 74.4823 + 43.0024i 2.36125 + 1.36327i
\(996\) 0 0
\(997\) 1.40828 0.0446006 0.0223003 0.999751i \(-0.492901\pi\)
0.0223003 + 0.999751i \(0.492901\pi\)
\(998\) 0 0
\(999\) 51.4977i 1.62932i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bb.d.569.1 16
7.2 even 3 364.2.u.a.309.1 yes 16
7.3 odd 6 2548.2.bq.c.361.1 16
7.4 even 3 2548.2.bq.e.361.8 16
7.5 odd 6 2548.2.u.c.1765.8 16
7.6 odd 2 2548.2.bb.c.569.8 16
13.4 even 6 2548.2.bq.e.1941.8 16
21.2 odd 6 3276.2.cf.c.1765.2 16
28.23 odd 6 1456.2.cc.f.673.8 16
91.2 odd 12 4732.2.a.t.1.8 8
91.4 even 6 inner 2548.2.bb.d.1733.1 16
91.16 even 3 4732.2.g.k.337.16 16
91.17 odd 6 2548.2.bb.c.1733.8 16
91.23 even 6 4732.2.g.k.337.15 16
91.30 even 6 364.2.u.a.225.1 16
91.37 odd 12 4732.2.a.s.1.8 8
91.69 odd 6 2548.2.bq.c.1941.1 16
91.82 odd 6 2548.2.u.c.589.8 16
273.212 odd 6 3276.2.cf.c.2773.7 16
364.303 odd 6 1456.2.cc.f.225.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 91.30 even 6
364.2.u.a.309.1 yes 16 7.2 even 3
1456.2.cc.f.225.8 16 364.303 odd 6
1456.2.cc.f.673.8 16 28.23 odd 6
2548.2.u.c.589.8 16 91.82 odd 6
2548.2.u.c.1765.8 16 7.5 odd 6
2548.2.bb.c.569.8 16 7.6 odd 2
2548.2.bb.c.1733.8 16 91.17 odd 6
2548.2.bb.d.569.1 16 1.1 even 1 trivial
2548.2.bb.d.1733.1 16 91.4 even 6 inner
2548.2.bq.c.361.1 16 7.3 odd 6
2548.2.bq.c.1941.1 16 91.69 odd 6
2548.2.bq.e.361.8 16 7.4 even 3
2548.2.bq.e.1941.8 16 13.4 even 6
3276.2.cf.c.1765.2 16 21.2 odd 6
3276.2.cf.c.2773.7 16 273.212 odd 6
4732.2.a.s.1.8 8 91.37 odd 12
4732.2.a.t.1.8 8 91.2 odd 12
4732.2.g.k.337.15 16 91.23 even 6
4732.2.g.k.337.16 16 91.16 even 3