Properties

Label 2548.2.bq.c.361.1
Level $2548$
Weight $2$
Character 2548.361
Analytic conductor $20.346$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2548,2,Mod(361,2548)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2548, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 4, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2548.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.bq (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,28,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 38x^{14} + 587x^{12} + 4762x^{10} + 21849x^{8} + 56552x^{6} + 76456x^{4} + 42624x^{2} + 2704 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.1
Root \(3.23100i\) of defining polynomial
Character \(\chi\) \(=\) 2548.361
Dual form 2548.2.bq.c.1941.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.23100 q^{3} +(-2.72598 + 1.57385i) q^{5} +7.43937 q^{9} -3.84820i q^{11} +(-1.38576 - 3.32861i) q^{13} +(8.80765 - 5.08510i) q^{15} +(-0.0971843 - 0.168328i) q^{17} +6.15618i q^{19} +(-4.01081 + 6.94693i) q^{23} +(2.45398 - 4.25042i) q^{25} -14.3436 q^{27} +(1.35952 + 2.35475i) q^{29} +(7.37569 + 4.25836i) q^{31} +12.4335i q^{33} +(-3.10928 - 1.79515i) q^{37} +(4.47739 + 10.7548i) q^{39} +(3.44934 - 1.99148i) q^{41} +(-5.74755 + 9.95506i) q^{43} +(-20.2796 + 11.7084i) q^{45} +(3.76830 - 2.17563i) q^{47} +(0.314003 + 0.543869i) q^{51} +(0.288402 - 0.499526i) q^{53} +(6.05647 + 10.4901i) q^{55} -19.8906i q^{57} +(1.80715 - 1.04336i) q^{59} -3.40510 q^{61} +(9.01628 + 6.89277i) q^{65} +5.42026i q^{67} +(12.9589 - 22.4456i) q^{69} +(-7.92574 - 4.57593i) q^{71} +(-2.86835 - 1.65604i) q^{73} +(-7.92882 + 13.7331i) q^{75} +(4.49376 + 7.78342i) q^{79} +24.0261 q^{81} -7.66353i q^{83} +(0.529845 + 0.305906i) q^{85} +(-4.39260 - 7.60821i) q^{87} +(4.42996 + 2.55764i) q^{89} +(-23.8309 - 13.7588i) q^{93} +(-9.68888 - 16.7816i) q^{95} +(-8.33696 - 4.81334i) q^{97} -28.6282i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 28 q^{9} - 10 q^{13} + 6 q^{15} - 2 q^{17} + 22 q^{25} + 12 q^{27} - 22 q^{29} + 30 q^{31} - 12 q^{37} - 6 q^{39} - 36 q^{41} + 6 q^{43} - 30 q^{45} - 18 q^{47} + 2 q^{51} - 4 q^{53} - 2 q^{55} - 18 q^{59}+ \cdots + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.23100 −1.86542 −0.932710 0.360628i \(-0.882562\pi\)
−0.932710 + 0.360628i \(0.882562\pi\)
\(4\) 0 0
\(5\) −2.72598 + 1.57385i −1.21910 + 0.703845i −0.964725 0.263261i \(-0.915202\pi\)
−0.254371 + 0.967107i \(0.581869\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 7.43937 2.47979
\(10\) 0 0
\(11\) 3.84820i 1.16028i −0.814518 0.580138i \(-0.802999\pi\)
0.814518 0.580138i \(-0.197001\pi\)
\(12\) 0 0
\(13\) −1.38576 3.32861i −0.384340 0.923191i
\(14\) 0 0
\(15\) 8.80765 5.08510i 2.27412 1.31297i
\(16\) 0 0
\(17\) −0.0971843 0.168328i −0.0235707 0.0408256i 0.853999 0.520274i \(-0.174170\pi\)
−0.877570 + 0.479448i \(0.840837\pi\)
\(18\) 0 0
\(19\) 6.15618i 1.41232i 0.708050 + 0.706162i \(0.249575\pi\)
−0.708050 + 0.706162i \(0.750425\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.01081 + 6.94693i −0.836313 + 1.44854i 0.0566448 + 0.998394i \(0.481960\pi\)
−0.892957 + 0.450141i \(0.851374\pi\)
\(24\) 0 0
\(25\) 2.45398 4.25042i 0.490796 0.850084i
\(26\) 0 0
\(27\) −14.3436 −2.76043
\(28\) 0 0
\(29\) 1.35952 + 2.35475i 0.252456 + 0.437267i 0.964201 0.265171i \(-0.0854283\pi\)
−0.711745 + 0.702438i \(0.752095\pi\)
\(30\) 0 0
\(31\) 7.37569 + 4.25836i 1.32471 + 0.764823i 0.984476 0.175517i \(-0.0561596\pi\)
0.340236 + 0.940340i \(0.389493\pi\)
\(32\) 0 0
\(33\) 12.4335i 2.16440i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.10928 1.79515i −0.511163 0.295120i 0.222149 0.975013i \(-0.428693\pi\)
−0.733312 + 0.679893i \(0.762026\pi\)
\(38\) 0 0
\(39\) 4.47739 + 10.7548i 0.716956 + 1.72214i
\(40\) 0 0
\(41\) 3.44934 1.99148i 0.538696 0.311016i −0.205854 0.978583i \(-0.565997\pi\)
0.744550 + 0.667566i \(0.232664\pi\)
\(42\) 0 0
\(43\) −5.74755 + 9.95506i −0.876494 + 1.51813i −0.0213310 + 0.999772i \(0.506790\pi\)
−0.855163 + 0.518359i \(0.826543\pi\)
\(44\) 0 0
\(45\) −20.2796 + 11.7084i −3.02310 + 1.74539i
\(46\) 0 0
\(47\) 3.76830 2.17563i 0.549663 0.317348i −0.199323 0.979934i \(-0.563874\pi\)
0.748986 + 0.662586i \(0.230541\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0.314003 + 0.543869i 0.0439692 + 0.0761568i
\(52\) 0 0
\(53\) 0.288402 0.499526i 0.0396150 0.0686152i −0.845538 0.533915i \(-0.820720\pi\)
0.885153 + 0.465300i \(0.154054\pi\)
\(54\) 0 0
\(55\) 6.05647 + 10.4901i 0.816655 + 1.41449i
\(56\) 0 0
\(57\) 19.8906i 2.63458i
\(58\) 0 0
\(59\) 1.80715 1.04336i 0.235271 0.135834i −0.377730 0.925916i \(-0.623295\pi\)
0.613002 + 0.790082i \(0.289962\pi\)
\(60\) 0 0
\(61\) −3.40510 −0.435979 −0.217989 0.975951i \(-0.569950\pi\)
−0.217989 + 0.975951i \(0.569950\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 9.01628 + 6.89277i 1.11833 + 0.854943i
\(66\) 0 0
\(67\) 5.42026i 0.662190i 0.943597 + 0.331095i \(0.107418\pi\)
−0.943597 + 0.331095i \(0.892582\pi\)
\(68\) 0 0
\(69\) 12.9589 22.4456i 1.56007 2.70213i
\(70\) 0 0
\(71\) −7.92574 4.57593i −0.940612 0.543063i −0.0504599 0.998726i \(-0.516069\pi\)
−0.890152 + 0.455663i \(0.849402\pi\)
\(72\) 0 0
\(73\) −2.86835 1.65604i −0.335715 0.193825i 0.322661 0.946515i \(-0.395423\pi\)
−0.658376 + 0.752690i \(0.728756\pi\)
\(74\) 0 0
\(75\) −7.92882 + 13.7331i −0.915541 + 1.58576i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 4.49376 + 7.78342i 0.505587 + 0.875703i 0.999979 + 0.00646364i \(0.00205746\pi\)
−0.494392 + 0.869239i \(0.664609\pi\)
\(80\) 0 0
\(81\) 24.0261 2.66957
\(82\) 0 0
\(83\) 7.66353i 0.841181i −0.907251 0.420591i \(-0.861823\pi\)
0.907251 0.420591i \(-0.138177\pi\)
\(84\) 0 0
\(85\) 0.529845 + 0.305906i 0.0574698 + 0.0331802i
\(86\) 0 0
\(87\) −4.39260 7.60821i −0.470936 0.815686i
\(88\) 0 0
\(89\) 4.42996 + 2.55764i 0.469574 + 0.271109i 0.716062 0.698037i \(-0.245943\pi\)
−0.246487 + 0.969146i \(0.579276\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −23.8309 13.7588i −2.47114 1.42672i
\(94\) 0 0
\(95\) −9.68888 16.7816i −0.994058 1.72176i
\(96\) 0 0
\(97\) −8.33696 4.81334i −0.846490 0.488721i 0.0129752 0.999916i \(-0.495870\pi\)
−0.859465 + 0.511195i \(0.829203\pi\)
\(98\) 0 0
\(99\) 28.6282i 2.87724i
\(100\) 0 0
\(101\) −2.54158 −0.252896 −0.126448 0.991973i \(-0.540358\pi\)
−0.126448 + 0.991973i \(0.540358\pi\)
\(102\) 0 0
\(103\) 1.67696 + 2.90458i 0.165236 + 0.286197i 0.936739 0.350029i \(-0.113828\pi\)
−0.771503 + 0.636225i \(0.780495\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.45650 11.1830i 0.624174 1.08110i −0.364526 0.931193i \(-0.618769\pi\)
0.988700 0.149907i \(-0.0478975\pi\)
\(108\) 0 0
\(109\) 6.96516 + 4.02134i 0.667141 + 0.385174i 0.794993 0.606619i \(-0.207475\pi\)
−0.127851 + 0.991793i \(0.540808\pi\)
\(110\) 0 0
\(111\) 10.0461 + 5.80012i 0.953534 + 0.550523i
\(112\) 0 0
\(113\) 4.00235 6.93227i 0.376509 0.652133i −0.614043 0.789273i \(-0.710458\pi\)
0.990552 + 0.137140i \(0.0437910\pi\)
\(114\) 0 0
\(115\) 25.2496i 2.35454i
\(116\) 0 0
\(117\) −10.3092 24.7628i −0.953083 2.28932i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −3.80865 −0.346241
\(122\) 0 0
\(123\) −11.1448 + 6.43446i −1.00489 + 0.580176i
\(124\) 0 0
\(125\) 0.289701i 0.0259116i
\(126\) 0 0
\(127\) 0.664383 + 1.15075i 0.0589545 + 0.102112i 0.893996 0.448074i \(-0.147890\pi\)
−0.835042 + 0.550186i \(0.814557\pi\)
\(128\) 0 0
\(129\) 18.5704 32.1648i 1.63503 2.83195i
\(130\) 0 0
\(131\) −0.296380 0.513346i −0.0258949 0.0448512i 0.852788 0.522258i \(-0.174910\pi\)
−0.878682 + 0.477407i \(0.841577\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 39.1004 22.5746i 3.36523 1.94291i
\(136\) 0 0
\(137\) 2.21732 1.28017i 0.189439 0.109372i −0.402281 0.915516i \(-0.631783\pi\)
0.591720 + 0.806144i \(0.298449\pi\)
\(138\) 0 0
\(139\) −9.01150 + 15.6084i −0.764345 + 1.32388i 0.176247 + 0.984346i \(0.443604\pi\)
−0.940592 + 0.339538i \(0.889729\pi\)
\(140\) 0 0
\(141\) −12.1754 + 7.02946i −1.02535 + 0.591987i
\(142\) 0 0
\(143\) −12.8092 + 5.33268i −1.07116 + 0.445941i
\(144\) 0 0
\(145\) −7.41204 4.27934i −0.615536 0.355380i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 8.10789i 0.664224i −0.943240 0.332112i \(-0.892239\pi\)
0.943240 0.332112i \(-0.107761\pi\)
\(150\) 0 0
\(151\) 3.10734 + 1.79402i 0.252872 + 0.145995i 0.621078 0.783748i \(-0.286695\pi\)
−0.368207 + 0.929744i \(0.620028\pi\)
\(152\) 0 0
\(153\) −0.722990 1.25226i −0.0584503 0.101239i
\(154\) 0 0
\(155\) −26.8080 −2.15327
\(156\) 0 0
\(157\) 7.17236 12.4229i 0.572417 0.991455i −0.423900 0.905709i \(-0.639339\pi\)
0.996317 0.0857459i \(-0.0273273\pi\)
\(158\) 0 0
\(159\) −0.931826 + 1.61397i −0.0738986 + 0.127996i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.246141i 0.0192792i −0.999954 0.00963961i \(-0.996932\pi\)
0.999954 0.00963961i \(-0.00306843\pi\)
\(164\) 0 0
\(165\) −19.5685 33.8936i −1.52340 2.63861i
\(166\) 0 0
\(167\) −1.56604 + 0.904156i −0.121184 + 0.0699657i −0.559367 0.828920i \(-0.688956\pi\)
0.438183 + 0.898886i \(0.355622\pi\)
\(168\) 0 0
\(169\) −9.15934 + 9.22532i −0.704565 + 0.709640i
\(170\) 0 0
\(171\) 45.7981i 3.50227i
\(172\) 0 0
\(173\) −10.7996 −0.821080 −0.410540 0.911843i \(-0.634660\pi\)
−0.410540 + 0.911843i \(0.634660\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −5.83892 + 3.37110i −0.438880 + 0.253387i
\(178\) 0 0
\(179\) −8.67647 −0.648510 −0.324255 0.945970i \(-0.605114\pi\)
−0.324255 + 0.945970i \(0.605114\pi\)
\(180\) 0 0
\(181\) 10.0087 0.743940 0.371970 0.928245i \(-0.378682\pi\)
0.371970 + 0.928245i \(0.378682\pi\)
\(182\) 0 0
\(183\) 11.0019 0.813283
\(184\) 0 0
\(185\) 11.3011 0.830876
\(186\) 0 0
\(187\) −0.647761 + 0.373985i −0.0473690 + 0.0273485i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −24.0312 −1.73884 −0.869420 0.494074i \(-0.835507\pi\)
−0.869420 + 0.494074i \(0.835507\pi\)
\(192\) 0 0
\(193\) 3.27308i 0.235601i −0.993037 0.117801i \(-0.962416\pi\)
0.993037 0.117801i \(-0.0375844\pi\)
\(194\) 0 0
\(195\) −29.1316 22.2705i −2.08616 1.59483i
\(196\) 0 0
\(197\) 11.0439 6.37619i 0.786844 0.454285i −0.0520061 0.998647i \(-0.516562\pi\)
0.838850 + 0.544362i \(0.183228\pi\)
\(198\) 0 0
\(199\) −13.6616 23.6625i −0.968442 1.67739i −0.700069 0.714076i \(-0.746847\pi\)
−0.268373 0.963315i \(-0.586486\pi\)
\(200\) 0 0
\(201\) 17.5129i 1.23526i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −6.26855 + 10.8575i −0.437815 + 0.758317i
\(206\) 0 0
\(207\) −29.8379 + 51.6808i −2.07388 + 3.59206i
\(208\) 0 0
\(209\) 23.6902 1.63869
\(210\) 0 0
\(211\) −13.2929 23.0239i −0.915118 1.58503i −0.806728 0.590923i \(-0.798764\pi\)
−0.108390 0.994108i \(-0.534570\pi\)
\(212\) 0 0
\(213\) 25.6081 + 14.7848i 1.75464 + 1.01304i
\(214\) 0 0
\(215\) 36.1831i 2.46766i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.26764 + 5.35068i 0.626249 + 0.361565i
\(220\) 0 0
\(221\) −0.425626 + 0.556751i −0.0286307 + 0.0374512i
\(222\) 0 0
\(223\) −13.1063 + 7.56691i −0.877661 + 0.506718i −0.869887 0.493252i \(-0.835808\pi\)
−0.00777474 + 0.999970i \(0.502475\pi\)
\(224\) 0 0
\(225\) 18.2561 31.6205i 1.21707 2.10803i
\(226\) 0 0
\(227\) −18.5376 + 10.7027i −1.23038 + 0.710362i −0.967110 0.254359i \(-0.918136\pi\)
−0.263274 + 0.964721i \(0.584802\pi\)
\(228\) 0 0
\(229\) 7.24104 4.18062i 0.478501 0.276263i −0.241290 0.970453i \(-0.577571\pi\)
0.719792 + 0.694190i \(0.244237\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −13.0832 22.6607i −0.857107 1.48455i −0.874676 0.484707i \(-0.838926\pi\)
0.0175695 0.999846i \(-0.494407\pi\)
\(234\) 0 0
\(235\) −6.84821 + 11.8614i −0.446728 + 0.773756i
\(236\) 0 0
\(237\) −14.5193 25.1482i −0.943132 1.63355i
\(238\) 0 0
\(239\) 18.3562i 1.18736i 0.804700 + 0.593682i \(0.202326\pi\)
−0.804700 + 0.593682i \(0.797674\pi\)
\(240\) 0 0
\(241\) −2.88804 + 1.66741i −0.186035 + 0.107407i −0.590125 0.807312i \(-0.700922\pi\)
0.404090 + 0.914719i \(0.367588\pi\)
\(242\) 0 0
\(243\) −34.5975 −2.21943
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 20.4915 8.53098i 1.30385 0.542813i
\(248\) 0 0
\(249\) 24.7609i 1.56916i
\(250\) 0 0
\(251\) 6.09884 10.5635i 0.384956 0.666763i −0.606807 0.794849i \(-0.707550\pi\)
0.991763 + 0.128086i \(0.0408834\pi\)
\(252\) 0 0
\(253\) 26.7332 + 15.4344i 1.68070 + 0.970353i
\(254\) 0 0
\(255\) −1.71193 0.988384i −0.107205 0.0618950i
\(256\) 0 0
\(257\) −7.63648 + 13.2268i −0.476350 + 0.825063i −0.999633 0.0270962i \(-0.991374\pi\)
0.523282 + 0.852159i \(0.324707\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 10.1140 + 17.5179i 0.626038 + 1.08433i
\(262\) 0 0
\(263\) 24.8989 1.53533 0.767666 0.640850i \(-0.221418\pi\)
0.767666 + 0.640850i \(0.221418\pi\)
\(264\) 0 0
\(265\) 1.81560i 0.111531i
\(266\) 0 0
\(267\) −14.3132 8.26373i −0.875953 0.505732i
\(268\) 0 0
\(269\) −3.92836 6.80413i −0.239517 0.414855i 0.721059 0.692874i \(-0.243656\pi\)
−0.960576 + 0.278019i \(0.910322\pi\)
\(270\) 0 0
\(271\) 2.28514 + 1.31933i 0.138812 + 0.0801433i 0.567798 0.823168i \(-0.307796\pi\)
−0.428986 + 0.903311i \(0.641129\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.3565 9.44342i −0.986333 0.569459i
\(276\) 0 0
\(277\) 5.82743 + 10.0934i 0.350136 + 0.606454i 0.986273 0.165122i \(-0.0528019\pi\)
−0.636137 + 0.771576i \(0.719469\pi\)
\(278\) 0 0
\(279\) 54.8705 + 31.6795i 3.28501 + 1.89660i
\(280\) 0 0
\(281\) 3.86501i 0.230567i 0.993333 + 0.115283i \(0.0367776\pi\)
−0.993333 + 0.115283i \(0.963222\pi\)
\(282\) 0 0
\(283\) 6.84863 0.407109 0.203554 0.979064i \(-0.434751\pi\)
0.203554 + 0.979064i \(0.434751\pi\)
\(284\) 0 0
\(285\) 31.3048 + 54.2215i 1.85433 + 3.21180i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.48111 14.6897i 0.498889 0.864101i
\(290\) 0 0
\(291\) 26.9367 + 15.5519i 1.57906 + 0.911670i
\(292\) 0 0
\(293\) −1.28946 0.744468i −0.0753309 0.0434923i 0.461861 0.886952i \(-0.347182\pi\)
−0.537192 + 0.843460i \(0.680515\pi\)
\(294\) 0 0
\(295\) −3.28418 + 5.68836i −0.191212 + 0.331189i
\(296\) 0 0
\(297\) 55.1971i 3.20286i
\(298\) 0 0
\(299\) 28.6817 + 3.72367i 1.65870 + 0.215346i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 8.21183 0.471757
\(304\) 0 0
\(305\) 9.28225 5.35911i 0.531500 0.306862i
\(306\) 0 0
\(307\) 2.33128i 0.133053i −0.997785 0.0665265i \(-0.978808\pi\)
0.997785 0.0665265i \(-0.0211917\pi\)
\(308\) 0 0
\(309\) −5.41826 9.38470i −0.308234 0.533877i
\(310\) 0 0
\(311\) 5.91221 10.2403i 0.335251 0.580672i −0.648282 0.761400i \(-0.724512\pi\)
0.983533 + 0.180729i \(0.0578456\pi\)
\(312\) 0 0
\(313\) −9.20434 15.9424i −0.520260 0.901117i −0.999723 0.0235548i \(-0.992502\pi\)
0.479462 0.877563i \(-0.340832\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.29431 + 4.21137i −0.409689 + 0.236534i −0.690656 0.723183i \(-0.742678\pi\)
0.280967 + 0.959717i \(0.409345\pi\)
\(318\) 0 0
\(319\) 9.06156 5.23170i 0.507350 0.292919i
\(320\) 0 0
\(321\) −20.8610 + 36.1323i −1.16435 + 2.01671i
\(322\) 0 0
\(323\) 1.03626 0.598284i 0.0576590 0.0332894i
\(324\) 0 0
\(325\) −17.5486 2.27830i −0.973423 0.126377i
\(326\) 0 0
\(327\) −22.5044 12.9929i −1.24450 0.718512i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 18.0566i 0.992481i −0.868185 0.496240i \(-0.834713\pi\)
0.868185 0.496240i \(-0.165287\pi\)
\(332\) 0 0
\(333\) −23.1311 13.3548i −1.26758 0.731836i
\(334\) 0 0
\(335\) −8.53065 14.7755i −0.466079 0.807273i
\(336\) 0 0
\(337\) −3.64765 −0.198700 −0.0993500 0.995053i \(-0.531676\pi\)
−0.0993500 + 0.995053i \(0.531676\pi\)
\(338\) 0 0
\(339\) −12.9316 + 22.3982i −0.702347 + 1.21650i
\(340\) 0 0
\(341\) 16.3870 28.3831i 0.887406 1.53703i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 81.5815i 4.39220i
\(346\) 0 0
\(347\) −7.29727 12.6392i −0.391738 0.678510i 0.600941 0.799294i \(-0.294793\pi\)
−0.992679 + 0.120783i \(0.961459\pi\)
\(348\) 0 0
\(349\) 15.4877 8.94182i 0.829037 0.478645i −0.0244861 0.999700i \(-0.507795\pi\)
0.853523 + 0.521056i \(0.174462\pi\)
\(350\) 0 0
\(351\) 19.8768 + 47.7443i 1.06094 + 2.54840i
\(352\) 0 0
\(353\) 6.38272i 0.339718i −0.985468 0.169859i \(-0.945669\pi\)
0.985468 0.169859i \(-0.0543312\pi\)
\(354\) 0 0
\(355\) 28.8072 1.52893
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.4089 15.2472i 1.39381 0.804717i 0.400076 0.916482i \(-0.368984\pi\)
0.993735 + 0.111765i \(0.0356505\pi\)
\(360\) 0 0
\(361\) −18.8985 −0.994660
\(362\) 0 0
\(363\) 12.3057 0.645884
\(364\) 0 0
\(365\) 10.4254 0.545692
\(366\) 0 0
\(367\) 7.16337 0.373925 0.186962 0.982367i \(-0.440136\pi\)
0.186962 + 0.982367i \(0.440136\pi\)
\(368\) 0 0
\(369\) 25.6609 14.8153i 1.33585 0.771255i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.16467 −0.0603045 −0.0301523 0.999545i \(-0.509599\pi\)
−0.0301523 + 0.999545i \(0.509599\pi\)
\(374\) 0 0
\(375\) 0.936023i 0.0483360i
\(376\) 0 0
\(377\) 5.95410 7.78843i 0.306652 0.401125i
\(378\) 0 0
\(379\) −25.1318 + 14.5099i −1.29093 + 0.745322i −0.978820 0.204723i \(-0.934371\pi\)
−0.312115 + 0.950044i \(0.601037\pi\)
\(380\) 0 0
\(381\) −2.14662 3.71806i −0.109975 0.190482i
\(382\) 0 0
\(383\) 21.9571i 1.12196i 0.827831 + 0.560978i \(0.189575\pi\)
−0.827831 + 0.560978i \(0.810425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −42.7582 + 74.0593i −2.17352 + 3.76465i
\(388\) 0 0
\(389\) 14.5986 25.2856i 0.740180 1.28203i −0.212233 0.977219i \(-0.568074\pi\)
0.952413 0.304811i \(-0.0985932\pi\)
\(390\) 0 0
\(391\) 1.55915 0.0788498
\(392\) 0 0
\(393\) 0.957605 + 1.65862i 0.0483048 + 0.0836664i
\(394\) 0 0
\(395\) −24.4998 14.1450i −1.23272 0.711710i
\(396\) 0 0
\(397\) 31.9503i 1.60354i 0.597632 + 0.801771i \(0.296108\pi\)
−0.597632 + 0.801771i \(0.703892\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −31.9176 18.4276i −1.59389 0.920232i −0.992631 0.121176i \(-0.961334\pi\)
−0.601257 0.799056i \(-0.705333\pi\)
\(402\) 0 0
\(403\) 3.95349 30.4519i 0.196938 1.51692i
\(404\) 0 0
\(405\) −65.4947 + 37.8134i −3.25446 + 1.87896i
\(406\) 0 0
\(407\) −6.90808 + 11.9651i −0.342421 + 0.593090i
\(408\) 0 0
\(409\) 4.89732 2.82747i 0.242157 0.139809i −0.374011 0.927424i \(-0.622018\pi\)
0.616168 + 0.787615i \(0.288684\pi\)
\(410\) 0 0
\(411\) −7.16417 + 4.13623i −0.353382 + 0.204025i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0612 + 20.8906i 0.592061 + 1.02548i
\(416\) 0 0
\(417\) 29.1162 50.4307i 1.42582 2.46960i
\(418\) 0 0
\(419\) −12.9031 22.3488i −0.630358 1.09181i −0.987478 0.157754i \(-0.949575\pi\)
0.357120 0.934059i \(-0.383759\pi\)
\(420\) 0 0
\(421\) 28.8606i 1.40658i 0.710903 + 0.703290i \(0.248286\pi\)
−0.710903 + 0.703290i \(0.751714\pi\)
\(422\) 0 0
\(423\) 28.0338 16.1853i 1.36305 0.786957i
\(424\) 0 0
\(425\) −0.953954 −0.0462736
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 41.3865 17.2299i 1.99816 0.831867i
\(430\) 0 0
\(431\) 31.6712i 1.52555i −0.646665 0.762774i \(-0.723837\pi\)
0.646665 0.762774i \(-0.276163\pi\)
\(432\) 0 0
\(433\) −15.6517 + 27.1095i −0.752172 + 1.30280i 0.194597 + 0.980883i \(0.437660\pi\)
−0.946768 + 0.321916i \(0.895673\pi\)
\(434\) 0 0
\(435\) 23.9483 + 13.8266i 1.14823 + 0.662933i
\(436\) 0 0
\(437\) −42.7666 24.6913i −2.04580 1.18114i
\(438\) 0 0
\(439\) −18.4786 + 32.0059i −0.881935 + 1.52756i −0.0327479 + 0.999464i \(0.510426\pi\)
−0.849187 + 0.528092i \(0.822907\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −14.1436 24.4974i −0.671981 1.16391i −0.977341 0.211669i \(-0.932110\pi\)
0.305360 0.952237i \(-0.401223\pi\)
\(444\) 0 0
\(445\) −16.1013 −0.763275
\(446\) 0 0
\(447\) 26.1966i 1.23906i
\(448\) 0 0
\(449\) 21.0690 + 12.1642i 0.994308 + 0.574064i 0.906559 0.422079i \(-0.138699\pi\)
0.0877485 + 0.996143i \(0.472033\pi\)
\(450\) 0 0
\(451\) −7.66360 13.2737i −0.360865 0.625036i
\(452\) 0 0
\(453\) −10.0398 5.79649i −0.471712 0.272343i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.34199 + 0.774798i 0.0627756 + 0.0362435i 0.531059 0.847335i \(-0.321794\pi\)
−0.468284 + 0.883578i \(0.655127\pi\)
\(458\) 0 0
\(459\) 1.39397 + 2.41443i 0.0650651 + 0.112696i
\(460\) 0 0
\(461\) −11.2195 6.47760i −0.522545 0.301692i 0.215430 0.976519i \(-0.430885\pi\)
−0.737975 + 0.674828i \(0.764218\pi\)
\(462\) 0 0
\(463\) 28.1690i 1.30912i −0.756008 0.654562i \(-0.772853\pi\)
0.756008 0.654562i \(-0.227147\pi\)
\(464\) 0 0
\(465\) 86.6166 4.01675
\(466\) 0 0
\(467\) −14.6454 25.3666i −0.677709 1.17383i −0.975669 0.219248i \(-0.929639\pi\)
0.297960 0.954578i \(-0.403694\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −23.1739 + 40.1384i −1.06780 + 1.84948i
\(472\) 0 0
\(473\) 38.3091 + 22.1177i 1.76145 + 1.01697i
\(474\) 0 0
\(475\) 26.1664 + 15.1072i 1.20059 + 0.693164i
\(476\) 0 0
\(477\) 2.14553 3.71616i 0.0982369 0.170151i
\(478\) 0 0
\(479\) 19.4711i 0.889658i 0.895616 + 0.444829i \(0.146735\pi\)
−0.895616 + 0.444829i \(0.853265\pi\)
\(480\) 0 0
\(481\) −1.66663 + 12.8372i −0.0759917 + 0.585328i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 30.3018 1.37594
\(486\) 0 0
\(487\) −3.92783 + 2.26773i −0.177987 + 0.102761i −0.586346 0.810060i \(-0.699434\pi\)
0.408360 + 0.912821i \(0.366101\pi\)
\(488\) 0 0
\(489\) 0.795281i 0.0359638i
\(490\) 0 0
\(491\) 9.07433 + 15.7172i 0.409519 + 0.709307i 0.994836 0.101497i \(-0.0323633\pi\)
−0.585317 + 0.810804i \(0.699030\pi\)
\(492\) 0 0
\(493\) 0.264248 0.457690i 0.0119011 0.0206133i
\(494\) 0 0
\(495\) 45.0563 + 78.0399i 2.02513 + 3.50763i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −5.76368 + 3.32766i −0.258018 + 0.148967i −0.623430 0.781879i \(-0.714261\pi\)
0.365412 + 0.930846i \(0.380928\pi\)
\(500\) 0 0
\(501\) 5.05989 2.92133i 0.226059 0.130515i
\(502\) 0 0
\(503\) 7.45978 12.9207i 0.332615 0.576106i −0.650409 0.759584i \(-0.725402\pi\)
0.983024 + 0.183478i \(0.0587357\pi\)
\(504\) 0 0
\(505\) 6.92829 4.00005i 0.308305 0.178000i
\(506\) 0 0
\(507\) 29.5938 29.8070i 1.31431 1.32378i
\(508\) 0 0
\(509\) −15.3869 8.88365i −0.682014 0.393761i 0.118599 0.992942i \(-0.462160\pi\)
−0.800613 + 0.599181i \(0.795493\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 88.3018i 3.89862i
\(514\) 0 0
\(515\) −9.14272 5.27855i −0.402876 0.232601i
\(516\) 0 0
\(517\) −8.37226 14.5012i −0.368211 0.637761i
\(518\) 0 0
\(519\) 34.8936 1.53166
\(520\) 0 0
\(521\) 19.0289 32.9591i 0.833673 1.44396i −0.0614331 0.998111i \(-0.519567\pi\)
0.895106 0.445853i \(-0.147100\pi\)
\(522\) 0 0
\(523\) 6.94526 12.0295i 0.303695 0.526015i −0.673275 0.739392i \(-0.735113\pi\)
0.976970 + 0.213377i \(0.0684463\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.65538i 0.0721096i
\(528\) 0 0
\(529\) −20.6733 35.8071i −0.898837 1.55683i
\(530\) 0 0
\(531\) 13.4441 7.76195i 0.583424 0.336840i
\(532\) 0 0
\(533\) −11.4088 8.72181i −0.494170 0.377783i
\(534\) 0 0
\(535\) 40.6462i 1.75729i
\(536\) 0 0
\(537\) 28.0337 1.20974
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −36.2391 + 20.9226i −1.55804 + 0.899535i −0.560595 + 0.828090i \(0.689428\pi\)
−0.997445 + 0.0714444i \(0.977239\pi\)
\(542\) 0 0
\(543\) −32.3381 −1.38776
\(544\) 0 0
\(545\) −25.3159 −1.08441
\(546\) 0 0
\(547\) −22.3475 −0.955509 −0.477754 0.878493i \(-0.658549\pi\)
−0.477754 + 0.878493i \(0.658549\pi\)
\(548\) 0 0
\(549\) −25.3318 −1.08114
\(550\) 0 0
\(551\) −14.4963 + 8.36943i −0.617562 + 0.356550i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −36.5140 −1.54993
\(556\) 0 0
\(557\) 30.6572i 1.29899i 0.760368 + 0.649493i \(0.225019\pi\)
−0.760368 + 0.649493i \(0.774981\pi\)
\(558\) 0 0
\(559\) 41.1013 + 5.33608i 1.73840 + 0.225692i
\(560\) 0 0
\(561\) 2.09292 1.20835i 0.0883630 0.0510164i
\(562\) 0 0
\(563\) 16.6237 + 28.7930i 0.700604 + 1.21348i 0.968255 + 0.249966i \(0.0804193\pi\)
−0.267651 + 0.963516i \(0.586247\pi\)
\(564\) 0 0
\(565\) 25.1963i 1.06002i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.80511 10.0547i 0.243363 0.421517i −0.718307 0.695726i \(-0.755083\pi\)
0.961670 + 0.274209i \(0.0884161\pi\)
\(570\) 0 0
\(571\) −8.34968 + 14.4621i −0.349423 + 0.605219i −0.986147 0.165873i \(-0.946956\pi\)
0.636724 + 0.771092i \(0.280289\pi\)
\(572\) 0 0
\(573\) 77.6450 3.24366
\(574\) 0 0
\(575\) 19.6849 + 34.0953i 0.820918 + 1.42187i
\(576\) 0 0
\(577\) −32.2666 18.6291i −1.34328 0.775541i −0.355990 0.934490i \(-0.615856\pi\)
−0.987287 + 0.158948i \(0.949190\pi\)
\(578\) 0 0
\(579\) 10.5753i 0.439495i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.92228 1.10983i −0.0796126 0.0459643i
\(584\) 0 0
\(585\) 67.0754 + 51.2778i 2.77323 + 2.12008i
\(586\) 0 0
\(587\) −36.1912 + 20.8950i −1.49377 + 0.862429i −0.999974 0.00714861i \(-0.997725\pi\)
−0.493796 + 0.869578i \(0.664391\pi\)
\(588\) 0 0
\(589\) −26.2152 + 45.4061i −1.08018 + 1.87092i
\(590\) 0 0
\(591\) −35.6828 + 20.6015i −1.46779 + 0.847432i
\(592\) 0 0
\(593\) 3.75571 2.16836i 0.154228 0.0890438i −0.420900 0.907107i \(-0.638286\pi\)
0.575128 + 0.818063i \(0.304952\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 44.1405 + 76.4536i 1.80655 + 3.12904i
\(598\) 0 0
\(599\) −11.3789 + 19.7088i −0.464929 + 0.805280i −0.999198 0.0400339i \(-0.987253\pi\)
0.534270 + 0.845314i \(0.320587\pi\)
\(600\) 0 0
\(601\) −13.7634 23.8389i −0.561421 0.972410i −0.997373 0.0724402i \(-0.976921\pi\)
0.435951 0.899970i \(-0.356412\pi\)
\(602\) 0 0
\(603\) 40.3233i 1.64209i
\(604\) 0 0
\(605\) 10.3823 5.99423i 0.422101 0.243700i
\(606\) 0 0
\(607\) 9.06967 0.368126 0.184063 0.982914i \(-0.441075\pi\)
0.184063 + 0.982914i \(0.441075\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −12.4638 9.52832i −0.504231 0.385475i
\(612\) 0 0
\(613\) 9.37895i 0.378812i −0.981899 0.189406i \(-0.939344\pi\)
0.981899 0.189406i \(-0.0606563\pi\)
\(614\) 0 0
\(615\) 20.2537 35.0804i 0.816708 1.41458i
\(616\) 0 0
\(617\) −26.0786 15.0565i −1.04988 0.606151i −0.127267 0.991869i \(-0.540620\pi\)
−0.922617 + 0.385718i \(0.873954\pi\)
\(618\) 0 0
\(619\) 34.5494 + 19.9471i 1.38866 + 0.801742i 0.993164 0.116727i \(-0.0372404\pi\)
0.395493 + 0.918469i \(0.370574\pi\)
\(620\) 0 0
\(621\) 57.5295 99.6441i 2.30858 3.99858i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.7259 + 22.0418i 0.509034 + 0.881673i
\(626\) 0 0
\(627\) −76.5431 −3.05684
\(628\) 0 0
\(629\) 0.697840i 0.0278247i
\(630\) 0 0
\(631\) −21.3804 12.3440i −0.851140 0.491406i 0.00989522 0.999951i \(-0.496850\pi\)
−0.861035 + 0.508545i \(0.830184\pi\)
\(632\) 0 0
\(633\) 42.9492 + 74.3903i 1.70708 + 2.95675i
\(634\) 0 0
\(635\) −3.62219 2.09127i −0.143742 0.0829896i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −58.9625 34.0420i −2.33252 1.34668i
\(640\) 0 0
\(641\) −9.30883 16.1234i −0.367677 0.636834i 0.621525 0.783394i \(-0.286513\pi\)
−0.989202 + 0.146560i \(0.953180\pi\)
\(642\) 0 0
\(643\) 27.4384 + 15.8415i 1.08206 + 0.624729i 0.931452 0.363864i \(-0.118543\pi\)
0.150611 + 0.988593i \(0.451876\pi\)
\(644\) 0 0
\(645\) 116.908i 4.60323i
\(646\) 0 0
\(647\) 29.6583 1.16599 0.582994 0.812477i \(-0.301881\pi\)
0.582994 + 0.812477i \(0.301881\pi\)
\(648\) 0 0
\(649\) −4.01506 6.95429i −0.157605 0.272980i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −6.34483 + 10.9896i −0.248292 + 0.430055i −0.963052 0.269315i \(-0.913203\pi\)
0.714760 + 0.699370i \(0.246536\pi\)
\(654\) 0 0
\(655\) 1.61585 + 0.932914i 0.0631367 + 0.0364520i
\(656\) 0 0
\(657\) −21.3387 12.3199i −0.832502 0.480645i
\(658\) 0 0
\(659\) 12.2763 21.2632i 0.478217 0.828296i −0.521471 0.853269i \(-0.674617\pi\)
0.999688 + 0.0249730i \(0.00794998\pi\)
\(660\) 0 0
\(661\) 25.5574i 0.994067i −0.867731 0.497033i \(-0.834423\pi\)
0.867731 0.497033i \(-0.165577\pi\)
\(662\) 0 0
\(663\) 1.37520 1.79886i 0.0534082 0.0698621i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −21.8111 −0.844529
\(668\) 0 0
\(669\) 42.3464 24.4487i 1.63721 0.945242i
\(670\) 0 0
\(671\) 13.1035i 0.505856i
\(672\) 0 0
\(673\) −3.39829 5.88601i −0.130994 0.226889i 0.793066 0.609136i \(-0.208484\pi\)
−0.924060 + 0.382247i \(0.875150\pi\)
\(674\) 0 0
\(675\) −35.1989 + 60.9664i −1.35481 + 2.34660i
\(676\) 0 0
\(677\) −13.0478 22.5995i −0.501468 0.868569i −0.999999 0.00169631i \(-0.999460\pi\)
0.498530 0.866872i \(-0.333873\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 59.8950 34.5804i 2.29518 1.32512i
\(682\) 0 0
\(683\) −42.1666 + 24.3449i −1.61346 + 0.931532i −0.624900 + 0.780705i \(0.714860\pi\)
−0.988560 + 0.150827i \(0.951806\pi\)
\(684\) 0 0
\(685\) −4.02958 + 6.97944i −0.153962 + 0.266671i
\(686\) 0 0
\(687\) −23.3958 + 13.5076i −0.892606 + 0.515346i
\(688\) 0 0
\(689\) −2.06238 0.267754i −0.0785706 0.0102006i
\(690\) 0 0
\(691\) −3.10942 1.79522i −0.118288 0.0682935i 0.439689 0.898150i \(-0.355089\pi\)
−0.557977 + 0.829857i \(0.688422\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 56.7308i 2.15192i
\(696\) 0 0
\(697\) −0.670443 0.387080i −0.0253948 0.0146617i
\(698\) 0 0
\(699\) 42.2717 + 73.2168i 1.59886 + 2.76931i
\(700\) 0 0
\(701\) −15.8746 −0.599575 −0.299787 0.954006i \(-0.596916\pi\)
−0.299787 + 0.954006i \(0.596916\pi\)
\(702\) 0 0
\(703\) 11.0512 19.1413i 0.416805 0.721928i
\(704\) 0 0
\(705\) 22.1266 38.3244i 0.833335 1.44338i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 22.6500i 0.850637i 0.905044 + 0.425318i \(0.139838\pi\)
−0.905044 + 0.425318i \(0.860162\pi\)
\(710\) 0 0
\(711\) 33.4307 + 57.9037i 1.25375 + 2.17156i
\(712\) 0 0
\(713\) −59.1650 + 34.1589i −2.21575 + 1.27926i
\(714\) 0 0
\(715\) 26.5248 34.6965i 0.991969 1.29757i
\(716\) 0 0
\(717\) 59.3089i 2.21493i
\(718\) 0 0
\(719\) 10.2526 0.382358 0.191179 0.981555i \(-0.438769\pi\)
0.191179 + 0.981555i \(0.438769\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.33125 5.38740i 0.347033 0.200359i
\(724\) 0 0
\(725\) 13.3449 0.495618
\(726\) 0 0
\(727\) 5.60059 0.207715 0.103857 0.994592i \(-0.466881\pi\)
0.103857 + 0.994592i \(0.466881\pi\)
\(728\) 0 0
\(729\) 39.7064 1.47061
\(730\) 0 0
\(731\) 2.23429 0.0826382
\(732\) 0 0
\(733\) 35.6418 20.5778i 1.31646 0.760058i 0.333302 0.942820i \(-0.391837\pi\)
0.983157 + 0.182762i \(0.0585038\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.8582 0.768323
\(738\) 0 0
\(739\) 12.1469i 0.446833i 0.974723 + 0.223416i \(0.0717209\pi\)
−0.974723 + 0.223416i \(0.928279\pi\)
\(740\) 0 0
\(741\) −66.2082 + 27.5636i −2.43222 + 1.01257i
\(742\) 0 0
\(743\) 0.486744 0.281022i 0.0178569 0.0103097i −0.491045 0.871134i \(-0.663385\pi\)
0.508902 + 0.860825i \(0.330052\pi\)
\(744\) 0 0
\(745\) 12.7606 + 22.1020i 0.467511 + 0.809753i
\(746\) 0 0
\(747\) 57.0118i 2.08595i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −11.3569 + 19.6707i −0.414418 + 0.717794i −0.995367 0.0961463i \(-0.969348\pi\)
0.580949 + 0.813940i \(0.302682\pi\)
\(752\) 0 0
\(753\) −19.7054 + 34.1307i −0.718104 + 1.24379i
\(754\) 0 0
\(755\) −11.2941 −0.411033
\(756\) 0 0
\(757\) −9.74099 16.8719i −0.354042 0.613219i 0.632911 0.774224i \(-0.281860\pi\)
−0.986954 + 0.161005i \(0.948526\pi\)
\(758\) 0 0
\(759\) −86.3750 49.8686i −3.13521 1.81012i
\(760\) 0 0
\(761\) 42.7334i 1.54909i 0.632522 + 0.774543i \(0.282020\pi\)
−0.632522 + 0.774543i \(0.717980\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 3.94171 + 2.27575i 0.142513 + 0.0822799i
\(766\) 0 0
\(767\) −5.97723 4.56947i −0.215825 0.164994i
\(768\) 0 0
\(769\) 29.5477 17.0593i 1.06552 0.615176i 0.138563 0.990354i \(-0.455752\pi\)
0.926953 + 0.375178i \(0.122418\pi\)
\(770\) 0 0
\(771\) 24.6735 42.7357i 0.888593 1.53909i
\(772\) 0 0
\(773\) −25.0026 + 14.4353i −0.899281 + 0.519200i −0.876967 0.480551i \(-0.840437\pi\)
−0.0223144 + 0.999751i \(0.507103\pi\)
\(774\) 0 0
\(775\) 36.1996 20.8999i 1.30033 0.750745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 12.2599 + 21.2347i 0.439256 + 0.760813i
\(780\) 0 0
\(781\) −17.6091 + 30.4998i −0.630103 + 1.09137i
\(782\) 0 0
\(783\) −19.5004 33.7757i −0.696887 1.20704i
\(784\) 0 0
\(785\) 45.1528i 1.61157i
\(786\) 0 0
\(787\) 38.9448 22.4848i 1.38823 0.801497i 0.395117 0.918631i \(-0.370704\pi\)
0.993116 + 0.117134i \(0.0373706\pi\)
\(788\) 0 0
\(789\) −80.4484 −2.86404
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 4.71865 + 11.3343i 0.167564 + 0.402492i
\(794\) 0 0
\(795\) 5.86620i 0.208053i
\(796\) 0 0
\(797\) 10.7092 18.5489i 0.379340 0.657036i −0.611627 0.791147i \(-0.709485\pi\)
0.990966 + 0.134111i \(0.0428179\pi\)
\(798\) 0 0
\(799\) −0.732440 0.422874i −0.0259118 0.0149602i
\(800\) 0 0
\(801\) 32.9561 + 19.0272i 1.16445 + 0.672293i
\(802\) 0 0
\(803\) −6.37278 + 11.0380i −0.224891 + 0.389522i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 12.6925 + 21.9841i 0.446799 + 0.773878i
\(808\) 0 0
\(809\) −8.25498 −0.290230 −0.145115 0.989415i \(-0.546355\pi\)
−0.145115 + 0.989415i \(0.546355\pi\)
\(810\) 0 0
\(811\) 43.7679i 1.53690i −0.639910 0.768450i \(-0.721029\pi\)
0.639910 0.768450i \(-0.278971\pi\)
\(812\) 0 0
\(813\) −7.38329 4.26274i −0.258943 0.149501i
\(814\) 0 0
\(815\) 0.387387 + 0.670975i 0.0135696 + 0.0235032i
\(816\) 0 0
\(817\) −61.2851 35.3830i −2.14409 1.23789i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.1465 11.0542i −0.668216 0.385795i 0.127184 0.991879i \(-0.459406\pi\)
−0.795400 + 0.606084i \(0.792739\pi\)
\(822\) 0 0
\(823\) −21.0355 36.4346i −0.733252 1.27003i −0.955486 0.295037i \(-0.904668\pi\)
0.222234 0.974993i \(-0.428665\pi\)
\(824\) 0 0
\(825\) 52.8478 + 30.5117i 1.83992 + 1.06228i
\(826\) 0 0
\(827\) 44.4242i 1.54478i −0.635148 0.772390i \(-0.719061\pi\)
0.635148 0.772390i \(-0.280939\pi\)
\(828\) 0 0
\(829\) −17.9479 −0.623355 −0.311678 0.950188i \(-0.600891\pi\)
−0.311678 + 0.950188i \(0.600891\pi\)
\(830\) 0 0
\(831\) −18.8284 32.6118i −0.653151 1.13129i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 2.84600 4.92942i 0.0984900 0.170590i
\(836\) 0 0
\(837\) −105.794 61.0802i −3.65677 2.11124i
\(838\) 0 0
\(839\) −3.09534 1.78709i −0.106863 0.0616973i 0.445616 0.895224i \(-0.352985\pi\)
−0.552479 + 0.833527i \(0.686318\pi\)
\(840\) 0 0
\(841\) 10.8034 18.7121i 0.372532 0.645244i
\(842\) 0 0
\(843\) 12.4878i 0.430104i
\(844\) 0 0
\(845\) 10.4490 39.5634i 0.359455 1.36102i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −22.1279 −0.759429
\(850\) 0 0
\(851\) 24.9415 14.4000i 0.854984 0.493625i
\(852\) 0 0
\(853\) 24.4780i 0.838111i −0.907961 0.419055i \(-0.862361\pi\)
0.907961 0.419055i \(-0.137639\pi\)
\(854\) 0 0
\(855\) −72.0791 124.845i −2.46505 4.26960i
\(856\) 0 0
\(857\) −13.4719 + 23.3340i −0.460192 + 0.797076i −0.998970 0.0453720i \(-0.985553\pi\)
0.538778 + 0.842448i \(0.318886\pi\)
\(858\) 0 0
\(859\) −8.97686 15.5484i −0.306287 0.530504i 0.671260 0.741222i \(-0.265753\pi\)
−0.977547 + 0.210718i \(0.932420\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 9.59914 5.54206i 0.326758 0.188654i −0.327643 0.944802i \(-0.606254\pi\)
0.654401 + 0.756148i \(0.272921\pi\)
\(864\) 0 0
\(865\) 29.4396 16.9969i 1.00098 0.577913i
\(866\) 0 0
\(867\) −27.4025 + 47.4625i −0.930637 + 1.61191i
\(868\) 0 0
\(869\) 29.9521 17.2929i 1.01606 0.586621i
\(870\) 0 0
\(871\) 18.0420 7.51118i 0.611328 0.254506i
\(872\) 0 0
\(873\) −62.0217 35.8082i −2.09912 1.21193i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 4.60737i 0.155580i 0.996970 + 0.0777899i \(0.0247863\pi\)
−0.996970 + 0.0777899i \(0.975214\pi\)
\(878\) 0 0
\(879\) 4.16624 + 2.40538i 0.140524 + 0.0811314i
\(880\) 0 0
\(881\) 17.1554 + 29.7140i 0.577979 + 1.00109i 0.995711 + 0.0925186i \(0.0294918\pi\)
−0.417732 + 0.908570i \(0.637175\pi\)
\(882\) 0 0
\(883\) 42.5926 1.43336 0.716678 0.697404i \(-0.245662\pi\)
0.716678 + 0.697404i \(0.245662\pi\)
\(884\) 0 0
\(885\) 10.6112 18.3791i 0.356691 0.617807i
\(886\) 0 0
\(887\) 20.8026 36.0312i 0.698483 1.20981i −0.270509 0.962717i \(-0.587192\pi\)
0.968992 0.247091i \(-0.0794745\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 92.4572i 3.09743i
\(892\) 0 0
\(893\) 13.3936 + 23.1983i 0.448198 + 0.776302i
\(894\) 0 0
\(895\) 23.6519 13.6554i 0.790595 0.456450i
\(896\) 0 0
\(897\) −92.6706 12.0312i −3.09418 0.401710i
\(898\) 0 0
\(899\) 23.1572i 0.772337i
\(900\) 0 0
\(901\) −0.112112 −0.00373501
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −27.2835 + 15.7521i −0.906934 + 0.523619i
\(906\) 0 0
\(907\) −15.6716 −0.520367 −0.260183 0.965559i \(-0.583783\pi\)
−0.260183 + 0.965559i \(0.583783\pi\)
\(908\) 0 0
\(909\) −18.9077 −0.627129
\(910\) 0 0
\(911\) −33.5478 −1.11149 −0.555743 0.831354i \(-0.687566\pi\)
−0.555743 + 0.831354i \(0.687566\pi\)
\(912\) 0 0
\(913\) −29.4908 −0.976002
\(914\) 0 0
\(915\) −29.9910 + 17.3153i −0.991470 + 0.572426i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.33761 0.110098 0.0550488 0.998484i \(-0.482469\pi\)
0.0550488 + 0.998484i \(0.482469\pi\)
\(920\) 0 0
\(921\) 7.53236i 0.248200i
\(922\) 0 0
\(923\) −4.24833 + 32.7229i −0.139835 + 1.07709i
\(924\) 0 0
\(925\) −15.2603 + 8.81051i −0.501754 + 0.289688i
\(926\) 0 0
\(927\) 12.4755 + 21.6082i 0.409750 + 0.709707i
\(928\) 0 0
\(929\) 9.09688i 0.298459i 0.988803 + 0.149230i \(0.0476793\pi\)
−0.988803 + 0.149230i \(0.952321\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −19.1024 + 33.0863i −0.625384 + 1.08320i
\(934\) 0 0
\(935\) 1.17719 2.03895i 0.0384982 0.0666808i
\(936\) 0 0
\(937\) −9.08442 −0.296775 −0.148388 0.988929i \(-0.547408\pi\)
−0.148388 + 0.988929i \(0.547408\pi\)
\(938\) 0 0
\(939\) 29.7392 + 51.5099i 0.970504 + 1.68096i
\(940\) 0 0
\(941\) 7.13037 + 4.11672i 0.232444 + 0.134201i 0.611699 0.791091i \(-0.290486\pi\)
−0.379255 + 0.925292i \(0.623820\pi\)
\(942\) 0 0
\(943\) 31.9498i 1.04043i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.37804 2.52766i −0.142267 0.0821380i 0.427177 0.904168i \(-0.359508\pi\)
−0.569444 + 0.822030i \(0.692841\pi\)
\(948\) 0 0
\(949\) −1.53748 + 11.8425i −0.0499088 + 0.384424i
\(950\) 0 0
\(951\) 23.5679 13.6069i 0.764242 0.441235i
\(952\) 0 0
\(953\) 19.6579 34.0485i 0.636782 1.10294i −0.349352 0.936992i \(-0.613598\pi\)
0.986135 0.165948i \(-0.0530684\pi\)
\(954\) 0 0
\(955\) 65.5087 37.8215i 2.11981 1.22387i
\(956\) 0 0
\(957\) −29.2779 + 16.9036i −0.946421 + 0.546416i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20.7672 + 35.9698i 0.669909 + 1.16032i
\(962\) 0 0
\(963\) 48.0323 83.1944i 1.54782 2.68090i
\(964\) 0 0
\(965\) 5.15132 + 8.92234i 0.165827 + 0.287220i
\(966\) 0 0
\(967\) 21.2101i 0.682071i 0.940050 + 0.341036i \(0.110778\pi\)
−0.940050 + 0.341036i \(0.889222\pi\)
\(968\) 0 0
\(969\) −3.34815 + 1.93306i −0.107558 + 0.0620987i
\(970\) 0 0
\(971\) 23.5410 0.755466 0.377733 0.925915i \(-0.376704\pi\)
0.377733 + 0.925915i \(0.376704\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 56.6997 + 7.36118i 1.81584 + 0.235747i
\(976\) 0 0
\(977\) 12.3992i 0.396684i −0.980133 0.198342i \(-0.936444\pi\)
0.980133 0.198342i \(-0.0635557\pi\)
\(978\) 0 0
\(979\) 9.84230 17.0474i 0.314561 0.544836i
\(980\) 0 0
\(981\) 51.8164 + 29.9162i 1.65437 + 0.955151i
\(982\) 0 0
\(983\) −31.2516 18.0431i −0.996770 0.575486i −0.0894792 0.995989i \(-0.528520\pi\)
−0.907291 + 0.420503i \(0.861854\pi\)
\(984\) 0 0
\(985\) −20.0703 + 34.7628i −0.639492 + 1.10763i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −46.1047 79.8558i −1.46605 2.53927i
\(990\) 0 0
\(991\) 52.8491 1.67881 0.839403 0.543510i \(-0.182905\pi\)
0.839403 + 0.543510i \(0.182905\pi\)
\(992\) 0 0
\(993\) 58.3409i 1.85139i
\(994\) 0 0
\(995\) 74.4823 + 43.0024i 2.36125 + 1.36327i
\(996\) 0 0
\(997\) 0.704139 + 1.21960i 0.0223003 + 0.0386252i 0.876960 0.480563i \(-0.159568\pi\)
−0.854660 + 0.519188i \(0.826234\pi\)
\(998\) 0 0
\(999\) 44.5983 + 25.7489i 1.41103 + 0.814658i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.bq.c.361.1 16
7.2 even 3 2548.2.bb.c.569.8 16
7.3 odd 6 364.2.u.a.309.1 yes 16
7.4 even 3 2548.2.u.c.1765.8 16
7.5 odd 6 2548.2.bb.d.569.1 16
7.6 odd 2 2548.2.bq.e.361.8 16
13.4 even 6 2548.2.bb.c.1733.8 16
21.17 even 6 3276.2.cf.c.1765.2 16
28.3 even 6 1456.2.cc.f.673.8 16
91.3 odd 6 4732.2.g.k.337.16 16
91.4 even 6 2548.2.u.c.589.8 16
91.10 odd 6 4732.2.g.k.337.15 16
91.17 odd 6 364.2.u.a.225.1 16
91.24 even 12 4732.2.a.s.1.8 8
91.30 even 6 inner 2548.2.bq.c.1941.1 16
91.69 odd 6 2548.2.bb.d.1733.1 16
91.80 even 12 4732.2.a.t.1.8 8
91.82 odd 6 2548.2.bq.e.1941.8 16
273.17 even 6 3276.2.cf.c.2773.7 16
364.199 even 6 1456.2.cc.f.225.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.u.a.225.1 16 91.17 odd 6
364.2.u.a.309.1 yes 16 7.3 odd 6
1456.2.cc.f.225.8 16 364.199 even 6
1456.2.cc.f.673.8 16 28.3 even 6
2548.2.u.c.589.8 16 91.4 even 6
2548.2.u.c.1765.8 16 7.4 even 3
2548.2.bb.c.569.8 16 7.2 even 3
2548.2.bb.c.1733.8 16 13.4 even 6
2548.2.bb.d.569.1 16 7.5 odd 6
2548.2.bb.d.1733.1 16 91.69 odd 6
2548.2.bq.c.361.1 16 1.1 even 1 trivial
2548.2.bq.c.1941.1 16 91.30 even 6 inner
2548.2.bq.e.361.8 16 7.6 odd 2
2548.2.bq.e.1941.8 16 91.82 odd 6
3276.2.cf.c.1765.2 16 21.17 even 6
3276.2.cf.c.2773.7 16 273.17 even 6
4732.2.a.s.1.8 8 91.24 even 12
4732.2.a.t.1.8 8 91.80 even 12
4732.2.g.k.337.15 16 91.10 odd 6
4732.2.g.k.337.16 16 91.3 odd 6