Properties

Label 468.2.cg.a.437.10
Level $468$
Weight $2$
Character 468.437
Analytic conductor $3.737$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [468,2,Mod(5,468)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(468, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 9])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("468.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.cg (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.73699881460\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 437.10
Character \(\chi\) \(=\) 468.437
Dual form 468.2.cg.a.317.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930898 + 1.46063i) q^{3} +(0.734125 + 2.73979i) q^{5} +(1.89332 + 0.507313i) q^{7} +(-1.26686 + 2.71939i) q^{9} +(-0.158535 + 0.591661i) q^{11} +(-0.394879 - 3.58386i) q^{13} +(-3.31842 + 3.62275i) q^{15} -0.329188 q^{17} +(-2.29971 - 2.29971i) q^{19} +(1.02149 + 3.23769i) q^{21} +(-0.458575 + 0.794276i) q^{23} +(-2.63740 + 1.52270i) q^{25} +(-5.15132 + 0.681067i) q^{27} +(3.53714 - 2.04217i) q^{29} +(3.62256 - 0.970663i) q^{31} +(-1.01178 + 0.319216i) q^{33} +5.55973i q^{35} +(-5.24778 + 5.24778i) q^{37} +(4.86709 - 3.91298i) q^{39} +(1.35806 + 5.06836i) q^{41} +(6.65352 - 3.84141i) q^{43} +(-8.38059 - 1.47456i) q^{45} +(1.27379 - 4.75386i) q^{47} +(-2.73489 - 1.57899i) q^{49} +(-0.306441 - 0.480821i) q^{51} +10.3025i q^{53} -1.73741 q^{55} +(1.21822 - 5.49982i) q^{57} +(7.68473 - 2.05912i) q^{59} +(-3.51473 - 6.08768i) q^{61} +(-3.77815 + 4.50598i) q^{63} +(9.52915 - 3.71289i) q^{65} +(11.9181 - 3.19344i) q^{67} +(-1.58703 + 0.0695826i) q^{69} +(-0.769386 + 0.769386i) q^{71} +(-5.02343 + 5.02343i) q^{73} +(-4.67925 - 2.43477i) q^{75} +(-0.600315 + 1.03978i) q^{77} +(-4.63505 - 8.02814i) q^{79} +(-5.79014 - 6.89016i) q^{81} +(16.7195 + 4.47998i) q^{83} +(-0.241666 - 0.901908i) q^{85} +(6.27556 + 3.26539i) q^{87} +(-8.13868 - 8.13868i) q^{89} +(1.07051 - 6.98572i) q^{91} +(4.79001 + 4.38762i) q^{93} +(4.61246 - 7.98901i) q^{95} +(2.01196 - 7.50874i) q^{97} +(-1.40811 - 1.18067i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} - 12 q^{11} - 12 q^{15} + 4 q^{19} - 12 q^{21} + 36 q^{27} - 4 q^{31} + 12 q^{33} - 4 q^{37} + 24 q^{41} + 6 q^{45} + 66 q^{47} - 48 q^{57} - 30 q^{63} - 78 q^{65} - 14 q^{67} + 28 q^{73}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/468\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(209\) \(235\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.930898 + 1.46063i 0.537454 + 0.843293i
\(4\) 0 0
\(5\) 0.734125 + 2.73979i 0.328311 + 1.22527i 0.910941 + 0.412536i \(0.135357\pi\)
−0.582631 + 0.812737i \(0.697977\pi\)
\(6\) 0 0
\(7\) 1.89332 + 0.507313i 0.715607 + 0.191746i 0.598211 0.801339i \(-0.295879\pi\)
0.117396 + 0.993085i \(0.462545\pi\)
\(8\) 0 0
\(9\) −1.26686 + 2.71939i −0.422286 + 0.906463i
\(10\) 0 0
\(11\) −0.158535 + 0.591661i −0.0478001 + 0.178393i −0.985699 0.168517i \(-0.946102\pi\)
0.937899 + 0.346909i \(0.112769\pi\)
\(12\) 0 0
\(13\) −0.394879 3.58386i −0.109520 0.993985i
\(14\) 0 0
\(15\) −3.31842 + 3.62275i −0.856812 + 0.935390i
\(16\) 0 0
\(17\) −0.329188 −0.0798399 −0.0399200 0.999203i \(-0.512710\pi\)
−0.0399200 + 0.999203i \(0.512710\pi\)
\(18\) 0 0
\(19\) −2.29971 2.29971i −0.527590 0.527590i 0.392263 0.919853i \(-0.371692\pi\)
−0.919853 + 0.392263i \(0.871692\pi\)
\(20\) 0 0
\(21\) 1.02149 + 3.23769i 0.222908 + 0.706522i
\(22\) 0 0
\(23\) −0.458575 + 0.794276i −0.0956196 + 0.165618i −0.909867 0.414900i \(-0.863817\pi\)
0.814247 + 0.580518i \(0.197150\pi\)
\(24\) 0 0
\(25\) −2.63740 + 1.52270i −0.527480 + 0.304541i
\(26\) 0 0
\(27\) −5.15132 + 0.681067i −0.991373 + 0.131071i
\(28\) 0 0
\(29\) 3.53714 2.04217i 0.656830 0.379221i −0.134238 0.990949i \(-0.542859\pi\)
0.791068 + 0.611728i \(0.209525\pi\)
\(30\) 0 0
\(31\) 3.62256 0.970663i 0.650632 0.174336i 0.0816173 0.996664i \(-0.473991\pi\)
0.569015 + 0.822327i \(0.307325\pi\)
\(32\) 0 0
\(33\) −1.01178 + 0.319216i −0.176128 + 0.0555683i
\(34\) 0 0
\(35\) 5.55973i 0.939767i
\(36\) 0 0
\(37\) −5.24778 + 5.24778i −0.862730 + 0.862730i −0.991654 0.128925i \(-0.958847\pi\)
0.128925 + 0.991654i \(0.458847\pi\)
\(38\) 0 0
\(39\) 4.86709 3.91298i 0.779358 0.626579i
\(40\) 0 0
\(41\) 1.35806 + 5.06836i 0.212094 + 0.791545i 0.987169 + 0.159677i \(0.0510452\pi\)
−0.775075 + 0.631869i \(0.782288\pi\)
\(42\) 0 0
\(43\) 6.65352 3.84141i 1.01465 0.585810i 0.102102 0.994774i \(-0.467443\pi\)
0.912550 + 0.408964i \(0.134110\pi\)
\(44\) 0 0
\(45\) −8.38059 1.47456i −1.24931 0.219814i
\(46\) 0 0
\(47\) 1.27379 4.75386i 0.185802 0.693421i −0.808656 0.588282i \(-0.799804\pi\)
0.994457 0.105139i \(-0.0335289\pi\)
\(48\) 0 0
\(49\) −2.73489 1.57899i −0.390698 0.225570i
\(50\) 0 0
\(51\) −0.306441 0.480821i −0.0429103 0.0673285i
\(52\) 0 0
\(53\) 10.3025i 1.41516i 0.706633 + 0.707581i \(0.250213\pi\)
−0.706633 + 0.707581i \(0.749787\pi\)
\(54\) 0 0
\(55\) −1.73741 −0.234273
\(56\) 0 0
\(57\) 1.21822 5.49982i 0.161357 0.728469i
\(58\) 0 0
\(59\) 7.68473 2.05912i 1.00047 0.268074i 0.278826 0.960342i \(-0.410055\pi\)
0.721641 + 0.692268i \(0.243388\pi\)
\(60\) 0 0
\(61\) −3.51473 6.08768i −0.450015 0.779448i 0.548372 0.836235i \(-0.315248\pi\)
−0.998386 + 0.0567865i \(0.981915\pi\)
\(62\) 0 0
\(63\) −3.77815 + 4.50598i −0.476002 + 0.567700i
\(64\) 0 0
\(65\) 9.52915 3.71289i 1.18195 0.460528i
\(66\) 0 0
\(67\) 11.9181 3.19344i 1.45602 0.390140i 0.557909 0.829902i \(-0.311604\pi\)
0.898115 + 0.439762i \(0.144937\pi\)
\(68\) 0 0
\(69\) −1.58703 + 0.0695826i −0.191056 + 0.00837676i
\(70\) 0 0
\(71\) −0.769386 + 0.769386i −0.0913093 + 0.0913093i −0.751286 0.659977i \(-0.770566\pi\)
0.659977 + 0.751286i \(0.270566\pi\)
\(72\) 0 0
\(73\) −5.02343 + 5.02343i −0.587949 + 0.587949i −0.937075 0.349127i \(-0.886478\pi\)
0.349127 + 0.937075i \(0.386478\pi\)
\(74\) 0 0
\(75\) −4.67925 2.43477i −0.540314 0.281144i
\(76\) 0 0
\(77\) −0.600315 + 1.03978i −0.0684122 + 0.118493i
\(78\) 0 0
\(79\) −4.63505 8.02814i −0.521484 0.903236i −0.999688 0.0249875i \(-0.992045\pi\)
0.478204 0.878249i \(-0.341288\pi\)
\(80\) 0 0
\(81\) −5.79014 6.89016i −0.643349 0.765573i
\(82\) 0 0
\(83\) 16.7195 + 4.47998i 1.83521 + 0.491742i 0.998441 0.0558197i \(-0.0177772\pi\)
0.836765 + 0.547562i \(0.184444\pi\)
\(84\) 0 0
\(85\) −0.241666 0.901908i −0.0262123 0.0978257i
\(86\) 0 0
\(87\) 6.27556 + 3.26539i 0.672810 + 0.350086i
\(88\) 0 0
\(89\) −8.13868 8.13868i −0.862699 0.862699i 0.128952 0.991651i \(-0.458839\pi\)
−0.991651 + 0.128952i \(0.958839\pi\)
\(90\) 0 0
\(91\) 1.07051 6.98572i 0.112220 0.732303i
\(92\) 0 0
\(93\) 4.79001 + 4.38762i 0.496701 + 0.454975i
\(94\) 0 0
\(95\) 4.61246 7.98901i 0.473228 0.819655i
\(96\) 0 0
\(97\) 2.01196 7.50874i 0.204284 0.762397i −0.785383 0.619010i \(-0.787534\pi\)
0.989667 0.143387i \(-0.0457994\pi\)
\(98\) 0 0
\(99\) −1.40811 1.18067i −0.141521 0.118662i
\(100\) 0 0
\(101\) 6.13315 + 10.6229i 0.610271 + 1.05702i 0.991194 + 0.132414i \(0.0422729\pi\)
−0.380923 + 0.924607i \(0.624394\pi\)
\(102\) 0 0
\(103\) −8.32770 4.80800i −0.820553 0.473746i 0.0300543 0.999548i \(-0.490432\pi\)
−0.850607 + 0.525802i \(0.823765\pi\)
\(104\) 0 0
\(105\) −8.12069 + 5.17555i −0.792499 + 0.505082i
\(106\) 0 0
\(107\) 1.85058i 0.178902i 0.995991 + 0.0894511i \(0.0285113\pi\)
−0.995991 + 0.0894511i \(0.971489\pi\)
\(108\) 0 0
\(109\) 0.523808 + 0.523808i 0.0501717 + 0.0501717i 0.731748 0.681576i \(-0.238705\pi\)
−0.681576 + 0.731748i \(0.738705\pi\)
\(110\) 0 0
\(111\) −12.5502 2.77990i −1.19121 0.263856i
\(112\) 0 0
\(113\) −15.5927 9.00243i −1.46683 0.846877i −0.467523 0.883981i \(-0.654854\pi\)
−0.999311 + 0.0371036i \(0.988187\pi\)
\(114\) 0 0
\(115\) −2.51280 0.673304i −0.234320 0.0627859i
\(116\) 0 0
\(117\) 10.2462 + 3.46641i 0.947259 + 0.320470i
\(118\) 0 0
\(119\) −0.623259 0.167002i −0.0571340 0.0153090i
\(120\) 0 0
\(121\) 9.20135 + 5.31240i 0.836486 + 0.482946i
\(122\) 0 0
\(123\) −6.13877 + 6.70175i −0.553514 + 0.604277i
\(124\) 0 0
\(125\) 3.92026 + 3.92026i 0.350639 + 0.350639i
\(126\) 0 0
\(127\) 15.2754i 1.35547i −0.735305 0.677737i \(-0.762961\pi\)
0.735305 0.677737i \(-0.237039\pi\)
\(128\) 0 0
\(129\) 11.8046 + 6.14234i 1.03934 + 0.540803i
\(130\) 0 0
\(131\) −9.56197 5.52061i −0.835434 0.482338i 0.0202759 0.999794i \(-0.493546\pi\)
−0.855709 + 0.517457i \(0.826879\pi\)
\(132\) 0 0
\(133\) −3.18741 5.52076i −0.276384 0.478711i
\(134\) 0 0
\(135\) −5.64770 13.6136i −0.486077 1.17167i
\(136\) 0 0
\(137\) 3.82658 14.2810i 0.326927 1.22011i −0.585434 0.810720i \(-0.699076\pi\)
0.912361 0.409387i \(-0.134258\pi\)
\(138\) 0 0
\(139\) 6.38084 11.0519i 0.541216 0.937414i −0.457619 0.889149i \(-0.651297\pi\)
0.998835 0.0482650i \(-0.0153692\pi\)
\(140\) 0 0
\(141\) 8.12938 2.56482i 0.684617 0.215997i
\(142\) 0 0
\(143\) 2.18303 + 0.334533i 0.182554 + 0.0279751i
\(144\) 0 0
\(145\) 8.19182 + 8.19182i 0.680293 + 0.680293i
\(146\) 0 0
\(147\) −0.239590 5.46452i −0.0197610 0.450706i
\(148\) 0 0
\(149\) 1.24307 + 4.63919i 0.101836 + 0.380057i 0.997967 0.0637324i \(-0.0203004\pi\)
−0.896131 + 0.443790i \(0.853634\pi\)
\(150\) 0 0
\(151\) 10.4275 + 2.79405i 0.848581 + 0.227377i 0.656803 0.754062i \(-0.271908\pi\)
0.191778 + 0.981438i \(0.438575\pi\)
\(152\) 0 0
\(153\) 0.417035 0.895191i 0.0337153 0.0723719i
\(154\) 0 0
\(155\) 5.31883 + 9.21249i 0.427219 + 0.739965i
\(156\) 0 0
\(157\) −3.88990 + 6.73750i −0.310448 + 0.537711i −0.978459 0.206440i \(-0.933812\pi\)
0.668012 + 0.744151i \(0.267146\pi\)
\(158\) 0 0
\(159\) −15.0481 + 9.59060i −1.19340 + 0.760584i
\(160\) 0 0
\(161\) −1.27118 + 1.27118i −0.100183 + 0.100183i
\(162\) 0 0
\(163\) 11.6439 11.6439i 0.912020 0.912020i −0.0844107 0.996431i \(-0.526901\pi\)
0.996431 + 0.0844107i \(0.0269008\pi\)
\(164\) 0 0
\(165\) −1.61735 2.53771i −0.125911 0.197561i
\(166\) 0 0
\(167\) −4.62520 + 1.23932i −0.357909 + 0.0959014i −0.433293 0.901253i \(-0.642648\pi\)
0.0753839 + 0.997155i \(0.475982\pi\)
\(168\) 0 0
\(169\) −12.6881 + 2.83039i −0.976011 + 0.217722i
\(170\) 0 0
\(171\) 9.16722 3.34040i 0.701035 0.255447i
\(172\) 0 0
\(173\) −9.66477 16.7399i −0.734799 1.27271i −0.954812 0.297212i \(-0.903943\pi\)
0.220013 0.975497i \(-0.429390\pi\)
\(174\) 0 0
\(175\) −5.76593 + 1.54498i −0.435863 + 0.116789i
\(176\) 0 0
\(177\) 10.1613 + 9.30769i 0.763770 + 0.699609i
\(178\) 0 0
\(179\) −12.5587 −0.938684 −0.469342 0.883017i \(-0.655509\pi\)
−0.469342 + 0.883017i \(0.655509\pi\)
\(180\) 0 0
\(181\) 21.1579i 1.57265i 0.617811 + 0.786327i \(0.288020\pi\)
−0.617811 + 0.786327i \(0.711980\pi\)
\(182\) 0 0
\(183\) 5.61998 10.8007i 0.415441 0.798412i
\(184\) 0 0
\(185\) −18.2304 10.5253i −1.34032 0.773836i
\(186\) 0 0
\(187\) 0.0521879 0.194768i 0.00381636 0.0142428i
\(188\) 0 0
\(189\) −10.0986 1.32386i −0.734566 0.0962965i
\(190\) 0 0
\(191\) −18.1736 + 10.4925i −1.31500 + 0.759213i −0.982919 0.184039i \(-0.941083\pi\)
−0.332077 + 0.943252i \(0.607749\pi\)
\(192\) 0 0
\(193\) 2.34772 + 8.76182i 0.168993 + 0.630690i 0.997497 + 0.0707070i \(0.0225255\pi\)
−0.828504 + 0.559983i \(0.810808\pi\)
\(194\) 0 0
\(195\) 14.2938 + 10.4622i 1.02360 + 0.749214i
\(196\) 0 0
\(197\) −11.0033 + 11.0033i −0.783953 + 0.783953i −0.980495 0.196542i \(-0.937029\pi\)
0.196542 + 0.980495i \(0.437029\pi\)
\(198\) 0 0
\(199\) 9.40693i 0.666839i −0.942778 0.333420i \(-0.891797\pi\)
0.942778 0.333420i \(-0.108203\pi\)
\(200\) 0 0
\(201\) 15.7589 + 14.4351i 1.11155 + 1.01817i
\(202\) 0 0
\(203\) 7.73295 2.07204i 0.542746 0.145428i
\(204\) 0 0
\(205\) −12.8893 + 7.44163i −0.900226 + 0.519746i
\(206\) 0 0
\(207\) −1.57899 2.25328i −0.109748 0.156614i
\(208\) 0 0
\(209\) 1.72524 0.996065i 0.119337 0.0688993i
\(210\) 0 0
\(211\) −11.9952 + 20.7763i −0.825784 + 1.43030i 0.0755338 + 0.997143i \(0.475934\pi\)
−0.901318 + 0.433157i \(0.857399\pi\)
\(212\) 0 0
\(213\) −1.84000 0.407565i −0.126075 0.0279259i
\(214\) 0 0
\(215\) 15.4092 + 15.4092i 1.05090 + 1.05090i
\(216\) 0 0
\(217\) 7.35110 0.499025
\(218\) 0 0
\(219\) −12.0137 2.66106i −0.811808 0.179817i
\(220\) 0 0
\(221\) 0.129990 + 1.17977i 0.00874406 + 0.0793597i
\(222\) 0 0
\(223\) −6.16331 + 23.0018i −0.412726 + 1.54031i 0.376621 + 0.926367i \(0.377086\pi\)
−0.789347 + 0.613947i \(0.789581\pi\)
\(224\) 0 0
\(225\) −0.799611 9.10117i −0.0533074 0.606744i
\(226\) 0 0
\(227\) 26.9440 + 7.21963i 1.78834 + 0.479183i 0.992062 0.125751i \(-0.0401341\pi\)
0.796275 + 0.604935i \(0.206801\pi\)
\(228\) 0 0
\(229\) 0.731872 + 2.73139i 0.0483635 + 0.180495i 0.985882 0.167439i \(-0.0535499\pi\)
−0.937519 + 0.347934i \(0.886883\pi\)
\(230\) 0 0
\(231\) −2.07756 + 0.0910897i −0.136693 + 0.00599326i
\(232\) 0 0
\(233\) −5.37193 −0.351927 −0.175963 0.984397i \(-0.556304\pi\)
−0.175963 + 0.984397i \(0.556304\pi\)
\(234\) 0 0
\(235\) 13.9597 0.910631
\(236\) 0 0
\(237\) 7.41135 14.2435i 0.481419 0.925212i
\(238\) 0 0
\(239\) −0.885927 3.30632i −0.0573058 0.213868i 0.931336 0.364162i \(-0.118645\pi\)
−0.988641 + 0.150294i \(0.951978\pi\)
\(240\) 0 0
\(241\) 27.8499 + 7.46235i 1.79397 + 0.480692i 0.993010 0.118030i \(-0.0376580\pi\)
0.800957 + 0.598722i \(0.204325\pi\)
\(242\) 0 0
\(243\) 4.67391 14.8713i 0.299831 0.953992i
\(244\) 0 0
\(245\) 2.31835 8.65220i 0.148114 0.552769i
\(246\) 0 0
\(247\) −7.33374 + 9.14996i −0.466635 + 0.582198i
\(248\) 0 0
\(249\) 9.02059 + 28.5914i 0.571657 + 1.81191i
\(250\) 0 0
\(251\) 0.889720 0.0561587 0.0280793 0.999606i \(-0.491061\pi\)
0.0280793 + 0.999606i \(0.491061\pi\)
\(252\) 0 0
\(253\) −0.397242 0.397242i −0.0249744 0.0249744i
\(254\) 0 0
\(255\) 1.09239 1.19257i 0.0684078 0.0746815i
\(256\) 0 0
\(257\) 12.1369 21.0217i 0.757079 1.31130i −0.187256 0.982311i \(-0.559959\pi\)
0.944334 0.328987i \(-0.106707\pi\)
\(258\) 0 0
\(259\) −12.5980 + 7.27345i −0.782801 + 0.451950i
\(260\) 0 0
\(261\) 1.07239 + 12.2060i 0.0663796 + 0.755531i
\(262\) 0 0
\(263\) −16.3337 + 9.43028i −1.00718 + 0.581496i −0.910365 0.413806i \(-0.864199\pi\)
−0.0968159 + 0.995302i \(0.530866\pi\)
\(264\) 0 0
\(265\) −28.2268 + 7.56335i −1.73396 + 0.464613i
\(266\) 0 0
\(267\) 4.31129 19.4639i 0.263847 1.19117i
\(268\) 0 0
\(269\) 24.2986i 1.48151i 0.671774 + 0.740757i \(0.265533\pi\)
−0.671774 + 0.740757i \(0.734467\pi\)
\(270\) 0 0
\(271\) −10.8607 + 10.8607i −0.659741 + 0.659741i −0.955319 0.295578i \(-0.904488\pi\)
0.295578 + 0.955319i \(0.404488\pi\)
\(272\) 0 0
\(273\) 11.2001 4.93938i 0.677859 0.298945i
\(274\) 0 0
\(275\) −0.482804 1.80185i −0.0291142 0.108656i
\(276\) 0 0
\(277\) 3.90814 2.25637i 0.234818 0.135572i −0.377975 0.925816i \(-0.623379\pi\)
0.612793 + 0.790244i \(0.290046\pi\)
\(278\) 0 0
\(279\) −1.94966 + 11.0809i −0.116723 + 0.663393i
\(280\) 0 0
\(281\) 4.77388 17.8164i 0.284786 1.06284i −0.664210 0.747546i \(-0.731232\pi\)
0.948996 0.315289i \(-0.102102\pi\)
\(282\) 0 0
\(283\) 2.60463 + 1.50378i 0.154829 + 0.0893906i 0.575413 0.817863i \(-0.304841\pi\)
−0.420584 + 0.907254i \(0.638175\pi\)
\(284\) 0 0
\(285\) 15.9627 0.699878i 0.945548 0.0414572i
\(286\) 0 0
\(287\) 10.2850i 0.607104i
\(288\) 0 0
\(289\) −16.8916 −0.993626
\(290\) 0 0
\(291\) 12.8404 4.05115i 0.752717 0.237483i
\(292\) 0 0
\(293\) −6.13275 + 1.64326i −0.358279 + 0.0960005i −0.433469 0.901169i \(-0.642710\pi\)
0.0751896 + 0.997169i \(0.476044\pi\)
\(294\) 0 0
\(295\) 11.2831 + 19.5429i 0.656928 + 1.13783i
\(296\) 0 0
\(297\) 0.413705 3.15581i 0.0240056 0.183119i
\(298\) 0 0
\(299\) 3.02766 + 1.32983i 0.175094 + 0.0769059i
\(300\) 0 0
\(301\) 14.5460 3.89760i 0.838420 0.224654i
\(302\) 0 0
\(303\) −9.80679 + 18.8471i −0.563385 + 1.08274i
\(304\) 0 0
\(305\) 14.0987 14.0987i 0.807292 0.807292i
\(306\) 0 0
\(307\) 1.50595 1.50595i 0.0859492 0.0859492i −0.662825 0.748774i \(-0.730643\pi\)
0.748774 + 0.662825i \(0.230643\pi\)
\(308\) 0 0
\(309\) −0.729549 16.6394i −0.0415026 0.946583i
\(310\) 0 0
\(311\) −6.93805 + 12.0170i −0.393420 + 0.681424i −0.992898 0.118967i \(-0.962042\pi\)
0.599478 + 0.800391i \(0.295375\pi\)
\(312\) 0 0
\(313\) 3.70337 + 6.41442i 0.209327 + 0.362565i 0.951503 0.307641i \(-0.0995394\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(314\) 0 0
\(315\) −15.1191 7.04339i −0.851863 0.396850i
\(316\) 0 0
\(317\) −31.1462 8.34561i −1.74935 0.468736i −0.764860 0.644197i \(-0.777192\pi\)
−0.984486 + 0.175461i \(0.943859\pi\)
\(318\) 0 0
\(319\) 0.647510 + 2.41654i 0.0362536 + 0.135300i
\(320\) 0 0
\(321\) −2.70300 + 1.72270i −0.150867 + 0.0961517i
\(322\) 0 0
\(323\) 0.757039 + 0.757039i 0.0421228 + 0.0421228i
\(324\) 0 0
\(325\) 6.49862 + 8.85080i 0.360478 + 0.490954i
\(326\) 0 0
\(327\) −0.277476 + 1.25270i −0.0153445 + 0.0692745i
\(328\) 0 0
\(329\) 4.82339 8.35436i 0.265922 0.460591i
\(330\) 0 0
\(331\) 2.15355 8.03717i 0.118370 0.441763i −0.881147 0.472843i \(-0.843228\pi\)
0.999517 + 0.0310796i \(0.00989455\pi\)
\(332\) 0 0
\(333\) −7.62256 20.9189i −0.417714 1.14635i
\(334\) 0 0
\(335\) 17.4987 + 30.3087i 0.956057 + 1.65594i
\(336\) 0 0
\(337\) −6.73189 3.88666i −0.366709 0.211720i 0.305310 0.952253i \(-0.401240\pi\)
−0.672020 + 0.740533i \(0.734573\pi\)
\(338\) 0 0
\(339\) −1.36600 31.1554i −0.0741907 1.69213i
\(340\) 0 0
\(341\) 2.29721i 0.124401i
\(342\) 0 0
\(343\) −14.0790 14.0790i −0.760195 0.760195i
\(344\) 0 0
\(345\) −1.35572 4.29704i −0.0729895 0.231345i
\(346\) 0 0
\(347\) −27.0008 15.5889i −1.44948 0.836856i −0.451027 0.892510i \(-0.648942\pi\)
−0.998450 + 0.0556541i \(0.982276\pi\)
\(348\) 0 0
\(349\) −4.81905 1.29126i −0.257958 0.0691195i 0.127522 0.991836i \(-0.459297\pi\)
−0.385480 + 0.922716i \(0.625964\pi\)
\(350\) 0 0
\(351\) 4.47500 + 18.1927i 0.238858 + 0.971055i
\(352\) 0 0
\(353\) −2.79861 0.749885i −0.148955 0.0399124i 0.183571 0.983006i \(-0.441234\pi\)
−0.332526 + 0.943094i \(0.607901\pi\)
\(354\) 0 0
\(355\) −2.67278 1.54313i −0.141857 0.0819009i
\(356\) 0 0
\(357\) −0.336263 1.06581i −0.0177969 0.0564086i
\(358\) 0 0
\(359\) −20.8996 20.8996i −1.10304 1.10304i −0.994042 0.108997i \(-0.965236\pi\)
−0.108997 0.994042i \(-0.534764\pi\)
\(360\) 0 0
\(361\) 8.42265i 0.443297i
\(362\) 0 0
\(363\) 0.806085 + 18.3850i 0.0423085 + 0.964964i
\(364\) 0 0
\(365\) −17.4510 10.0753i −0.913427 0.527368i
\(366\) 0 0
\(367\) 5.85980 + 10.1495i 0.305879 + 0.529798i 0.977457 0.211136i \(-0.0677163\pi\)
−0.671577 + 0.740934i \(0.734383\pi\)
\(368\) 0 0
\(369\) −15.5033 2.72779i −0.807071 0.142003i
\(370\) 0 0
\(371\) −5.22661 + 19.5060i −0.271352 + 1.01270i
\(372\) 0 0
\(373\) 6.42101 11.1215i 0.332467 0.575850i −0.650528 0.759482i \(-0.725452\pi\)
0.982995 + 0.183632i \(0.0587856\pi\)
\(374\) 0 0
\(375\) −2.07667 + 9.37540i −0.107239 + 0.484144i
\(376\) 0 0
\(377\) −8.71559 11.8702i −0.448876 0.611346i
\(378\) 0 0
\(379\) 9.13990 + 9.13990i 0.469485 + 0.469485i 0.901748 0.432263i \(-0.142285\pi\)
−0.432263 + 0.901748i \(0.642285\pi\)
\(380\) 0 0
\(381\) 22.3117 14.2198i 1.14306 0.728505i
\(382\) 0 0
\(383\) −3.97277 14.8266i −0.202999 0.757603i −0.990050 0.140715i \(-0.955060\pi\)
0.787051 0.616888i \(-0.211607\pi\)
\(384\) 0 0
\(385\) −3.28948 0.881413i −0.167647 0.0449210i
\(386\) 0 0
\(387\) 2.01722 + 22.9600i 0.102541 + 1.16712i
\(388\) 0 0
\(389\) −19.1965 33.2493i −0.973302 1.68581i −0.685428 0.728141i \(-0.740385\pi\)
−0.287875 0.957668i \(-0.592949\pi\)
\(390\) 0 0
\(391\) 0.150958 0.261466i 0.00763426 0.0132229i
\(392\) 0 0
\(393\) −0.837677 19.1056i −0.0422552 0.963750i
\(394\) 0 0
\(395\) 18.5927 18.5927i 0.935502 0.935502i
\(396\) 0 0
\(397\) 10.6225 10.6225i 0.533130 0.533130i −0.388372 0.921503i \(-0.626962\pi\)
0.921503 + 0.388372i \(0.126962\pi\)
\(398\) 0 0
\(399\) 5.09661 9.79489i 0.255150 0.490358i
\(400\) 0 0
\(401\) −16.1747 + 4.33401i −0.807727 + 0.216430i −0.638974 0.769228i \(-0.720641\pi\)
−0.168753 + 0.985658i \(0.553974\pi\)
\(402\) 0 0
\(403\) −4.90920 12.5995i −0.244545 0.627625i
\(404\) 0 0
\(405\) 14.6269 20.9220i 0.726817 1.03962i
\(406\) 0 0
\(407\) −2.27295 3.93686i −0.112666 0.195143i
\(408\) 0 0
\(409\) −13.8034 + 3.69860i −0.682532 + 0.182884i −0.583394 0.812190i \(-0.698275\pi\)
−0.0991389 + 0.995074i \(0.531609\pi\)
\(410\) 0 0
\(411\) 24.4213 7.70494i 1.20462 0.380057i
\(412\) 0 0
\(413\) 15.5943 0.767344
\(414\) 0 0
\(415\) 49.0969i 2.41007i
\(416\) 0 0
\(417\) 22.0827 0.968206i 1.08139 0.0474133i
\(418\) 0 0
\(419\) −4.26586 2.46289i −0.208401 0.120320i 0.392167 0.919894i \(-0.371725\pi\)
−0.600568 + 0.799574i \(0.705059\pi\)
\(420\) 0 0
\(421\) −2.49475 + 9.31053i −0.121587 + 0.453768i −0.999695 0.0246942i \(-0.992139\pi\)
0.878108 + 0.478462i \(0.158805\pi\)
\(422\) 0 0
\(423\) 11.3139 + 9.48640i 0.550099 + 0.461244i
\(424\) 0 0
\(425\) 0.868202 0.501257i 0.0421140 0.0243145i
\(426\) 0 0
\(427\) −3.56614 13.3090i −0.172577 0.644068i
\(428\) 0 0
\(429\) 1.54355 + 3.50001i 0.0745235 + 0.168982i
\(430\) 0 0
\(431\) 0.315102 0.315102i 0.0151779 0.0151779i −0.699477 0.714655i \(-0.746584\pi\)
0.714655 + 0.699477i \(0.246584\pi\)
\(432\) 0 0
\(433\) 30.2736i 1.45485i −0.686185 0.727427i \(-0.740716\pi\)
0.686185 0.727427i \(-0.259284\pi\)
\(434\) 0 0
\(435\) −4.33944 + 19.5909i −0.208060 + 0.939313i
\(436\) 0 0
\(437\) 2.88120 0.772015i 0.137826 0.0369305i
\(438\) 0 0
\(439\) 31.2977 18.0697i 1.49376 0.862421i 0.493783 0.869585i \(-0.335614\pi\)
0.999974 + 0.00716374i \(0.00228031\pi\)
\(440\) 0 0
\(441\) 7.75859 5.43687i 0.369457 0.258898i
\(442\) 0 0
\(443\) 1.98825 1.14792i 0.0944646 0.0545391i −0.452024 0.892006i \(-0.649298\pi\)
0.546488 + 0.837467i \(0.315964\pi\)
\(444\) 0 0
\(445\) 16.3235 28.2731i 0.773808 1.34027i
\(446\) 0 0
\(447\) −5.61895 + 6.13427i −0.265767 + 0.290141i
\(448\) 0 0
\(449\) −6.47243 6.47243i −0.305453 0.305453i 0.537690 0.843143i \(-0.319297\pi\)
−0.843143 + 0.537690i \(0.819297\pi\)
\(450\) 0 0
\(451\) −3.21405 −0.151344
\(452\) 0 0
\(453\) 5.62591 + 17.8317i 0.264328 + 0.837807i
\(454\) 0 0
\(455\) 19.9253 2.19543i 0.934114 0.102923i
\(456\) 0 0
\(457\) −6.28764 + 23.4658i −0.294123 + 1.09768i 0.647788 + 0.761821i \(0.275694\pi\)
−0.941911 + 0.335862i \(0.890972\pi\)
\(458\) 0 0
\(459\) 1.69576 0.224199i 0.0791511 0.0104647i
\(460\) 0 0
\(461\) 16.3089 + 4.36996i 0.759583 + 0.203530i 0.617764 0.786363i \(-0.288039\pi\)
0.141818 + 0.989893i \(0.454705\pi\)
\(462\) 0 0
\(463\) −6.61478 24.6867i −0.307415 1.14729i −0.930847 0.365410i \(-0.880929\pi\)
0.623432 0.781878i \(-0.285738\pi\)
\(464\) 0 0
\(465\) −8.50471 + 16.3447i −0.394397 + 0.757968i
\(466\) 0 0
\(467\) −23.4460 −1.08495 −0.542477 0.840071i \(-0.682513\pi\)
−0.542477 + 0.840071i \(0.682513\pi\)
\(468\) 0 0
\(469\) 24.1848 1.11675
\(470\) 0 0
\(471\) −13.4621 + 0.590240i −0.620300 + 0.0271968i
\(472\) 0 0
\(473\) 1.21800 + 4.54563i 0.0560036 + 0.209008i
\(474\) 0 0
\(475\) 9.56704 + 2.56348i 0.438966 + 0.117621i
\(476\) 0 0
\(477\) −28.0166 13.0518i −1.28279 0.597603i
\(478\) 0 0
\(479\) −4.96669 + 18.5359i −0.226934 + 0.846928i 0.754687 + 0.656085i \(0.227789\pi\)
−0.981621 + 0.190843i \(0.938878\pi\)
\(480\) 0 0
\(481\) 20.8796 + 16.7351i 0.952026 + 0.763054i
\(482\) 0 0
\(483\) −3.04005 0.673378i −0.138327 0.0306398i
\(484\) 0 0
\(485\) 22.0494 1.00121
\(486\) 0 0
\(487\) −15.8625 15.8625i −0.718800 0.718800i 0.249560 0.968359i \(-0.419714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(488\) 0 0
\(489\) 27.8467 + 6.16810i 1.25927 + 0.278931i
\(490\) 0 0
\(491\) −3.74118 + 6.47991i −0.168837 + 0.292434i −0.938011 0.346605i \(-0.887334\pi\)
0.769174 + 0.639039i \(0.220668\pi\)
\(492\) 0 0
\(493\) −1.16438 + 0.672258i −0.0524412 + 0.0302770i
\(494\) 0 0
\(495\) 2.20106 4.72470i 0.0989301 0.212360i
\(496\) 0 0
\(497\) −1.84701 + 1.06637i −0.0828498 + 0.0478334i
\(498\) 0 0
\(499\) 11.2248 3.00769i 0.502493 0.134643i 0.00133618 0.999999i \(-0.499575\pi\)
0.501157 + 0.865357i \(0.332908\pi\)
\(500\) 0 0
\(501\) −6.11578 5.60201i −0.273233 0.250280i
\(502\) 0 0
\(503\) 9.78116i 0.436120i 0.975935 + 0.218060i \(0.0699729\pi\)
−0.975935 + 0.218060i \(0.930027\pi\)
\(504\) 0 0
\(505\) −24.6021 + 24.6021i −1.09478 + 1.09478i
\(506\) 0 0
\(507\) −15.9455 15.8978i −0.708165 0.706047i
\(508\) 0 0
\(509\) 4.47063 + 16.6846i 0.198157 + 0.739533i 0.991427 + 0.130662i \(0.0417104\pi\)
−0.793270 + 0.608870i \(0.791623\pi\)
\(510\) 0 0
\(511\) −12.0594 + 6.96251i −0.533477 + 0.308003i
\(512\) 0 0
\(513\) 13.4128 + 10.2803i 0.592191 + 0.453887i
\(514\) 0 0
\(515\) 7.05935 26.3459i 0.311072 1.16094i
\(516\) 0 0
\(517\) 2.61073 + 1.50731i 0.114820 + 0.0662913i
\(518\) 0 0
\(519\) 15.4538 29.6997i 0.678346 1.30367i
\(520\) 0 0
\(521\) 7.17847i 0.314495i −0.987559 0.157247i \(-0.949738\pi\)
0.987559 0.157247i \(-0.0502620\pi\)
\(522\) 0 0
\(523\) 24.9245 1.08987 0.544936 0.838478i \(-0.316554\pi\)
0.544936 + 0.838478i \(0.316554\pi\)
\(524\) 0 0
\(525\) −7.62412 6.98365i −0.332744 0.304792i
\(526\) 0 0
\(527\) −1.19251 + 0.319531i −0.0519464 + 0.0139190i
\(528\) 0 0
\(529\) 11.0794 + 19.1901i 0.481714 + 0.834353i
\(530\) 0 0
\(531\) −4.13592 + 23.5064i −0.179484 + 1.02009i
\(532\) 0 0
\(533\) 17.6280 6.86851i 0.763555 0.297508i
\(534\) 0 0
\(535\) −5.07020 + 1.35856i −0.219204 + 0.0587355i
\(536\) 0 0
\(537\) −11.6909 18.3436i −0.504500 0.791585i
\(538\) 0 0
\(539\) 1.36780 1.36780i 0.0589154 0.0589154i
\(540\) 0 0
\(541\) −27.7003 + 27.7003i −1.19093 + 1.19093i −0.214120 + 0.976807i \(0.568688\pi\)
−0.976807 + 0.214120i \(0.931312\pi\)
\(542\) 0 0
\(543\) −30.9038 + 19.6958i −1.32621 + 0.845229i
\(544\) 0 0
\(545\) −1.05059 + 1.81967i −0.0450021 + 0.0779460i
\(546\) 0 0
\(547\) −15.7394 27.2614i −0.672966 1.16561i −0.977059 0.212969i \(-0.931687\pi\)
0.304093 0.952642i \(-0.401647\pi\)
\(548\) 0 0
\(549\) 21.0074 1.84567i 0.896576 0.0787714i
\(550\) 0 0
\(551\) −12.8308 3.43800i −0.546610 0.146464i
\(552\) 0 0
\(553\) −4.70284 17.5513i −0.199985 0.746355i
\(554\) 0 0
\(555\) −1.59707 36.4257i −0.0677919 1.54619i
\(556\) 0 0
\(557\) −0.834344 0.834344i −0.0353523 0.0353523i 0.689210 0.724562i \(-0.257958\pi\)
−0.724562 + 0.689210i \(0.757958\pi\)
\(558\) 0 0
\(559\) −16.3944 22.3284i −0.693410 0.944391i
\(560\) 0 0
\(561\) 0.333065 0.105082i 0.0140620 0.00443657i
\(562\) 0 0
\(563\) 1.64883 2.85585i 0.0694898 0.120360i −0.829187 0.558971i \(-0.811196\pi\)
0.898677 + 0.438611i \(0.144530\pi\)
\(564\) 0 0
\(565\) 13.2178 49.3296i 0.556078 2.07531i
\(566\) 0 0
\(567\) −7.46712 15.9827i −0.313590 0.671209i
\(568\) 0 0
\(569\) 10.9777 + 19.0140i 0.460210 + 0.797107i 0.998971 0.0453513i \(-0.0144407\pi\)
−0.538761 + 0.842459i \(0.681107\pi\)
\(570\) 0 0
\(571\) 36.3726 + 20.9997i 1.52215 + 0.878811i 0.999658 + 0.0261646i \(0.00832939\pi\)
0.522488 + 0.852647i \(0.325004\pi\)
\(572\) 0 0
\(573\) −32.2434 16.7774i −1.34699 0.700884i
\(574\) 0 0
\(575\) 2.79310i 0.116480i
\(576\) 0 0
\(577\) −8.86716 8.86716i −0.369145 0.369145i 0.498021 0.867165i \(-0.334060\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(578\) 0 0
\(579\) −10.6123 + 11.5855i −0.441030 + 0.481477i
\(580\) 0 0
\(581\) 29.3826 + 16.9641i 1.21900 + 0.703788i
\(582\) 0 0
\(583\) −6.09560 1.63331i −0.252454 0.0676449i
\(584\) 0 0
\(585\) −1.97528 + 30.6172i −0.0816680 + 1.26586i
\(586\) 0 0
\(587\) −2.00254 0.536579i −0.0826537 0.0221470i 0.217255 0.976115i \(-0.430290\pi\)
−0.299909 + 0.953968i \(0.596956\pi\)
\(588\) 0 0
\(589\) −10.5631 6.09861i −0.435245 0.251289i
\(590\) 0 0
\(591\) −26.3147 5.82876i −1.08244 0.239763i
\(592\) 0 0
\(593\) 17.1296 + 17.1296i 0.703427 + 0.703427i 0.965145 0.261717i \(-0.0842888\pi\)
−0.261717 + 0.965145i \(0.584289\pi\)
\(594\) 0 0
\(595\) 1.83020i 0.0750309i
\(596\) 0 0
\(597\) 13.7400 8.75689i 0.562341 0.358396i
\(598\) 0 0
\(599\) −1.29688 0.748751i −0.0529889 0.0305931i 0.473272 0.880917i \(-0.343073\pi\)
−0.526260 + 0.850323i \(0.676406\pi\)
\(600\) 0 0
\(601\) −9.10896 15.7772i −0.371562 0.643565i 0.618244 0.785986i \(-0.287844\pi\)
−0.989806 + 0.142422i \(0.954511\pi\)
\(602\) 0 0
\(603\) −6.41430 + 36.4555i −0.261211 + 1.48458i
\(604\) 0 0
\(605\) −7.79994 + 29.1098i −0.317113 + 1.18348i
\(606\) 0 0
\(607\) −0.761886 + 1.31963i −0.0309240 + 0.0535619i −0.881073 0.472980i \(-0.843178\pi\)
0.850149 + 0.526542i \(0.176512\pi\)
\(608\) 0 0
\(609\) 10.2251 + 9.36609i 0.414340 + 0.379533i
\(610\) 0 0
\(611\) −17.5402 2.68790i −0.709599 0.108741i
\(612\) 0 0
\(613\) −25.9101 25.9101i −1.04650 1.04650i −0.998865 0.0476336i \(-0.984832\pi\)
−0.0476336 0.998865i \(-0.515168\pi\)
\(614\) 0 0
\(615\) −22.8680 11.8990i −0.922128 0.479815i
\(616\) 0 0
\(617\) 7.30263 + 27.2538i 0.293993 + 1.09720i 0.942014 + 0.335574i \(0.108930\pi\)
−0.648021 + 0.761623i \(0.724403\pi\)
\(618\) 0 0
\(619\) −7.55294 2.02380i −0.303578 0.0813435i 0.103814 0.994597i \(-0.466895\pi\)
−0.407392 + 0.913253i \(0.633562\pi\)
\(620\) 0 0
\(621\) 1.82132 4.40389i 0.0730869 0.176722i
\(622\) 0 0
\(623\) −11.2803 19.5380i −0.451934 0.782773i
\(624\) 0 0
\(625\) −15.4763 + 26.8057i −0.619051 + 1.07223i
\(626\) 0 0
\(627\) 3.06090 + 1.59269i 0.122240 + 0.0636059i
\(628\) 0 0
\(629\) 1.72751 1.72751i 0.0688803 0.0688803i
\(630\) 0 0
\(631\) −10.5595 + 10.5595i −0.420368 + 0.420368i −0.885330 0.464963i \(-0.846068\pi\)
0.464963 + 0.885330i \(0.346068\pi\)
\(632\) 0 0
\(633\) −41.5128 + 1.82011i −1.64998 + 0.0723429i
\(634\) 0 0
\(635\) 41.8515 11.2141i 1.66082 0.445017i
\(636\) 0 0
\(637\) −4.57892 + 10.4250i −0.181424 + 0.413052i
\(638\) 0 0
\(639\) −1.11756 3.06696i −0.0442098 0.121327i
\(640\) 0 0
\(641\) 3.66091 + 6.34089i 0.144597 + 0.250450i 0.929223 0.369520i \(-0.120478\pi\)
−0.784625 + 0.619970i \(0.787145\pi\)
\(642\) 0 0
\(643\) −37.2708 + 9.98668i −1.46982 + 0.393836i −0.902869 0.429917i \(-0.858543\pi\)
−0.566949 + 0.823753i \(0.691876\pi\)
\(644\) 0 0
\(645\) −8.16268 + 36.8515i −0.321405 + 1.45102i
\(646\) 0 0
\(647\) −16.7465 −0.658373 −0.329186 0.944265i \(-0.606774\pi\)
−0.329186 + 0.944265i \(0.606774\pi\)
\(648\) 0 0
\(649\) 4.87320i 0.191290i
\(650\) 0 0
\(651\) 6.84313 + 10.7372i 0.268203 + 0.420825i
\(652\) 0 0
\(653\) 30.1333 + 17.3975i 1.17921 + 0.680816i 0.955831 0.293917i \(-0.0949588\pi\)
0.223376 + 0.974732i \(0.428292\pi\)
\(654\) 0 0
\(655\) 8.10564 30.2507i 0.316713 1.18199i
\(656\) 0 0
\(657\) −7.29669 20.0246i −0.284671 0.781236i
\(658\) 0 0
\(659\) −0.801546 + 0.462773i −0.0312238 + 0.0180271i −0.515531 0.856871i \(-0.672405\pi\)
0.484307 + 0.874898i \(0.339072\pi\)
\(660\) 0 0
\(661\) 3.13696 + 11.7073i 0.122013 + 0.455361i 0.999716 0.0238460i \(-0.00759115\pi\)
−0.877702 + 0.479207i \(0.840924\pi\)
\(662\) 0 0
\(663\) −1.60219 + 1.28811i −0.0622239 + 0.0500260i
\(664\) 0 0
\(665\) 12.7858 12.7858i 0.495812 0.495812i
\(666\) 0 0
\(667\) 3.74595i 0.145044i
\(668\) 0 0
\(669\) −39.3344 + 12.4100i −1.52076 + 0.479800i
\(670\) 0 0
\(671\) 4.15905 1.11442i 0.160558 0.0430215i
\(672\) 0 0
\(673\) −14.4389 + 8.33628i −0.556577 + 0.321340i −0.751771 0.659425i \(-0.770800\pi\)
0.195193 + 0.980765i \(0.437467\pi\)
\(674\) 0 0
\(675\) 12.5490 9.64019i 0.483013 0.371051i
\(676\) 0 0
\(677\) 9.98589 5.76536i 0.383789 0.221581i −0.295677 0.955288i \(-0.595545\pi\)
0.679466 + 0.733707i \(0.262212\pi\)
\(678\) 0 0
\(679\) 7.61857 13.1957i 0.292374 0.506406i
\(680\) 0 0
\(681\) 14.5370 + 46.0759i 0.557057 + 1.76563i
\(682\) 0 0
\(683\) 30.5505 + 30.5505i 1.16898 + 1.16898i 0.982449 + 0.186534i \(0.0597254\pi\)
0.186534 + 0.982449i \(0.440275\pi\)
\(684\) 0 0
\(685\) 41.9362 1.60230
\(686\) 0 0
\(687\) −3.30823 + 3.61163i −0.126217 + 0.137792i
\(688\) 0 0
\(689\) 36.9228 4.06826i 1.40665 0.154988i
\(690\) 0 0
\(691\) −3.82152 + 14.2621i −0.145377 + 0.542556i 0.854361 + 0.519680i \(0.173949\pi\)
−0.999738 + 0.0228759i \(0.992718\pi\)
\(692\) 0 0
\(693\) −2.06704 2.94974i −0.0785204 0.112051i
\(694\) 0 0
\(695\) 34.9644 + 9.36868i 1.32627 + 0.355374i
\(696\) 0 0
\(697\) −0.447059 1.66845i −0.0169336 0.0631969i
\(698\) 0 0
\(699\) −5.00072 7.84638i −0.189145 0.296777i
\(700\) 0 0
\(701\) −29.4233 −1.11130 −0.555652 0.831415i \(-0.687531\pi\)
−0.555652 + 0.831415i \(0.687531\pi\)
\(702\) 0 0
\(703\) 24.1368 0.910335
\(704\) 0 0
\(705\) 12.9951 + 20.3899i 0.489423 + 0.767929i
\(706\) 0 0
\(707\) 6.22286 + 23.2240i 0.234035 + 0.873429i
\(708\) 0 0
\(709\) −4.51061 1.20861i −0.169399 0.0453904i 0.173122 0.984900i \(-0.444614\pi\)
−0.342522 + 0.939510i \(0.611281\pi\)
\(710\) 0 0
\(711\) 27.7036 2.43398i 1.03897 0.0912815i
\(712\) 0 0
\(713\) −0.890245 + 3.32244i −0.0333399 + 0.124426i
\(714\) 0 0
\(715\) 0.686069 + 6.22665i 0.0256575 + 0.232864i
\(716\) 0 0
\(717\) 4.00460 4.37186i 0.149554 0.163270i
\(718\) 0 0
\(719\) −19.8659 −0.740872 −0.370436 0.928858i \(-0.620792\pi\)
−0.370436 + 0.928858i \(0.620792\pi\)
\(720\) 0 0
\(721\) −13.3278 13.3278i −0.496354 0.496354i
\(722\) 0 0
\(723\) 15.0257 + 47.6249i 0.558811 + 1.77119i
\(724\) 0 0
\(725\) −6.21923 + 10.7720i −0.230976 + 0.400063i
\(726\) 0 0
\(727\) 13.8730 8.00959i 0.514521 0.297059i −0.220169 0.975462i \(-0.570661\pi\)
0.734690 + 0.678403i \(0.237327\pi\)
\(728\) 0 0
\(729\) 26.0723 7.01680i 0.965641 0.259881i
\(730\) 0 0
\(731\) −2.19026 + 1.26455i −0.0810098 + 0.0467710i
\(732\) 0 0
\(733\) 23.8314 6.38561i 0.880234 0.235858i 0.209726 0.977760i \(-0.432743\pi\)
0.670508 + 0.741902i \(0.266076\pi\)
\(734\) 0 0
\(735\) 14.7958 4.66807i 0.545751 0.172184i
\(736\) 0 0
\(737\) 7.55773i 0.278393i
\(738\) 0 0
\(739\) 8.61409 8.61409i 0.316874 0.316874i −0.530691 0.847565i \(-0.678068\pi\)
0.847565 + 0.530691i \(0.178068\pi\)
\(740\) 0 0
\(741\) −20.1916 2.19418i −0.741758 0.0806051i
\(742\) 0 0
\(743\) 9.05462 + 33.7923i 0.332182 + 1.23972i 0.906892 + 0.421363i \(0.138448\pi\)
−0.574710 + 0.818357i \(0.694885\pi\)
\(744\) 0 0
\(745\) −11.7979 + 6.81150i −0.432240 + 0.249554i
\(746\) 0 0
\(747\) −33.3641 + 39.7914i −1.22073 + 1.45589i
\(748\) 0 0
\(749\) −0.938823 + 3.50374i −0.0343039 + 0.128024i
\(750\) 0 0
\(751\) 38.9810 + 22.5057i 1.42244 + 0.821243i 0.996507 0.0835132i \(-0.0266141\pi\)
0.425929 + 0.904757i \(0.359947\pi\)
\(752\) 0 0
\(753\) 0.828239 + 1.29955i 0.0301827 + 0.0473582i
\(754\) 0 0
\(755\) 30.6205i 1.11439i
\(756\) 0 0
\(757\) 29.8931 1.08648 0.543241 0.839577i \(-0.317197\pi\)
0.543241 + 0.839577i \(0.317197\pi\)
\(758\) 0 0
\(759\) 0.210430 0.950013i 0.00763813 0.0344833i
\(760\) 0 0
\(761\) −27.7687 + 7.44060i −1.00661 + 0.269721i −0.724214 0.689575i \(-0.757797\pi\)
−0.282400 + 0.959297i \(0.591131\pi\)
\(762\) 0 0
\(763\) 0.726001 + 1.25747i 0.0262830 + 0.0455235i
\(764\) 0 0
\(765\) 2.75879 + 0.485407i 0.0997444 + 0.0175499i
\(766\) 0 0
\(767\) −10.4141 26.7279i −0.376033 0.965089i
\(768\) 0 0
\(769\) 11.7305 3.14317i 0.423011 0.113346i −0.0410325 0.999158i \(-0.513065\pi\)
0.464044 + 0.885812i \(0.346398\pi\)
\(770\) 0 0
\(771\) 42.0031 1.84161i 1.51270 0.0663239i
\(772\) 0 0
\(773\) 20.2102 20.2102i 0.726909 0.726909i −0.243093 0.970003i \(-0.578162\pi\)
0.970003 + 0.243093i \(0.0781622\pi\)
\(774\) 0 0
\(775\) −8.07612 + 8.07612i −0.290103 + 0.290103i
\(776\) 0 0
\(777\) −22.3512 11.6301i −0.801846 0.417228i
\(778\) 0 0
\(779\) 8.53262 14.7789i 0.305713 0.529510i
\(780\) 0 0
\(781\) −0.333241 0.577190i −0.0119243 0.0206535i
\(782\) 0 0
\(783\) −16.8301 + 12.9289i −0.601458 + 0.462041i
\(784\) 0 0
\(785\) −21.3150 5.71135i −0.760767 0.203847i
\(786\) 0 0
\(787\) −9.99498 37.3018i −0.356283 1.32967i −0.878863 0.477075i \(-0.841697\pi\)
0.522580 0.852590i \(-0.324970\pi\)
\(788\) 0 0
\(789\) −28.9792 15.0788i −1.03169 0.536821i
\(790\) 0 0
\(791\) −24.9548 24.9548i −0.887292 0.887292i
\(792\) 0 0
\(793\) −20.4295 + 15.0002i −0.725474 + 0.532673i
\(794\) 0 0
\(795\) −37.3235 34.1881i −1.32373 1.21253i
\(796\) 0 0
\(797\) −26.6753 + 46.2030i −0.944887 + 1.63659i −0.188911 + 0.981994i \(0.560496\pi\)
−0.755976 + 0.654599i \(0.772838\pi\)
\(798\) 0 0
\(799\) −0.419318 + 1.56492i −0.0148344 + 0.0553627i
\(800\) 0 0
\(801\) 32.4428 11.8217i 1.14631 0.417699i
\(802\) 0 0
\(803\) −2.17578 3.76856i −0.0767816 0.132990i
\(804\) 0 0
\(805\) −4.41596 2.54956i −0.155642 0.0898601i
\(806\) 0 0
\(807\) −35.4912 + 22.6195i −1.24935 + 0.796245i
\(808\) 0 0
\(809\) 11.7326i 0.412496i 0.978500 + 0.206248i \(0.0661253\pi\)
−0.978500 + 0.206248i \(0.933875\pi\)
\(810\) 0 0
\(811\) 22.6077 + 22.6077i 0.793864 + 0.793864i 0.982120 0.188256i \(-0.0602834\pi\)
−0.188256 + 0.982120i \(0.560283\pi\)
\(812\) 0 0
\(813\) −25.9736 5.75322i −0.910936 0.201774i
\(814\) 0 0
\(815\) 40.4499 + 23.3538i 1.41690 + 0.818048i
\(816\) 0 0
\(817\) −24.1353 6.46704i −0.844388 0.226253i
\(818\) 0 0
\(819\) 17.6407 + 11.7610i 0.616416 + 0.410964i
\(820\) 0 0
\(821\) −8.85980 2.37398i −0.309209 0.0828524i 0.100878 0.994899i \(-0.467835\pi\)
−0.410087 + 0.912046i \(0.634502\pi\)
\(822\) 0 0
\(823\) −15.7820 9.11177i −0.550128 0.317616i 0.199046 0.979990i \(-0.436216\pi\)
−0.749173 + 0.662374i \(0.769549\pi\)
\(824\) 0 0
\(825\) 2.18239 2.38253i 0.0759810 0.0829492i
\(826\) 0 0
\(827\) −15.8768 15.8768i −0.552091 0.552091i 0.374953 0.927044i \(-0.377659\pi\)
−0.927044 + 0.374953i \(0.877659\pi\)
\(828\) 0 0
\(829\) 38.3708i 1.33267i −0.745652 0.666336i \(-0.767862\pi\)
0.745652 0.666336i \(-0.232138\pi\)
\(830\) 0 0
\(831\) 6.93379 + 3.60789i 0.240531 + 0.125156i
\(832\) 0 0
\(833\) 0.900293 + 0.519785i 0.0311933 + 0.0180095i
\(834\) 0 0
\(835\) −6.79096 11.7623i −0.235011 0.407051i
\(836\) 0 0
\(837\) −17.9999 + 7.46741i −0.622168 + 0.258112i
\(838\) 0 0
\(839\) −12.8700 + 48.0316i −0.444323 + 1.65823i 0.273397 + 0.961901i \(0.411853\pi\)
−0.717719 + 0.696333i \(0.754814\pi\)
\(840\) 0 0
\(841\) −6.15911 + 10.6679i −0.212383 + 0.367858i
\(842\) 0 0
\(843\) 30.4671 9.61237i 1.04934 0.331068i
\(844\) 0 0
\(845\) −17.0694 32.6850i −0.587204 1.12440i
\(846\) 0 0
\(847\) 14.7260 + 14.7260i 0.505993 + 0.505993i
\(848\) 0 0
\(849\) 0.228179 + 5.20426i 0.00783107 + 0.178610i
\(850\) 0 0
\(851\) −1.76168 6.57469i −0.0603897 0.225377i
\(852\) 0 0
\(853\) 0.0631577 + 0.0169231i 0.00216248 + 0.000579435i 0.259900 0.965636i \(-0.416310\pi\)
−0.257738 + 0.966215i \(0.582977\pi\)
\(854\) 0 0
\(855\) 15.8819 + 22.6640i 0.543149 + 0.775093i
\(856\) 0 0
\(857\) −25.2762 43.7796i −0.863418 1.49548i −0.868609 0.495498i \(-0.834986\pi\)
0.00519107 0.999987i \(-0.498348\pi\)
\(858\) 0 0
\(859\) −10.9462 + 18.9593i −0.373478 + 0.646883i −0.990098 0.140378i \(-0.955168\pi\)
0.616620 + 0.787261i \(0.288502\pi\)
\(860\) 0 0
\(861\) −15.0225 + 9.57428i −0.511966 + 0.326291i
\(862\) 0 0
\(863\) 35.0101 35.0101i 1.19176 1.19176i 0.215183 0.976574i \(-0.430965\pi\)
0.976574 0.215183i \(-0.0690348\pi\)
\(864\) 0 0
\(865\) 38.7686 38.7686i 1.31817 1.31817i
\(866\) 0 0
\(867\) −15.7244 24.6724i −0.534028 0.837917i
\(868\) 0 0
\(869\) 5.48476 1.46964i 0.186058 0.0498540i
\(870\) 0 0
\(871\) −16.1510 41.4517i −0.547257 1.40454i
\(872\) 0 0
\(873\) 17.8703 + 14.9838i 0.604818 + 0.507125i
\(874\) 0 0
\(875\) 5.43351 + 9.41111i 0.183686 + 0.318154i
\(876\) 0 0
\(877\) 35.2700 9.45057i 1.19098 0.319123i 0.391709 0.920089i \(-0.371884\pi\)
0.799275 + 0.600966i \(0.205217\pi\)
\(878\) 0 0
\(879\) −8.10916 7.42794i −0.273515 0.250538i
\(880\) 0 0
\(881\) 39.1376 1.31858 0.659289 0.751889i \(-0.270857\pi\)
0.659289 + 0.751889i \(0.270857\pi\)
\(882\) 0 0
\(883\) 26.4173i 0.889013i 0.895776 + 0.444506i \(0.146621\pi\)
−0.895776 + 0.444506i \(0.853379\pi\)
\(884\) 0 0
\(885\) −18.0415 + 34.6729i −0.606458 + 1.16552i
\(886\) 0 0
\(887\) 7.90171 + 4.56206i 0.265314 + 0.153179i 0.626756 0.779216i \(-0.284382\pi\)
−0.361442 + 0.932394i \(0.617716\pi\)
\(888\) 0 0
\(889\) 7.74942 28.9212i 0.259907 0.969987i
\(890\) 0 0
\(891\) 4.99458 2.33347i 0.167325 0.0781742i
\(892\) 0 0
\(893\) −13.8619 + 8.00315i −0.463869 + 0.267815i
\(894\) 0 0
\(895\) −9.21968 34.4083i −0.308180 1.15014i
\(896\) 0 0
\(897\) 0.876059 + 5.66021i 0.0292508 + 0.188989i
\(898\) 0 0
\(899\) 10.8313 10.8313i 0.361242 0.361242i
\(900\) 0 0
\(901\) 3.39147i 0.112986i
\(902\) 0 0
\(903\) 19.2338 + 17.6181i 0.640061 + 0.586292i
\(904\) 0 0
\(905\) −57.9683 + 15.5325i −1.92693 + 0.516319i
\(906\) 0 0
\(907\) 6.32175 3.64986i 0.209910 0.121192i −0.391359 0.920238i \(-0.627995\pi\)
0.601270 + 0.799046i \(0.294662\pi\)
\(908\) 0 0
\(909\) −36.6577 + 3.22068i −1.21586 + 0.106823i
\(910\) 0 0
\(911\) 1.74335 1.00652i 0.0577596 0.0333475i −0.470842 0.882218i \(-0.656050\pi\)
0.528602 + 0.848870i \(0.322717\pi\)
\(912\) 0 0
\(913\) −5.30126 + 9.18206i −0.175446 + 0.303882i
\(914\) 0 0
\(915\) 33.7175 + 7.46851i 1.11467 + 0.246901i
\(916\) 0 0
\(917\) −15.3032 15.3032i −0.505356 0.505356i
\(918\) 0 0
\(919\) 11.0173 0.363427 0.181713 0.983352i \(-0.441836\pi\)
0.181713 + 0.983352i \(0.441836\pi\)
\(920\) 0 0
\(921\) 3.60152 + 0.797745i 0.118674 + 0.0262866i
\(922\) 0 0
\(923\) 3.06119 + 2.45356i 0.100760 + 0.0807598i
\(924\) 0 0
\(925\) 5.84968 21.8313i 0.192336 0.717809i
\(926\) 0 0
\(927\) 23.6248 16.5552i 0.775941 0.543744i
\(928\) 0 0
\(929\) 18.6161 + 4.98816i 0.610773 + 0.163656i 0.550930 0.834552i \(-0.314273\pi\)
0.0598435 + 0.998208i \(0.480940\pi\)
\(930\) 0 0
\(931\) 2.65824 + 9.92067i 0.0871202 + 0.325137i
\(932\) 0 0
\(933\) −24.0110 + 1.05275i −0.786086 + 0.0344656i
\(934\) 0 0
\(935\) 0.571937 0.0187043
\(936\) 0 0
\(937\) −34.3465 −1.12205 −0.561026 0.827798i \(-0.689593\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(938\) 0 0
\(939\) −5.92162 + 11.3804i −0.193245 + 0.371386i
\(940\) 0 0
\(941\) 10.0928 + 37.6670i 0.329017 + 1.22791i 0.910212 + 0.414143i \(0.135919\pi\)
−0.581195 + 0.813765i \(0.697415\pi\)
\(942\) 0 0
\(943\) −4.64845 1.24555i −0.151374 0.0405607i
\(944\) 0 0
\(945\) −3.78655 28.6400i −0.123177 0.931659i
\(946\) 0 0
\(947\) 3.30407 12.3309i 0.107368 0.400702i −0.891235 0.453541i \(-0.850160\pi\)
0.998603 + 0.0528395i \(0.0168272\pi\)
\(948\) 0 0
\(949\) 19.9870 + 16.0196i 0.648804 + 0.520020i
\(950\) 0 0
\(951\) −16.8041 53.2619i −0.544912 1.72714i
\(952\) 0 0
\(953\) 50.6036 1.63921 0.819605 0.572929i \(-0.194193\pi\)
0.819605 + 0.572929i \(0.194193\pi\)
\(954\) 0 0
\(955\) −42.0891 42.0891i −1.36197 1.36197i
\(956\) 0 0
\(957\) −2.92690 + 3.19532i −0.0946131 + 0.103290i
\(958\) 0 0
\(959\) 14.4899 25.0972i 0.467902 0.810431i
\(960\) 0 0
\(961\) −14.6660 + 8.46742i −0.473097 + 0.273143i
\(962\) 0 0
\(963\) −5.03244 2.34442i −0.162168 0.0755479i
\(964\) 0 0
\(965\) −22.2821 + 12.8646i −0.717285 + 0.414125i
\(966\) 0 0
\(967\) 8.28527 2.22003i 0.266436 0.0713914i −0.123128 0.992391i \(-0.539292\pi\)
0.389564 + 0.920999i \(0.372626\pi\)
\(968\) 0 0
\(969\) −0.401025 + 1.81048i −0.0128828 + 0.0581609i
\(970\) 0 0
\(971\) 30.6193i 0.982619i −0.870985 0.491309i \(-0.836518\pi\)
0.870985 0.491309i \(-0.163482\pi\)
\(972\) 0 0
\(973\) 17.6878 17.6878i 0.567044 0.567044i
\(974\) 0 0
\(975\) −6.87816 + 17.7312i −0.220277 + 0.567854i
\(976\) 0 0
\(977\) −5.62750 21.0021i −0.180040 0.671917i −0.995638 0.0932987i \(-0.970259\pi\)
0.815599 0.578618i \(-0.196408\pi\)
\(978\) 0 0
\(979\) 6.10561 3.52508i 0.195136 0.112662i
\(980\) 0 0
\(981\) −2.08803 + 0.760847i −0.0666656 + 0.0242920i
\(982\) 0 0
\(983\) 5.66506 21.1423i 0.180687 0.674335i −0.814825 0.579707i \(-0.803167\pi\)
0.995513 0.0946281i \(-0.0301662\pi\)
\(984\) 0 0
\(985\) −38.2246 22.0690i −1.21794 0.703176i
\(986\) 0 0
\(987\) 16.6927 0.731884i 0.531334 0.0232961i
\(988\) 0 0
\(989\) 7.04631i 0.224060i
\(990\) 0 0
\(991\) −8.94034 −0.283999 −0.142000 0.989867i \(-0.545353\pi\)
−0.142000 + 0.989867i \(0.545353\pi\)
\(992\) 0 0
\(993\) 13.7440 4.33625i 0.436154 0.137607i
\(994\) 0 0
\(995\) 25.7730 6.90586i 0.817060 0.218931i
\(996\) 0 0
\(997\) 16.9719 + 29.3961i 0.537504 + 0.930985i 0.999038 + 0.0438619i \(0.0139662\pi\)
−0.461533 + 0.887123i \(0.652701\pi\)
\(998\) 0 0
\(999\) 23.4589 30.6071i 0.742208 0.968366i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 468.2.cg.a.437.10 yes 56
3.2 odd 2 1404.2.cj.a.125.3 56
9.2 odd 6 inner 468.2.cg.a.281.10 yes 56
9.7 even 3 1404.2.cj.a.1061.3 56
13.5 odd 4 inner 468.2.cg.a.5.10 56
39.5 even 4 1404.2.cj.a.1097.3 56
117.70 odd 12 1404.2.cj.a.629.3 56
117.83 even 12 inner 468.2.cg.a.317.10 yes 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.10 56 13.5 odd 4 inner
468.2.cg.a.281.10 yes 56 9.2 odd 6 inner
468.2.cg.a.317.10 yes 56 117.83 even 12 inner
468.2.cg.a.437.10 yes 56 1.1 even 1 trivial
1404.2.cj.a.125.3 56 3.2 odd 2
1404.2.cj.a.629.3 56 117.70 odd 12
1404.2.cj.a.1061.3 56 9.7 even 3
1404.2.cj.a.1097.3 56 39.5 even 4