Properties

Label 468.2.cg
Level $468$
Weight $2$
Character orbit 468.cg
Rep. character $\chi_{468}(5,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $56$
Newform subspaces $1$
Sturm bound $168$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 468 = 2^{2} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 468.cg (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 1 \)
Sturm bound: \(168\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(468, [\chi])\).

Total New Old
Modular forms 360 56 304
Cusp forms 312 56 256
Eisenstein series 48 0 48

Trace form

\( 56 q - 2 q^{7} - 12 q^{11} - 12 q^{15} + 4 q^{19} - 12 q^{21} + 36 q^{27} - 4 q^{31} + 12 q^{33} - 4 q^{37} + 24 q^{41} + 6 q^{45} + 66 q^{47} - 48 q^{57} - 30 q^{63} - 78 q^{65} - 14 q^{67} + 28 q^{73}+ \cdots + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(468, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
468.2.cg.a 468.cg 117.z $56$ $3.737$ None 468.2.cg.a \(0\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(468, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(468, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(234, [\chi])\)\(^{\oplus 2}\)