Properties

 Label 468.2 Level 468 Weight 2 Dimension 2659 Nonzero newspaces 30 Newform subspaces 81 Sturm bound 24192 Trace bound 15

Defining parameters

 Level: $$N$$ = $$468 = 2^{2} \cdot 3^{2} \cdot 13$$ Weight: $$k$$ = $$2$$ Nonzero newspaces: $$30$$ Newform subspaces: $$81$$ Sturm bound: $$24192$$ Trace bound: $$15$$

Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(\Gamma_1(468))$$.

Total New Old
Modular forms 6528 2859 3669
Cusp forms 5569 2659 2910
Eisenstein series 959 200 759

Trace form

 $$2659q - 12q^{2} - 8q^{4} - 18q^{5} - 18q^{6} + 4q^{7} - 18q^{8} - 24q^{9} + O(q^{10})$$ $$2659q - 12q^{2} - 8q^{4} - 18q^{5} - 18q^{6} + 4q^{7} - 18q^{8} - 24q^{9} - 46q^{10} - 36q^{12} - 41q^{13} - 60q^{14} - 18q^{15} - 32q^{16} - 63q^{17} - 60q^{18} + 4q^{19} - 30q^{20} - 42q^{21} + 6q^{22} + 6q^{23} - 30q^{24} + 9q^{25} + 12q^{26} + 9q^{29} + 12q^{30} + 72q^{31} + 78q^{32} - 42q^{33} + 32q^{34} + 114q^{35} + 42q^{36} - 43q^{37} + 18q^{38} + 51q^{39} - 64q^{40} + 27q^{41} + 12q^{42} + 40q^{43} - 48q^{44} - 18q^{45} - 138q^{46} + 48q^{47} - 66q^{48} + 44q^{49} - 150q^{50} + 24q^{51} - 104q^{52} - 24q^{53} - 102q^{54} - 30q^{55} - 108q^{56} - 60q^{57} - 130q^{58} - 12q^{59} - 96q^{60} - 13q^{61} - 102q^{62} - 42q^{63} - 212q^{64} - 108q^{65} - 120q^{66} - 74q^{67} - 222q^{68} - 42q^{69} - 252q^{70} - 108q^{71} - 138q^{72} - 156q^{73} - 210q^{74} - 96q^{75} - 192q^{76} - 198q^{77} - 240q^{78} - 78q^{79} - 360q^{80} - 120q^{81} - 262q^{82} - 216q^{83} - 252q^{84} - 239q^{85} - 318q^{86} - 78q^{87} - 222q^{88} - 204q^{89} - 192q^{90} - 92q^{91} - 300q^{92} - 210q^{93} - 138q^{94} - 120q^{95} - 84q^{96} - 118q^{97} - 198q^{98} - 90q^{99} + O(q^{100})$$

Decomposition of $$S_{2}^{\mathrm{new}}(\Gamma_1(468))$$

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space $$S_k^{\mathrm{new}}(N, \chi)$$ we list the newforms together with their dimension.

Label $$\chi$$ Newforms Dimension $$\chi$$ degree
468.2.a $$\chi_{468}(1, \cdot)$$ 468.2.a.a 1 1
468.2.a.b 1
468.2.a.c 1
468.2.a.d 1
468.2.a.e 1
468.2.b $$\chi_{468}(181, \cdot)$$ 468.2.b.a 2 1
468.2.b.b 2
468.2.b.c 2
468.2.c $$\chi_{468}(287, \cdot)$$ 468.2.c.a 4 1
468.2.c.b 8
468.2.c.c 12
468.2.h $$\chi_{468}(467, \cdot)$$ 468.2.h.a 4 1
468.2.h.b 4
468.2.h.c 4
468.2.h.d 16
468.2.i $$\chi_{468}(157, \cdot)$$ 468.2.i.a 2 2
468.2.i.b 10
468.2.i.c 12
468.2.j $$\chi_{468}(133, \cdot)$$ 468.2.j.a 28 2
468.2.k $$\chi_{468}(61, \cdot)$$ 468.2.k.a 28 2
468.2.l $$\chi_{468}(217, \cdot)$$ 468.2.l.a 2 2
468.2.l.b 2
468.2.l.c 2
468.2.l.d 2
468.2.l.e 4
468.2.n $$\chi_{468}(307, \cdot)$$ 468.2.n.a 2 2
468.2.n.b 2
468.2.n.c 2
468.2.n.d 2
468.2.n.e 2
468.2.n.f 2
468.2.n.g 2
468.2.n.h 8
468.2.n.i 8
468.2.n.j 10
468.2.n.k 10
468.2.n.l 16
468.2.p $$\chi_{468}(125, \cdot)$$ 468.2.p.a 12 2
468.2.s $$\chi_{468}(35, \cdot)$$ 468.2.s.a 4 2
468.2.s.b 4
468.2.s.c 8
468.2.s.d 40
468.2.t $$\chi_{468}(361, \cdot)$$ 468.2.t.a 2 2
468.2.t.b 2
468.2.t.c 2
468.2.t.d 4
468.2.w $$\chi_{468}(95, \cdot)$$ 468.2.w.a 160 2
468.2.x $$\chi_{468}(155, \cdot)$$ 468.2.x.a 160 2
468.2.bc $$\chi_{468}(23, \cdot)$$ 468.2.bc.a 160 2
468.2.bd $$\chi_{468}(191, \cdot)$$ 468.2.bd.a 160 2
468.2.be $$\chi_{468}(49, \cdot)$$ 468.2.be.a 2 2
468.2.be.b 6
468.2.be.c 20
468.2.bj $$\chi_{468}(121, \cdot)$$ 468.2.bj.a 2 2
468.2.bj.b 6
468.2.bj.c 20
468.2.bk $$\chi_{468}(131, \cdot)$$ 468.2.bk.a 72 2
468.2.bk.b 72
468.2.bl $$\chi_{468}(25, \cdot)$$ 468.2.bl.a 4 2
468.2.bl.b 24
468.2.bm $$\chi_{468}(263, \cdot)$$ 468.2.bm.a 160 2
468.2.bp $$\chi_{468}(179, \cdot)$$ 468.2.bp.a 4 2
468.2.bp.b 4
468.2.bp.c 8
468.2.bp.d 40
468.2.bs $$\chi_{468}(31, \cdot)$$ 468.2.bs.a 320 4
468.2.bv $$\chi_{468}(89, \cdot)$$ 468.2.bv.a 16 4
468.2.bw $$\chi_{468}(149, \cdot)$$ 468.2.bw.a 56 4
468.2.bz $$\chi_{468}(41, \cdot)$$ 468.2.bz.a 56 4
468.2.cb $$\chi_{468}(19, \cdot)$$ 468.2.cb.a 4 4
468.2.cb.b 4
468.2.cb.c 4
468.2.cb.d 4
468.2.cb.e 4
468.2.cb.f 16
468.2.cb.g 24
468.2.cb.h 24
468.2.cb.i 48
468.2.cc $$\chi_{468}(115, \cdot)$$ 468.2.cc.a 320 4
468.2.cf $$\chi_{468}(7, \cdot)$$ 468.2.cf.a 320 4
468.2.cg $$\chi_{468}(5, \cdot)$$ 468.2.cg.a 56 4

Decomposition of $$S_{2}^{\mathrm{old}}(\Gamma_1(468))$$ into lower level spaces

$$S_{2}^{\mathrm{old}}(\Gamma_1(468)) \cong$$ $$S_{2}^{\mathrm{new}}(\Gamma_1(13))$$$$^{\oplus 9}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(18))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(26))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(36))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(39))$$$$^{\oplus 6}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(52))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(78))$$$$^{\oplus 4}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(117))$$$$^{\oplus 3}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(156))$$$$^{\oplus 2}$$$$\oplus$$$$S_{2}^{\mathrm{new}}(\Gamma_1(234))$$$$^{\oplus 2}$$