Properties

Label 1404.2.cj.a.125.3
Level $1404$
Weight $2$
Character 1404.125
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 125.3
Character \(\chi\) \(=\) 1404.125
Dual form 1404.2.cj.a.629.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.734125 - 2.73979i) q^{5} +(1.89332 + 0.507313i) q^{7} +(0.158535 - 0.591661i) q^{11} +(-0.394879 - 3.58386i) q^{13} +0.329188 q^{17} +(-2.29971 - 2.29971i) q^{19} +(0.458575 - 0.794276i) q^{23} +(-2.63740 + 1.52270i) q^{25} +(-3.53714 + 2.04217i) q^{29} +(3.62256 - 0.970663i) q^{31} -5.55973i q^{35} +(-5.24778 + 5.24778i) q^{37} +(-1.35806 - 5.06836i) q^{41} +(6.65352 - 3.84141i) q^{43} +(-1.27379 + 4.75386i) q^{47} +(-2.73489 - 1.57899i) q^{49} -10.3025i q^{53} -1.73741 q^{55} +(-7.68473 + 2.05912i) q^{59} +(-3.51473 - 6.08768i) q^{61} +(-9.52915 + 3.71289i) q^{65} +(11.9181 - 3.19344i) q^{67} +(0.769386 - 0.769386i) q^{71} +(-5.02343 + 5.02343i) q^{73} +(0.600315 - 1.03978i) q^{77} +(-4.63505 - 8.02814i) q^{79} +(-16.7195 - 4.47998i) q^{83} +(-0.241666 - 0.901908i) q^{85} +(8.13868 + 8.13868i) q^{89} +(1.07051 - 6.98572i) q^{91} +(-4.61246 + 7.98901i) q^{95} +(2.01196 - 7.50874i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.734125 2.73979i −0.328311 1.22527i −0.910941 0.412536i \(-0.864643\pi\)
0.582631 0.812737i \(-0.302023\pi\)
\(6\) 0 0
\(7\) 1.89332 + 0.507313i 0.715607 + 0.191746i 0.598211 0.801339i \(-0.295879\pi\)
0.117396 + 0.993085i \(0.462545\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.158535 0.591661i 0.0478001 0.178393i −0.937899 0.346909i \(-0.887231\pi\)
0.985699 + 0.168517i \(0.0538978\pi\)
\(12\) 0 0
\(13\) −0.394879 3.58386i −0.109520 0.993985i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.329188 0.0798399 0.0399200 0.999203i \(-0.487290\pi\)
0.0399200 + 0.999203i \(0.487290\pi\)
\(18\) 0 0
\(19\) −2.29971 2.29971i −0.527590 0.527590i 0.392263 0.919853i \(-0.371692\pi\)
−0.919853 + 0.392263i \(0.871692\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.458575 0.794276i 0.0956196 0.165618i −0.814247 0.580518i \(-0.802850\pi\)
0.909867 + 0.414900i \(0.136183\pi\)
\(24\) 0 0
\(25\) −2.63740 + 1.52270i −0.527480 + 0.304541i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.53714 + 2.04217i −0.656830 + 0.379221i −0.791068 0.611728i \(-0.790475\pi\)
0.134238 + 0.990949i \(0.457141\pi\)
\(30\) 0 0
\(31\) 3.62256 0.970663i 0.650632 0.174336i 0.0816173 0.996664i \(-0.473991\pi\)
0.569015 + 0.822327i \(0.307325\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.55973i 0.939767i
\(36\) 0 0
\(37\) −5.24778 + 5.24778i −0.862730 + 0.862730i −0.991654 0.128925i \(-0.958847\pi\)
0.128925 + 0.991654i \(0.458847\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.35806 5.06836i −0.212094 0.791545i −0.987169 0.159677i \(-0.948955\pi\)
0.775075 0.631869i \(-0.217712\pi\)
\(42\) 0 0
\(43\) 6.65352 3.84141i 1.01465 0.585810i 0.102102 0.994774i \(-0.467443\pi\)
0.912550 + 0.408964i \(0.134110\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.27379 + 4.75386i −0.185802 + 0.693421i 0.808656 + 0.588282i \(0.200196\pi\)
−0.994457 + 0.105139i \(0.966471\pi\)
\(48\) 0 0
\(49\) −2.73489 1.57899i −0.390698 0.225570i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.3025i 1.41516i −0.706633 0.707581i \(-0.749787\pi\)
0.706633 0.707581i \(-0.250213\pi\)
\(54\) 0 0
\(55\) −1.73741 −0.234273
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.68473 + 2.05912i −1.00047 + 0.268074i −0.721641 0.692268i \(-0.756612\pi\)
−0.278826 + 0.960342i \(0.589945\pi\)
\(60\) 0 0
\(61\) −3.51473 6.08768i −0.450015 0.779448i 0.548372 0.836235i \(-0.315248\pi\)
−0.998386 + 0.0567865i \(0.981915\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −9.52915 + 3.71289i −1.18195 + 0.460528i
\(66\) 0 0
\(67\) 11.9181 3.19344i 1.45602 0.390140i 0.557909 0.829902i \(-0.311604\pi\)
0.898115 + 0.439762i \(0.144937\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.769386 0.769386i 0.0913093 0.0913093i −0.659977 0.751286i \(-0.729434\pi\)
0.751286 + 0.659977i \(0.229434\pi\)
\(72\) 0 0
\(73\) −5.02343 + 5.02343i −0.587949 + 0.587949i −0.937075 0.349127i \(-0.886478\pi\)
0.349127 + 0.937075i \(0.386478\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.600315 1.03978i 0.0684122 0.118493i
\(78\) 0 0
\(79\) −4.63505 8.02814i −0.521484 0.903236i −0.999688 0.0249875i \(-0.992045\pi\)
0.478204 0.878249i \(-0.341288\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −16.7195 4.47998i −1.83521 0.491742i −0.836765 0.547562i \(-0.815556\pi\)
−0.998441 + 0.0558197i \(0.982223\pi\)
\(84\) 0 0
\(85\) −0.241666 0.901908i −0.0262123 0.0978257i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.13868 + 8.13868i 0.862699 + 0.862699i 0.991651 0.128952i \(-0.0411613\pi\)
−0.128952 + 0.991651i \(0.541161\pi\)
\(90\) 0 0
\(91\) 1.07051 6.98572i 0.112220 0.732303i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.61246 + 7.98901i −0.473228 + 0.819655i
\(96\) 0 0
\(97\) 2.01196 7.50874i 0.204284 0.762397i −0.785383 0.619010i \(-0.787534\pi\)
0.989667 0.143387i \(-0.0457994\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.13315 10.6229i −0.610271 1.05702i −0.991194 0.132414i \(-0.957727\pi\)
0.380923 0.924607i \(-0.375606\pi\)
\(102\) 0 0
\(103\) −8.32770 4.80800i −0.820553 0.473746i 0.0300543 0.999548i \(-0.490432\pi\)
−0.850607 + 0.525802i \(0.823765\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.85058i 0.178902i −0.995991 0.0894511i \(-0.971489\pi\)
0.995991 0.0894511i \(-0.0285113\pi\)
\(108\) 0 0
\(109\) 0.523808 + 0.523808i 0.0501717 + 0.0501717i 0.731748 0.681576i \(-0.238705\pi\)
−0.681576 + 0.731748i \(0.738705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.5927 + 9.00243i 1.46683 + 0.846877i 0.999311 0.0371036i \(-0.0118131\pi\)
0.467523 + 0.883981i \(0.345146\pi\)
\(114\) 0 0
\(115\) −2.51280 0.673304i −0.234320 0.0627859i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.623259 + 0.167002i 0.0571340 + 0.0153090i
\(120\) 0 0
\(121\) 9.20135 + 5.31240i 0.836486 + 0.482946i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −3.92026 3.92026i −0.350639 0.350639i
\(126\) 0 0
\(127\) 15.2754i 1.35547i −0.735305 0.677737i \(-0.762961\pi\)
0.735305 0.677737i \(-0.237039\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.56197 + 5.52061i 0.835434 + 0.482338i 0.855709 0.517457i \(-0.173121\pi\)
−0.0202759 + 0.999794i \(0.506454\pi\)
\(132\) 0 0
\(133\) −3.18741 5.52076i −0.276384 0.478711i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −3.82658 + 14.2810i −0.326927 + 1.22011i 0.585434 + 0.810720i \(0.300924\pi\)
−0.912361 + 0.409387i \(0.865742\pi\)
\(138\) 0 0
\(139\) 6.38084 11.0519i 0.541216 0.937414i −0.457619 0.889149i \(-0.651297\pi\)
0.998835 0.0482650i \(-0.0153692\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.18303 0.334533i −0.182554 0.0279751i
\(144\) 0 0
\(145\) 8.19182 + 8.19182i 0.680293 + 0.680293i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.24307 4.63919i −0.101836 0.380057i 0.896131 0.443790i \(-0.146366\pi\)
−0.997967 + 0.0637324i \(0.979700\pi\)
\(150\) 0 0
\(151\) 10.4275 + 2.79405i 0.848581 + 0.227377i 0.656803 0.754062i \(-0.271908\pi\)
0.191778 + 0.981438i \(0.438575\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −5.31883 9.21249i −0.427219 0.739965i
\(156\) 0 0
\(157\) −3.88990 + 6.73750i −0.310448 + 0.537711i −0.978459 0.206440i \(-0.933812\pi\)
0.668012 + 0.744151i \(0.267146\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.27118 1.27118i 0.100183 0.100183i
\(162\) 0 0
\(163\) 11.6439 11.6439i 0.912020 0.912020i −0.0844107 0.996431i \(-0.526901\pi\)
0.996431 + 0.0844107i \(0.0269008\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.62520 1.23932i 0.357909 0.0959014i −0.0753839 0.997155i \(-0.524018\pi\)
0.433293 + 0.901253i \(0.357352\pi\)
\(168\) 0 0
\(169\) −12.6881 + 2.83039i −0.976011 + 0.217722i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.66477 + 16.7399i 0.734799 + 1.27271i 0.954812 + 0.297212i \(0.0960568\pi\)
−0.220013 + 0.975497i \(0.570610\pi\)
\(174\) 0 0
\(175\) −5.76593 + 1.54498i −0.435863 + 0.116789i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.5587 0.938684 0.469342 0.883017i \(-0.344491\pi\)
0.469342 + 0.883017i \(0.344491\pi\)
\(180\) 0 0
\(181\) 21.1579i 1.57265i 0.617811 + 0.786327i \(0.288020\pi\)
−0.617811 + 0.786327i \(0.711980\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.2304 + 10.5253i 1.34032 + 0.773836i
\(186\) 0 0
\(187\) 0.0521879 0.194768i 0.00381636 0.0142428i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1736 10.4925i 1.31500 0.759213i 0.332077 0.943252i \(-0.392251\pi\)
0.982919 + 0.184039i \(0.0589172\pi\)
\(192\) 0 0
\(193\) 2.34772 + 8.76182i 0.168993 + 0.630690i 0.997497 + 0.0707070i \(0.0225255\pi\)
−0.828504 + 0.559983i \(0.810808\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.0033 11.0033i 0.783953 0.783953i −0.196542 0.980495i \(-0.562971\pi\)
0.980495 + 0.196542i \(0.0629713\pi\)
\(198\) 0 0
\(199\) 9.40693i 0.666839i −0.942778 0.333420i \(-0.891797\pi\)
0.942778 0.333420i \(-0.108203\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.73295 + 2.07204i −0.542746 + 0.145428i
\(204\) 0 0
\(205\) −12.8893 + 7.44163i −0.900226 + 0.519746i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.72524 + 0.996065i −0.119337 + 0.0688993i
\(210\) 0 0
\(211\) −11.9952 + 20.7763i −0.825784 + 1.43030i 0.0755338 + 0.997143i \(0.475934\pi\)
−0.901318 + 0.433157i \(0.857399\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −15.4092 15.4092i −1.05090 1.05090i
\(216\) 0 0
\(217\) 7.35110 0.499025
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.129990 1.17977i −0.00874406 0.0793597i
\(222\) 0 0
\(223\) −6.16331 + 23.0018i −0.412726 + 1.54031i 0.376621 + 0.926367i \(0.377086\pi\)
−0.789347 + 0.613947i \(0.789581\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.9440 7.21963i −1.78834 0.479183i −0.796275 0.604935i \(-0.793199\pi\)
−0.992062 + 0.125751i \(0.959866\pi\)
\(228\) 0 0
\(229\) 0.731872 + 2.73139i 0.0483635 + 0.180495i 0.985882 0.167439i \(-0.0535499\pi\)
−0.937519 + 0.347934i \(0.886883\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.37193 0.351927 0.175963 0.984397i \(-0.443696\pi\)
0.175963 + 0.984397i \(0.443696\pi\)
\(234\) 0 0
\(235\) 13.9597 0.910631
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0.885927 + 3.30632i 0.0573058 + 0.213868i 0.988641 0.150294i \(-0.0480220\pi\)
−0.931336 + 0.364162i \(0.881355\pi\)
\(240\) 0 0
\(241\) 27.8499 + 7.46235i 1.79397 + 0.480692i 0.993010 0.118030i \(-0.0376580\pi\)
0.800957 + 0.598722i \(0.204325\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −2.31835 + 8.65220i −0.148114 + 0.552769i
\(246\) 0 0
\(247\) −7.33374 + 9.14996i −0.466635 + 0.582198i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −0.889720 −0.0561587 −0.0280793 0.999606i \(-0.508939\pi\)
−0.0280793 + 0.999606i \(0.508939\pi\)
\(252\) 0 0
\(253\) −0.397242 0.397242i −0.0249744 0.0249744i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.1369 + 21.0217i −0.757079 + 1.31130i 0.187256 + 0.982311i \(0.440041\pi\)
−0.944334 + 0.328987i \(0.893293\pi\)
\(258\) 0 0
\(259\) −12.5980 + 7.27345i −0.782801 + 0.451950i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.3337 9.43028i 1.00718 0.581496i 0.0968159 0.995302i \(-0.469134\pi\)
0.910365 + 0.413806i \(0.135801\pi\)
\(264\) 0 0
\(265\) −28.2268 + 7.56335i −1.73396 + 0.464613i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.2986i 1.48151i −0.671774 0.740757i \(-0.734467\pi\)
0.671774 0.740757i \(-0.265533\pi\)
\(270\) 0 0
\(271\) −10.8607 + 10.8607i −0.659741 + 0.659741i −0.955319 0.295578i \(-0.904488\pi\)
0.295578 + 0.955319i \(0.404488\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.482804 + 1.80185i 0.0291142 + 0.108656i
\(276\) 0 0
\(277\) 3.90814 2.25637i 0.234818 0.135572i −0.377975 0.925816i \(-0.623379\pi\)
0.612793 + 0.790244i \(0.290046\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.77388 + 17.8164i −0.284786 + 1.06284i 0.664210 + 0.747546i \(0.268768\pi\)
−0.948996 + 0.315289i \(0.897898\pi\)
\(282\) 0 0
\(283\) 2.60463 + 1.50378i 0.154829 + 0.0893906i 0.575413 0.817863i \(-0.304841\pi\)
−0.420584 + 0.907254i \(0.638175\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.2850i 0.607104i
\(288\) 0 0
\(289\) −16.8916 −0.993626
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 6.13275 1.64326i 0.358279 0.0960005i −0.0751896 0.997169i \(-0.523956\pi\)
0.433469 + 0.901169i \(0.357290\pi\)
\(294\) 0 0
\(295\) 11.2831 + 19.5429i 0.656928 + 1.13783i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.02766 1.32983i −0.175094 0.0769059i
\(300\) 0 0
\(301\) 14.5460 3.89760i 0.838420 0.224654i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −14.0987 + 14.0987i −0.807292 + 0.807292i
\(306\) 0 0
\(307\) 1.50595 1.50595i 0.0859492 0.0859492i −0.662825 0.748774i \(-0.730643\pi\)
0.748774 + 0.662825i \(0.230643\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.93805 12.0170i 0.393420 0.681424i −0.599478 0.800391i \(-0.704625\pi\)
0.992898 + 0.118967i \(0.0379583\pi\)
\(312\) 0 0
\(313\) 3.70337 + 6.41442i 0.209327 + 0.362565i 0.951503 0.307641i \(-0.0995394\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.1462 + 8.34561i 1.74935 + 0.468736i 0.984486 0.175461i \(-0.0561415\pi\)
0.764860 + 0.644197i \(0.222808\pi\)
\(318\) 0 0
\(319\) 0.647510 + 2.41654i 0.0362536 + 0.135300i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −0.757039 0.757039i −0.0421228 0.0421228i
\(324\) 0 0
\(325\) 6.49862 + 8.85080i 0.360478 + 0.490954i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −4.82339 + 8.35436i −0.265922 + 0.460591i
\(330\) 0 0
\(331\) 2.15355 8.03717i 0.118370 0.441763i −0.881147 0.472843i \(-0.843228\pi\)
0.999517 + 0.0310796i \(0.00989455\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −17.4987 30.3087i −0.956057 1.65594i
\(336\) 0 0
\(337\) −6.73189 3.88666i −0.366709 0.211720i 0.305310 0.952253i \(-0.401240\pi\)
−0.672020 + 0.740533i \(0.734573\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.29721i 0.124401i
\(342\) 0 0
\(343\) −14.0790 14.0790i −0.760195 0.760195i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0008 + 15.5889i 1.44948 + 0.836856i 0.998450 0.0556541i \(-0.0177244\pi\)
0.451027 + 0.892510i \(0.351058\pi\)
\(348\) 0 0
\(349\) −4.81905 1.29126i −0.257958 0.0691195i 0.127522 0.991836i \(-0.459297\pi\)
−0.385480 + 0.922716i \(0.625964\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.79861 + 0.749885i 0.148955 + 0.0399124i 0.332526 0.943094i \(-0.392099\pi\)
−0.183571 + 0.983006i \(0.558766\pi\)
\(354\) 0 0
\(355\) −2.67278 1.54313i −0.141857 0.0819009i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 20.8996 + 20.8996i 1.10304 + 1.10304i 0.994042 + 0.108997i \(0.0347639\pi\)
0.108997 + 0.994042i \(0.465236\pi\)
\(360\) 0 0
\(361\) 8.42265i 0.443297i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 17.4510 + 10.0753i 0.913427 + 0.527368i
\(366\) 0 0
\(367\) 5.85980 + 10.1495i 0.305879 + 0.529798i 0.977457 0.211136i \(-0.0677163\pi\)
−0.671577 + 0.740934i \(0.734383\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.22661 19.5060i 0.271352 1.01270i
\(372\) 0 0
\(373\) 6.42101 11.1215i 0.332467 0.575850i −0.650528 0.759482i \(-0.725452\pi\)
0.982995 + 0.183632i \(0.0587856\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.71559 + 11.8702i 0.448876 + 0.611346i
\(378\) 0 0
\(379\) 9.13990 + 9.13990i 0.469485 + 0.469485i 0.901748 0.432263i \(-0.142285\pi\)
−0.432263 + 0.901748i \(0.642285\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.97277 + 14.8266i 0.202999 + 0.757603i 0.990050 + 0.140715i \(0.0449402\pi\)
−0.787051 + 0.616888i \(0.788393\pi\)
\(384\) 0 0
\(385\) −3.28948 0.881413i −0.167647 0.0449210i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 19.1965 + 33.2493i 0.973302 + 1.68581i 0.685428 + 0.728141i \(0.259615\pi\)
0.287875 + 0.957668i \(0.407051\pi\)
\(390\) 0 0
\(391\) 0.150958 0.261466i 0.00763426 0.0132229i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −18.5927 + 18.5927i −0.935502 + 0.935502i
\(396\) 0 0
\(397\) 10.6225 10.6225i 0.533130 0.533130i −0.388372 0.921503i \(-0.626962\pi\)
0.921503 + 0.388372i \(0.126962\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.1747 4.33401i 0.807727 0.216430i 0.168753 0.985658i \(-0.446026\pi\)
0.638974 + 0.769228i \(0.279359\pi\)
\(402\) 0 0
\(403\) −4.90920 12.5995i −0.244545 0.627625i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.27295 + 3.93686i 0.112666 + 0.195143i
\(408\) 0 0
\(409\) −13.8034 + 3.69860i −0.682532 + 0.182884i −0.583394 0.812190i \(-0.698275\pi\)
−0.0991389 + 0.995074i \(0.531609\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −15.5943 −0.767344
\(414\) 0 0
\(415\) 49.0969i 2.41007i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.26586 + 2.46289i 0.208401 + 0.120320i 0.600568 0.799574i \(-0.294941\pi\)
−0.392167 + 0.919894i \(0.628275\pi\)
\(420\) 0 0
\(421\) −2.49475 + 9.31053i −0.121587 + 0.453768i −0.999695 0.0246942i \(-0.992139\pi\)
0.878108 + 0.478462i \(0.158805\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.868202 + 0.501257i −0.0421140 + 0.0243145i
\(426\) 0 0
\(427\) −3.56614 13.3090i −0.172577 0.644068i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −0.315102 + 0.315102i −0.0151779 + 0.0151779i −0.714655 0.699477i \(-0.753416\pi\)
0.699477 + 0.714655i \(0.253416\pi\)
\(432\) 0 0
\(433\) 30.2736i 1.45485i −0.686185 0.727427i \(-0.740716\pi\)
0.686185 0.727427i \(-0.259284\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −2.88120 + 0.772015i −0.137826 + 0.0369305i
\(438\) 0 0
\(439\) 31.2977 18.0697i 1.49376 0.862421i 0.493783 0.869585i \(-0.335614\pi\)
0.999974 + 0.00716374i \(0.00228031\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.98825 + 1.14792i −0.0944646 + 0.0545391i −0.546488 0.837467i \(-0.684036\pi\)
0.452024 + 0.892006i \(0.350702\pi\)
\(444\) 0 0
\(445\) 16.3235 28.2731i 0.773808 1.34027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.47243 + 6.47243i 0.305453 + 0.305453i 0.843143 0.537690i \(-0.180703\pi\)
−0.537690 + 0.843143i \(0.680703\pi\)
\(450\) 0 0
\(451\) −3.21405 −0.151344
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −19.9253 + 2.19543i −0.934114 + 0.102923i
\(456\) 0 0
\(457\) −6.28764 + 23.4658i −0.294123 + 1.09768i 0.647788 + 0.761821i \(0.275694\pi\)
−0.941911 + 0.335862i \(0.890972\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −16.3089 4.36996i −0.759583 0.203530i −0.141818 0.989893i \(-0.545295\pi\)
−0.617764 + 0.786363i \(0.711961\pi\)
\(462\) 0 0
\(463\) −6.61478 24.6867i −0.307415 1.14729i −0.930847 0.365410i \(-0.880929\pi\)
0.623432 0.781878i \(-0.285738\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.4460 1.08495 0.542477 0.840071i \(-0.317487\pi\)
0.542477 + 0.840071i \(0.317487\pi\)
\(468\) 0 0
\(469\) 24.1848 1.11675
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −1.21800 4.54563i −0.0560036 0.209008i
\(474\) 0 0
\(475\) 9.56704 + 2.56348i 0.438966 + 0.117621i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.96669 18.5359i 0.226934 0.846928i −0.754687 0.656085i \(-0.772211\pi\)
0.981621 0.190843i \(-0.0611221\pi\)
\(480\) 0 0
\(481\) 20.8796 + 16.7351i 0.952026 + 0.763054i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −22.0494 −1.00121
\(486\) 0 0
\(487\) −15.8625 15.8625i −0.718800 0.718800i 0.249560 0.968359i \(-0.419714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.74118 6.47991i 0.168837 0.292434i −0.769174 0.639039i \(-0.779332\pi\)
0.938011 + 0.346605i \(0.112666\pi\)
\(492\) 0 0
\(493\) −1.16438 + 0.672258i −0.0524412 + 0.0302770i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.84701 1.06637i 0.0828498 0.0478334i
\(498\) 0 0
\(499\) 11.2248 3.00769i 0.502493 0.134643i 0.00133618 0.999999i \(-0.499575\pi\)
0.501157 + 0.865357i \(0.332908\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.78116i 0.436120i −0.975935 0.218060i \(-0.930027\pi\)
0.975935 0.218060i \(-0.0699729\pi\)
\(504\) 0 0
\(505\) −24.6021 + 24.6021i −1.09478 + 1.09478i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −4.47063 16.6846i −0.198157 0.739533i −0.991427 0.130662i \(-0.958290\pi\)
0.793270 0.608870i \(-0.208377\pi\)
\(510\) 0 0
\(511\) −12.0594 + 6.96251i −0.533477 + 0.308003i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.05935 + 26.3459i −0.311072 + 1.16094i
\(516\) 0 0
\(517\) 2.61073 + 1.50731i 0.114820 + 0.0662913i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.17847i 0.314495i 0.987559 + 0.157247i \(0.0502620\pi\)
−0.987559 + 0.157247i \(0.949738\pi\)
\(522\) 0 0
\(523\) 24.9245 1.08987 0.544936 0.838478i \(-0.316554\pi\)
0.544936 + 0.838478i \(0.316554\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.19251 0.319531i 0.0519464 0.0139190i
\(528\) 0 0
\(529\) 11.0794 + 19.1901i 0.481714 + 0.834353i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −17.6280 + 6.86851i −0.763555 + 0.297508i
\(534\) 0 0
\(535\) −5.07020 + 1.35856i −0.219204 + 0.0587355i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.36780 + 1.36780i −0.0589154 + 0.0589154i
\(540\) 0 0
\(541\) −27.7003 + 27.7003i −1.19093 + 1.19093i −0.214120 + 0.976807i \(0.568688\pi\)
−0.976807 + 0.214120i \(0.931312\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.05059 1.81967i 0.0450021 0.0779460i
\(546\) 0 0
\(547\) −15.7394 27.2614i −0.672966 1.16561i −0.977059 0.212969i \(-0.931687\pi\)
0.304093 0.952642i \(-0.401647\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 12.8308 + 3.43800i 0.546610 + 0.146464i
\(552\) 0 0
\(553\) −4.70284 17.5513i −0.199985 0.746355i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.834344 + 0.834344i 0.0353523 + 0.0353523i 0.724562 0.689210i \(-0.242042\pi\)
−0.689210 + 0.724562i \(0.742042\pi\)
\(558\) 0 0
\(559\) −16.3944 22.3284i −0.693410 0.944391i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.64883 + 2.85585i −0.0694898 + 0.120360i −0.898677 0.438611i \(-0.855470\pi\)
0.829187 + 0.558971i \(0.188804\pi\)
\(564\) 0 0
\(565\) 13.2178 49.3296i 0.556078 2.07531i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −10.9777 19.0140i −0.460210 0.797107i 0.538761 0.842459i \(-0.318893\pi\)
−0.998971 + 0.0453513i \(0.985559\pi\)
\(570\) 0 0
\(571\) 36.3726 + 20.9997i 1.52215 + 0.878811i 0.999658 + 0.0261646i \(0.00832939\pi\)
0.522488 + 0.852647i \(0.325004\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.79310i 0.116480i
\(576\) 0 0
\(577\) −8.86716 8.86716i −0.369145 0.369145i 0.498021 0.867165i \(-0.334060\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −29.3826 16.9641i −1.21900 0.703788i
\(582\) 0 0
\(583\) −6.09560 1.63331i −0.252454 0.0676449i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.00254 + 0.536579i 0.0826537 + 0.0221470i 0.299909 0.953968i \(-0.403044\pi\)
−0.217255 + 0.976115i \(0.569710\pi\)
\(588\) 0 0
\(589\) −10.5631 6.09861i −0.435245 0.251289i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −17.1296 17.1296i −0.703427 0.703427i 0.261717 0.965145i \(-0.415711\pi\)
−0.965145 + 0.261717i \(0.915711\pi\)
\(594\) 0 0
\(595\) 1.83020i 0.0750309i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.29688 + 0.748751i 0.0529889 + 0.0305931i 0.526260 0.850323i \(-0.323594\pi\)
−0.473272 + 0.880917i \(0.656927\pi\)
\(600\) 0 0
\(601\) −9.10896 15.7772i −0.371562 0.643565i 0.618244 0.785986i \(-0.287844\pi\)
−0.989806 + 0.142422i \(0.954511\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.79994 29.1098i 0.317113 1.18348i
\(606\) 0 0
\(607\) −0.761886 + 1.31963i −0.0309240 + 0.0535619i −0.881073 0.472980i \(-0.843178\pi\)
0.850149 + 0.526542i \(0.176512\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.5402 + 2.68790i 0.709599 + 0.108741i
\(612\) 0 0
\(613\) −25.9101 25.9101i −1.04650 1.04650i −0.998865 0.0476336i \(-0.984832\pi\)
−0.0476336 0.998865i \(-0.515168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.30263 27.2538i −0.293993 1.09720i −0.942014 0.335574i \(-0.891070\pi\)
0.648021 0.761623i \(-0.275597\pi\)
\(618\) 0 0
\(619\) −7.55294 2.02380i −0.303578 0.0813435i 0.103814 0.994597i \(-0.466895\pi\)
−0.407392 + 0.913253i \(0.633562\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 11.2803 + 19.5380i 0.451934 + 0.782773i
\(624\) 0 0
\(625\) −15.4763 + 26.8057i −0.619051 + 1.07223i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.72751 + 1.72751i −0.0688803 + 0.0688803i
\(630\) 0 0
\(631\) −10.5595 + 10.5595i −0.420368 + 0.420368i −0.885330 0.464963i \(-0.846068\pi\)
0.464963 + 0.885330i \(0.346068\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −41.8515 + 11.2141i −1.66082 + 0.445017i
\(636\) 0 0
\(637\) −4.57892 + 10.4250i −0.181424 + 0.413052i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.66091 6.34089i −0.144597 0.250450i 0.784625 0.619970i \(-0.212855\pi\)
−0.929223 + 0.369520i \(0.879522\pi\)
\(642\) 0 0
\(643\) −37.2708 + 9.98668i −1.46982 + 0.393836i −0.902869 0.429917i \(-0.858543\pi\)
−0.566949 + 0.823753i \(0.691876\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 16.7465 0.658373 0.329186 0.944265i \(-0.393226\pi\)
0.329186 + 0.944265i \(0.393226\pi\)
\(648\) 0 0
\(649\) 4.87320i 0.191290i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.1333 17.3975i −1.17921 0.680816i −0.223376 0.974732i \(-0.571708\pi\)
−0.955831 + 0.293917i \(0.905041\pi\)
\(654\) 0 0
\(655\) 8.10564 30.2507i 0.316713 1.18199i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.801546 0.462773i 0.0312238 0.0180271i −0.484307 0.874898i \(-0.660928\pi\)
0.515531 + 0.856871i \(0.327595\pi\)
\(660\) 0 0
\(661\) 3.13696 + 11.7073i 0.122013 + 0.455361i 0.999716 0.0238460i \(-0.00759115\pi\)
−0.877702 + 0.479207i \(0.840924\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −12.7858 + 12.7858i −0.495812 + 0.495812i
\(666\) 0 0
\(667\) 3.74595i 0.145044i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.15905 + 1.11442i −0.160558 + 0.0430215i
\(672\) 0 0
\(673\) −14.4389 + 8.33628i −0.556577 + 0.321340i −0.751771 0.659425i \(-0.770800\pi\)
0.195193 + 0.980765i \(0.437467\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.98589 + 5.76536i −0.383789 + 0.221581i −0.679466 0.733707i \(-0.737788\pi\)
0.295677 + 0.955288i \(0.404455\pi\)
\(678\) 0 0
\(679\) 7.61857 13.1957i 0.292374 0.506406i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −30.5505 30.5505i −1.16898 1.16898i −0.982449 0.186534i \(-0.940275\pi\)
−0.186534 0.982449i \(-0.559725\pi\)
\(684\) 0 0
\(685\) 41.9362 1.60230
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −36.9228 + 4.06826i −1.40665 + 0.154988i
\(690\) 0 0
\(691\) −3.82152 + 14.2621i −0.145377 + 0.542556i 0.854361 + 0.519680i \(0.173949\pi\)
−0.999738 + 0.0228759i \(0.992718\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −34.9644 9.36868i −1.32627 0.355374i
\(696\) 0 0
\(697\) −0.447059 1.66845i −0.0169336 0.0631969i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 29.4233 1.11130 0.555652 0.831415i \(-0.312469\pi\)
0.555652 + 0.831415i \(0.312469\pi\)
\(702\) 0 0
\(703\) 24.1368 0.910335
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −6.22286 23.2240i −0.234035 0.873429i
\(708\) 0 0
\(709\) −4.51061 1.20861i −0.169399 0.0453904i 0.173122 0.984900i \(-0.444614\pi\)
−0.342522 + 0.939510i \(0.611281\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.890245 3.32244i 0.0333399 0.124426i
\(714\) 0 0
\(715\) 0.686069 + 6.22665i 0.0256575 + 0.232864i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 19.8659 0.740872 0.370436 0.928858i \(-0.379208\pi\)
0.370436 + 0.928858i \(0.379208\pi\)
\(720\) 0 0
\(721\) −13.3278 13.3278i −0.496354 0.496354i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 6.21923 10.7720i 0.230976 0.400063i
\(726\) 0 0
\(727\) 13.8730 8.00959i 0.514521 0.297059i −0.220169 0.975462i \(-0.570661\pi\)
0.734690 + 0.678403i \(0.237327\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.19026 1.26455i 0.0810098 0.0467710i
\(732\) 0 0
\(733\) 23.8314 6.38561i 0.880234 0.235858i 0.209726 0.977760i \(-0.432743\pi\)
0.670508 + 0.741902i \(0.266076\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.55773i 0.278393i
\(738\) 0 0
\(739\) 8.61409 8.61409i 0.316874 0.316874i −0.530691 0.847565i \(-0.678068\pi\)
0.847565 + 0.530691i \(0.178068\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −9.05462 33.7923i −0.332182 1.23972i −0.906892 0.421363i \(-0.861552\pi\)
0.574710 0.818357i \(-0.305115\pi\)
\(744\) 0 0
\(745\) −11.7979 + 6.81150i −0.432240 + 0.249554i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0.938823 3.50374i 0.0343039 0.128024i
\(750\) 0 0
\(751\) 38.9810 + 22.5057i 1.42244 + 0.821243i 0.996507 0.0835132i \(-0.0266141\pi\)
0.425929 + 0.904757i \(0.359947\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 30.6205i 1.11439i
\(756\) 0 0
\(757\) 29.8931 1.08648 0.543241 0.839577i \(-0.317197\pi\)
0.543241 + 0.839577i \(0.317197\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 27.7687 7.44060i 1.00661 0.269721i 0.282400 0.959297i \(-0.408869\pi\)
0.724214 + 0.689575i \(0.242203\pi\)
\(762\) 0 0
\(763\) 0.726001 + 1.25747i 0.0262830 + 0.0455235i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.4141 + 26.7279i 0.376033 + 0.965089i
\(768\) 0 0
\(769\) 11.7305 3.14317i 0.423011 0.113346i −0.0410325 0.999158i \(-0.513065\pi\)
0.464044 + 0.885812i \(0.346398\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −20.2102 + 20.2102i −0.726909 + 0.726909i −0.970003 0.243093i \(-0.921838\pi\)
0.243093 + 0.970003i \(0.421838\pi\)
\(774\) 0 0
\(775\) −8.07612 + 8.07612i −0.290103 + 0.290103i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.53262 + 14.7789i −0.305713 + 0.529510i
\(780\) 0 0
\(781\) −0.333241 0.577190i −0.0119243 0.0206535i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 21.3150 + 5.71135i 0.760767 + 0.203847i
\(786\) 0 0
\(787\) −9.99498 37.3018i −0.356283 1.32967i −0.878863 0.477075i \(-0.841697\pi\)
0.522580 0.852590i \(-0.324970\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.9548 + 24.9548i 0.887292 + 0.887292i
\(792\) 0 0
\(793\) −20.4295 + 15.0002i −0.725474 + 0.532673i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.6753 46.2030i 0.944887 1.63659i 0.188911 0.981994i \(-0.439504\pi\)
0.755976 0.654599i \(-0.227162\pi\)
\(798\) 0 0
\(799\) −0.419318 + 1.56492i −0.0148344 + 0.0553627i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.17578 + 3.76856i 0.0767816 + 0.132990i
\(804\) 0 0
\(805\) −4.41596 2.54956i −0.155642 0.0898601i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.7326i 0.412496i −0.978500 0.206248i \(-0.933875\pi\)
0.978500 0.206248i \(-0.0661253\pi\)
\(810\) 0 0
\(811\) 22.6077 + 22.6077i 0.793864 + 0.793864i 0.982120 0.188256i \(-0.0602834\pi\)
−0.188256 + 0.982120i \(0.560283\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −40.4499 23.3538i −1.41690 0.818048i
\(816\) 0 0
\(817\) −24.1353 6.46704i −0.844388 0.226253i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 8.85980 + 2.37398i 0.309209 + 0.0828524i 0.410087 0.912046i \(-0.365498\pi\)
−0.100878 + 0.994899i \(0.532165\pi\)
\(822\) 0 0
\(823\) −15.7820 9.11177i −0.550128 0.317616i 0.199046 0.979990i \(-0.436216\pi\)
−0.749173 + 0.662374i \(0.769549\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 15.8768 + 15.8768i 0.552091 + 0.552091i 0.927044 0.374953i \(-0.122341\pi\)
−0.374953 + 0.927044i \(0.622341\pi\)
\(828\) 0 0
\(829\) 38.3708i 1.33267i −0.745652 0.666336i \(-0.767862\pi\)
0.745652 0.666336i \(-0.232138\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.900293 0.519785i −0.0311933 0.0180095i
\(834\) 0 0
\(835\) −6.79096 11.7623i −0.235011 0.407051i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 12.8700 48.0316i 0.444323 1.65823i −0.273397 0.961901i \(-0.588147\pi\)
0.717719 0.696333i \(-0.245186\pi\)
\(840\) 0 0
\(841\) −6.15911 + 10.6679i −0.212383 + 0.367858i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.0694 + 32.6850i 0.587204 + 1.12440i
\(846\) 0 0
\(847\) 14.7260 + 14.7260i 0.505993 + 0.505993i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.76168 + 6.57469i 0.0603897 + 0.225377i
\(852\) 0 0
\(853\) 0.0631577 + 0.0169231i 0.00216248 + 0.000579435i 0.259900 0.965636i \(-0.416310\pi\)
−0.257738 + 0.966215i \(0.582977\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 25.2762 + 43.7796i 0.863418 + 1.49548i 0.868609 + 0.495498i \(0.165014\pi\)
−0.00519107 + 0.999987i \(0.501652\pi\)
\(858\) 0 0
\(859\) −10.9462 + 18.9593i −0.373478 + 0.646883i −0.990098 0.140378i \(-0.955168\pi\)
0.616620 + 0.787261i \(0.288502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.0101 + 35.0101i −1.19176 + 1.19176i −0.215183 + 0.976574i \(0.569035\pi\)
−0.976574 + 0.215183i \(0.930965\pi\)
\(864\) 0 0
\(865\) 38.7686 38.7686i 1.31817 1.31817i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −5.48476 + 1.46964i −0.186058 + 0.0498540i
\(870\) 0 0
\(871\) −16.1510 41.4517i −0.547257 1.40454i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.43351 9.41111i −0.183686 0.318154i
\(876\) 0 0
\(877\) 35.2700 9.45057i 1.19098 0.319123i 0.391709 0.920089i \(-0.371884\pi\)
0.799275 + 0.600966i \(0.205217\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −39.1376 −1.31858 −0.659289 0.751889i \(-0.729143\pi\)
−0.659289 + 0.751889i \(0.729143\pi\)
\(882\) 0 0
\(883\) 26.4173i 0.889013i 0.895776 + 0.444506i \(0.146621\pi\)
−0.895776 + 0.444506i \(0.853379\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.90171 4.56206i −0.265314 0.153179i 0.361442 0.932394i \(-0.382284\pi\)
−0.626756 + 0.779216i \(0.715618\pi\)
\(888\) 0 0
\(889\) 7.74942 28.9212i 0.259907 0.969987i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8619 8.00315i 0.463869 0.267815i
\(894\) 0 0
\(895\) −9.21968 34.4083i −0.308180 1.15014i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −10.8313 + 10.8313i −0.361242 + 0.361242i
\(900\) 0 0
\(901\) 3.39147i 0.112986i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 57.9683 15.5325i 1.92693 0.516319i
\(906\) 0 0
\(907\) 6.32175 3.64986i 0.209910 0.121192i −0.391359 0.920238i \(-0.627995\pi\)
0.601270 + 0.799046i \(0.294662\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.74335 + 1.00652i −0.0577596 + 0.0333475i −0.528602 0.848870i \(-0.677283\pi\)
0.470842 + 0.882218i \(0.343950\pi\)
\(912\) 0 0
\(913\) −5.30126 + 9.18206i −0.175446 + 0.303882i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 15.3032 + 15.3032i 0.505356 + 0.505356i
\(918\) 0 0
\(919\) 11.0173 0.363427 0.181713 0.983352i \(-0.441836\pi\)
0.181713 + 0.983352i \(0.441836\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.06119 2.45356i −0.100760 0.0807598i
\(924\) 0 0
\(925\) 5.84968 21.8313i 0.192336 0.717809i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −18.6161 4.98816i −0.610773 0.163656i −0.0598435 0.998208i \(-0.519060\pi\)
−0.550930 + 0.834552i \(0.685727\pi\)
\(930\) 0 0
\(931\) 2.65824 + 9.92067i 0.0871202 + 0.325137i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −0.571937 −0.0187043
\(936\) 0 0
\(937\) −34.3465 −1.12205 −0.561026 0.827798i \(-0.689593\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.0928 37.6670i −0.329017 1.22791i −0.910212 0.414143i \(-0.864081\pi\)
0.581195 0.813765i \(-0.302585\pi\)
\(942\) 0 0
\(943\) −4.64845 1.24555i −0.151374 0.0405607i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.30407 + 12.3309i −0.107368 + 0.400702i −0.998603 0.0528395i \(-0.983173\pi\)
0.891235 + 0.453541i \(0.149840\pi\)
\(948\) 0 0
\(949\) 19.9870 + 16.0196i 0.648804 + 0.520020i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −50.6036 −1.63921 −0.819605 0.572929i \(-0.805807\pi\)
−0.819605 + 0.572929i \(0.805807\pi\)
\(954\) 0 0
\(955\) −42.0891 42.0891i −1.36197 1.36197i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −14.4899 + 25.0972i −0.467902 + 0.810431i
\(960\) 0 0
\(961\) −14.6660 + 8.46742i −0.473097 + 0.273143i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.2821 12.8646i 0.717285 0.414125i
\(966\) 0 0
\(967\) 8.28527 2.22003i 0.266436 0.0713914i −0.123128 0.992391i \(-0.539292\pi\)
0.389564 + 0.920999i \(0.372626\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.6193i 0.982619i 0.870985 + 0.491309i \(0.163482\pi\)
−0.870985 + 0.491309i \(0.836518\pi\)
\(972\) 0 0
\(973\) 17.6878 17.6878i 0.567044 0.567044i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.62750 + 21.0021i 0.180040 + 0.671917i 0.995638 + 0.0932987i \(0.0297412\pi\)
−0.815599 + 0.578618i \(0.803592\pi\)
\(978\) 0 0
\(979\) 6.10561 3.52508i 0.195136 0.112662i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −5.66506 + 21.1423i −0.180687 + 0.674335i 0.814825 + 0.579707i \(0.196833\pi\)
−0.995513 + 0.0946281i \(0.969834\pi\)
\(984\) 0 0
\(985\) −38.2246 22.0690i −1.21794 0.703176i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.04631i 0.224060i
\(990\) 0 0
\(991\) −8.94034 −0.283999 −0.142000 0.989867i \(-0.545353\pi\)
−0.142000 + 0.989867i \(0.545353\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −25.7730 + 6.90586i −0.817060 + 0.218931i
\(996\) 0 0
\(997\) 16.9719 + 29.3961i 0.537504 + 0.930985i 0.999038 + 0.0438619i \(0.0139662\pi\)
−0.461533 + 0.887123i \(0.652701\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cj.a.125.3 56
3.2 odd 2 468.2.cg.a.437.10 yes 56
9.2 odd 6 inner 1404.2.cj.a.1061.3 56
9.7 even 3 468.2.cg.a.281.10 yes 56
13.5 odd 4 inner 1404.2.cj.a.1097.3 56
39.5 even 4 468.2.cg.a.5.10 56
117.70 odd 12 468.2.cg.a.317.10 yes 56
117.83 even 12 inner 1404.2.cj.a.629.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.10 56 39.5 even 4
468.2.cg.a.281.10 yes 56 9.7 even 3
468.2.cg.a.317.10 yes 56 117.70 odd 12
468.2.cg.a.437.10 yes 56 3.2 odd 2
1404.2.cj.a.125.3 56 1.1 even 1 trivial
1404.2.cj.a.629.3 56 117.83 even 12 inner
1404.2.cj.a.1061.3 56 9.2 odd 6 inner
1404.2.cj.a.1097.3 56 13.5 odd 4 inner