Properties

Label 1404.2.cj.a
Level $1404$
Weight $2$
Character orbit 1404.cj
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
125.1 0 0 0 −0.939546 3.50643i 0 3.22796 + 0.864930i 0 0 0
125.2 0 0 0 −0.761717 2.84277i 0 −4.33311 1.16105i 0 0 0
125.3 0 0 0 −0.734125 2.73979i 0 1.89332 + 0.507313i 0 0 0
125.4 0 0 0 −0.698570 2.60710i 0 −2.01531 0.539999i 0 0 0
125.5 0 0 0 −0.262980 0.981455i 0 1.00815 + 0.270133i 0 0 0
125.6 0 0 0 −0.249888 0.932593i 0 −2.28503 0.612271i 0 0 0
125.7 0 0 0 −0.105017 0.391929i 0 4.28414 + 1.14793i 0 0 0
125.8 0 0 0 0.0369853 + 0.138031i 0 −3.61332 0.968186i 0 0 0
125.9 0 0 0 0.154104 + 0.575123i 0 0.0907757 + 0.0243233i 0 0 0
125.10 0 0 0 0.306901 + 1.14537i 0 −0.129681 0.0347480i 0 0 0
125.11 0 0 0 0.399894 + 1.49243i 0 3.92036 + 1.05046i 0 0 0
125.12 0 0 0 0.941608 + 3.51413i 0 0.592998 + 0.158893i 0 0 0
125.13 0 0 0 0.953715 + 3.55931i 0 −0.238284 0.0638481i 0 0 0
125.14 0 0 0 0.958637 + 3.57768i 0 −3.76900 1.00990i 0 0 0
629.1 0 0 0 −0.939546 + 3.50643i 0 3.22796 0.864930i 0 0 0
629.2 0 0 0 −0.761717 + 2.84277i 0 −4.33311 + 1.16105i 0 0 0
629.3 0 0 0 −0.734125 + 2.73979i 0 1.89332 0.507313i 0 0 0
629.4 0 0 0 −0.698570 + 2.60710i 0 −2.01531 + 0.539999i 0 0 0
629.5 0 0 0 −0.262980 + 0.981455i 0 1.00815 0.270133i 0 0 0
629.6 0 0 0 −0.249888 + 0.932593i 0 −2.28503 + 0.612271i 0 0 0
See all 56 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 125.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner
13.d odd 4 1 inner
117.z even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1404.2.cj.a 56
3.b odd 2 1 468.2.cg.a 56
9.c even 3 1 468.2.cg.a 56
9.d odd 6 1 inner 1404.2.cj.a 56
13.d odd 4 1 inner 1404.2.cj.a 56
39.f even 4 1 468.2.cg.a 56
117.y odd 12 1 468.2.cg.a 56
117.z even 12 1 inner 1404.2.cj.a 56
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
468.2.cg.a 56 3.b odd 2 1
468.2.cg.a 56 9.c even 3 1
468.2.cg.a 56 39.f even 4 1
468.2.cg.a 56 117.y odd 12 1
1404.2.cj.a 56 1.a even 1 1 trivial
1404.2.cj.a 56 9.d odd 6 1 inner
1404.2.cj.a 56 13.d odd 4 1 inner
1404.2.cj.a 56 117.z even 12 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(1404, [\chi])\).