Properties

Label 1404.2.cj.a.1061.3
Level $1404$
Weight $2$
Character 1404.1061
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1061.3
Character \(\chi\) \(=\) 1404.1061
Dual form 1404.2.cj.a.1097.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73979 - 0.734125i) q^{5} +(-0.507313 - 1.89332i) q^{7} +(0.591661 - 0.158535i) q^{11} +(3.30116 + 1.44996i) q^{13} -0.329188 q^{17} +(-2.29971 - 2.29971i) q^{19} +(-0.458575 - 0.794276i) q^{23} +(2.63740 + 1.52270i) q^{25} +(-3.53714 - 2.04217i) q^{29} +(-0.970663 + 3.62256i) q^{31} +5.55973i q^{35} +(-5.24778 + 5.24778i) q^{37} +(-5.06836 - 1.35806i) q^{41} +(-6.65352 - 3.84141i) q^{43} +(-4.75386 + 1.27379i) q^{47} +(2.73489 - 1.57899i) q^{49} +10.3025i q^{53} -1.73741 q^{55} +(-2.05912 + 7.68473i) q^{59} +(-3.51473 + 6.08768i) q^{61} +(-7.98004 - 6.39604i) q^{65} +(-3.19344 + 11.9181i) q^{67} +(-0.769386 + 0.769386i) q^{71} +(-5.02343 + 5.02343i) q^{73} +(-0.600315 - 1.03978i) q^{77} +(-4.63505 + 8.02814i) q^{79} +(-4.47998 - 16.7195i) q^{83} +(0.901908 + 0.241666i) q^{85} +(-8.13868 - 8.13868i) q^{89} +(1.07051 - 6.98572i) q^{91} +(4.61246 + 7.98901i) q^{95} +(-7.50874 + 2.01196i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.73979 0.734125i −1.22527 0.328311i −0.412536 0.910941i \(-0.635357\pi\)
−0.812737 + 0.582631i \(0.802023\pi\)
\(6\) 0 0
\(7\) −0.507313 1.89332i −0.191746 0.715607i −0.993085 0.117396i \(-0.962545\pi\)
0.801339 0.598211i \(-0.204121\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.591661 0.158535i 0.178393 0.0478001i −0.168517 0.985699i \(-0.553898\pi\)
0.346909 + 0.937899i \(0.387231\pi\)
\(12\) 0 0
\(13\) 3.30116 + 1.44996i 0.915576 + 0.402145i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.329188 −0.0798399 −0.0399200 0.999203i \(-0.512710\pi\)
−0.0399200 + 0.999203i \(0.512710\pi\)
\(18\) 0 0
\(19\) −2.29971 2.29971i −0.527590 0.527590i 0.392263 0.919853i \(-0.371692\pi\)
−0.919853 + 0.392263i \(0.871692\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.458575 0.794276i −0.0956196 0.165618i 0.814247 0.580518i \(-0.197150\pi\)
−0.909867 + 0.414900i \(0.863817\pi\)
\(24\) 0 0
\(25\) 2.63740 + 1.52270i 0.527480 + 0.304541i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.53714 2.04217i −0.656830 0.379221i 0.134238 0.990949i \(-0.457141\pi\)
−0.791068 + 0.611728i \(0.790475\pi\)
\(30\) 0 0
\(31\) −0.970663 + 3.62256i −0.174336 + 0.650632i 0.822327 + 0.569015i \(0.192675\pi\)
−0.996664 + 0.0816173i \(0.973991\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.55973i 0.939767i
\(36\) 0 0
\(37\) −5.24778 + 5.24778i −0.862730 + 0.862730i −0.991654 0.128925i \(-0.958847\pi\)
0.128925 + 0.991654i \(0.458847\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.06836 1.35806i −0.791545 0.212094i −0.159677 0.987169i \(-0.551045\pi\)
−0.631869 + 0.775075i \(0.717712\pi\)
\(42\) 0 0
\(43\) −6.65352 3.84141i −1.01465 0.585810i −0.102102 0.994774i \(-0.532557\pi\)
−0.912550 + 0.408964i \(0.865890\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.75386 + 1.27379i −0.693421 + 0.185802i −0.588282 0.808656i \(-0.700196\pi\)
−0.105139 + 0.994457i \(0.533529\pi\)
\(48\) 0 0
\(49\) 2.73489 1.57899i 0.390698 0.225570i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.3025i 1.41516i 0.706633 + 0.707581i \(0.250213\pi\)
−0.706633 + 0.707581i \(0.749787\pi\)
\(54\) 0 0
\(55\) −1.73741 −0.234273
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.05912 + 7.68473i −0.268074 + 1.00047i 0.692268 + 0.721641i \(0.256612\pi\)
−0.960342 + 0.278826i \(0.910055\pi\)
\(60\) 0 0
\(61\) −3.51473 + 6.08768i −0.450015 + 0.779448i −0.998386 0.0567865i \(-0.981915\pi\)
0.548372 + 0.836235i \(0.315248\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.98004 6.39604i −0.989802 0.793331i
\(66\) 0 0
\(67\) −3.19344 + 11.9181i −0.390140 + 1.45602i 0.439762 + 0.898115i \(0.355063\pi\)
−0.829902 + 0.557909i \(0.811604\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.769386 + 0.769386i −0.0913093 + 0.0913093i −0.751286 0.659977i \(-0.770566\pi\)
0.659977 + 0.751286i \(0.270566\pi\)
\(72\) 0 0
\(73\) −5.02343 + 5.02343i −0.587949 + 0.587949i −0.937075 0.349127i \(-0.886478\pi\)
0.349127 + 0.937075i \(0.386478\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.600315 1.03978i −0.0684122 0.118493i
\(78\) 0 0
\(79\) −4.63505 + 8.02814i −0.521484 + 0.903236i 0.478204 + 0.878249i \(0.341288\pi\)
−0.999688 + 0.0249875i \(0.992045\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.47998 16.7195i −0.491742 1.83521i −0.547562 0.836765i \(-0.684444\pi\)
0.0558197 0.998441i \(-0.482223\pi\)
\(84\) 0 0
\(85\) 0.901908 + 0.241666i 0.0978257 + 0.0262123i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.13868 8.13868i −0.862699 0.862699i 0.128952 0.991651i \(-0.458839\pi\)
−0.991651 + 0.128952i \(0.958839\pi\)
\(90\) 0 0
\(91\) 1.07051 6.98572i 0.112220 0.732303i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.61246 + 7.98901i 0.473228 + 0.819655i
\(96\) 0 0
\(97\) −7.50874 + 2.01196i −0.762397 + 0.204284i −0.619010 0.785383i \(-0.712466\pi\)
−0.143387 + 0.989667i \(0.545799\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.13315 10.6229i 0.610271 1.05702i −0.380923 0.924607i \(-0.624394\pi\)
0.991194 0.132414i \(-0.0422729\pi\)
\(102\) 0 0
\(103\) 8.32770 4.80800i 0.820553 0.473746i −0.0300543 0.999548i \(-0.509568\pi\)
0.850607 + 0.525802i \(0.176235\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.85058i 0.178902i 0.995991 + 0.0894511i \(0.0285113\pi\)
−0.995991 + 0.0894511i \(0.971489\pi\)
\(108\) 0 0
\(109\) 0.523808 + 0.523808i 0.0501717 + 0.0501717i 0.731748 0.681576i \(-0.238705\pi\)
−0.681576 + 0.731748i \(0.738705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.5927 9.00243i 1.46683 0.846877i 0.467523 0.883981i \(-0.345146\pi\)
0.999311 + 0.0371036i \(0.0118131\pi\)
\(114\) 0 0
\(115\) 0.673304 + 2.51280i 0.0627859 + 0.234320i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.167002 + 0.623259i 0.0153090 + 0.0571340i
\(120\) 0 0
\(121\) −9.20135 + 5.31240i −0.836486 + 0.482946i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.92026 + 3.92026i 0.350639 + 0.350639i
\(126\) 0 0
\(127\) 15.2754i 1.35547i −0.735305 0.677737i \(-0.762961\pi\)
0.735305 0.677737i \(-0.237039\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.56197 5.52061i 0.835434 0.482338i −0.0202759 0.999794i \(-0.506454\pi\)
0.855709 + 0.517457i \(0.173121\pi\)
\(132\) 0 0
\(133\) −3.18741 + 5.52076i −0.276384 + 0.478711i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.2810 + 3.82658i −1.22011 + 0.326927i −0.810720 0.585434i \(-0.800924\pi\)
−0.409387 + 0.912361i \(0.634258\pi\)
\(138\) 0 0
\(139\) 6.38084 + 11.0519i 0.541216 + 0.937414i 0.998835 + 0.0482650i \(0.0153692\pi\)
−0.457619 + 0.889149i \(0.651297\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.18303 + 0.334533i 0.182554 + 0.0279751i
\(144\) 0 0
\(145\) 8.19182 + 8.19182i 0.680293 + 0.680293i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.63919 1.24307i −0.380057 0.101836i 0.0637324 0.997967i \(-0.479700\pi\)
−0.443790 + 0.896131i \(0.646366\pi\)
\(150\) 0 0
\(151\) −2.79405 10.4275i −0.227377 0.848581i −0.981438 0.191778i \(-0.938575\pi\)
0.754062 0.656803i \(-0.228092\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.31883 9.21249i 0.427219 0.739965i
\(156\) 0 0
\(157\) −3.88990 6.73750i −0.310448 0.537711i 0.668012 0.744151i \(-0.267146\pi\)
−0.978459 + 0.206440i \(0.933812\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.27118 + 1.27118i −0.100183 + 0.100183i
\(162\) 0 0
\(163\) 11.6439 11.6439i 0.912020 0.912020i −0.0844107 0.996431i \(-0.526901\pi\)
0.996431 + 0.0844107i \(0.0269008\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.23932 4.62520i 0.0959014 0.357909i −0.901253 0.433293i \(-0.857352\pi\)
0.997155 + 0.0753839i \(0.0240182\pi\)
\(168\) 0 0
\(169\) 8.79526 + 9.57306i 0.676558 + 0.736389i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.66477 + 16.7399i −0.734799 + 1.27271i 0.220013 + 0.975497i \(0.429390\pi\)
−0.954812 + 0.297212i \(0.903943\pi\)
\(174\) 0 0
\(175\) 1.54498 5.76593i 0.116789 0.435863i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.5587 −0.938684 −0.469342 0.883017i \(-0.655509\pi\)
−0.469342 + 0.883017i \(0.655509\pi\)
\(180\) 0 0
\(181\) 21.1579i 1.57265i 0.617811 + 0.786327i \(0.288020\pi\)
−0.617811 + 0.786327i \(0.711980\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.2304 10.5253i 1.34032 0.773836i
\(186\) 0 0
\(187\) −0.194768 + 0.0521879i −0.0142428 + 0.00381636i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1736 + 10.4925i 1.31500 + 0.759213i 0.982919 0.184039i \(-0.0589172\pi\)
0.332077 + 0.943252i \(0.392251\pi\)
\(192\) 0 0
\(193\) −8.76182 2.34772i −0.630690 0.168993i −0.0707070 0.997497i \(-0.522526\pi\)
−0.559983 + 0.828504i \(0.689192\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0033 + 11.0033i −0.783953 + 0.783953i −0.980495 0.196542i \(-0.937029\pi\)
0.196542 + 0.980495i \(0.437029\pi\)
\(198\) 0 0
\(199\) 9.40693i 0.666839i −0.942778 0.333420i \(-0.891797\pi\)
0.942778 0.333420i \(-0.108203\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.07204 + 7.73295i −0.145428 + 0.542746i
\(204\) 0 0
\(205\) 12.8893 + 7.44163i 0.900226 + 0.519746i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.72524 0.996065i −0.119337 0.0688993i
\(210\) 0 0
\(211\) −11.9952 20.7763i −0.825784 1.43030i −0.901318 0.433157i \(-0.857399\pi\)
0.0755338 0.997143i \(-0.475934\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.4092 + 15.4092i 1.05090 + 1.05090i
\(216\) 0 0
\(217\) 7.35110 0.499025
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.08670 0.477309i −0.0730995 0.0321073i
\(222\) 0 0
\(223\) 23.0018 6.16331i 1.54031 0.412726i 0.613947 0.789347i \(-0.289581\pi\)
0.926367 + 0.376621i \(0.122914\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.21963 26.9440i −0.479183 1.78834i −0.604935 0.796275i \(-0.706801\pi\)
0.125751 0.992062i \(-0.459866\pi\)
\(228\) 0 0
\(229\) −2.73139 0.731872i −0.180495 0.0483635i 0.167439 0.985882i \(-0.446450\pi\)
−0.347934 + 0.937519i \(0.613117\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.37193 −0.351927 −0.175963 0.984397i \(-0.556304\pi\)
−0.175963 + 0.984397i \(0.556304\pi\)
\(234\) 0 0
\(235\) 13.9597 0.910631
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.30632 + 0.885927i 0.213868 + 0.0573058i 0.364162 0.931336i \(-0.381355\pi\)
−0.150294 + 0.988641i \(0.548022\pi\)
\(240\) 0 0
\(241\) −7.46235 27.8499i −0.480692 1.79397i −0.598722 0.800957i \(-0.704325\pi\)
0.118030 0.993010i \(-0.462342\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.65220 + 2.31835i −0.552769 + 0.148114i
\(246\) 0 0
\(247\) −4.25723 10.9262i −0.270881 0.695217i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.889720 0.0561587 0.0280793 0.999606i \(-0.491061\pi\)
0.0280793 + 0.999606i \(0.491061\pi\)
\(252\) 0 0
\(253\) −0.397242 0.397242i −0.0249744 0.0249744i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.1369 + 21.0217i 0.757079 + 1.31130i 0.944334 + 0.328987i \(0.106707\pi\)
−0.187256 + 0.982311i \(0.559959\pi\)
\(258\) 0 0
\(259\) 12.5980 + 7.27345i 0.782801 + 0.451950i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.3337 + 9.43028i 1.00718 + 0.581496i 0.910365 0.413806i \(-0.135801\pi\)
0.0968159 + 0.995302i \(0.469134\pi\)
\(264\) 0 0
\(265\) 7.56335 28.2268i 0.464613 1.73396i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.2986i 1.48151i 0.671774 + 0.740757i \(0.265533\pi\)
−0.671774 + 0.740757i \(0.734467\pi\)
\(270\) 0 0
\(271\) −10.8607 + 10.8607i −0.659741 + 0.659741i −0.955319 0.295578i \(-0.904488\pi\)
0.295578 + 0.955319i \(0.404488\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.80185 + 0.482804i 0.108656 + 0.0291142i
\(276\) 0 0
\(277\) −3.90814 2.25637i −0.234818 0.135572i 0.377975 0.925816i \(-0.376621\pi\)
−0.612793 + 0.790244i \(0.709954\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.8164 + 4.77388i −1.06284 + 0.284786i −0.747546 0.664210i \(-0.768768\pi\)
−0.315289 + 0.948996i \(0.602102\pi\)
\(282\) 0 0
\(283\) −2.60463 + 1.50378i −0.154829 + 0.0893906i −0.575413 0.817863i \(-0.695159\pi\)
0.420584 + 0.907254i \(0.361825\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.2850i 0.607104i
\(288\) 0 0
\(289\) −16.8916 −0.993626
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.64326 6.13275i 0.0960005 0.358279i −0.901169 0.433469i \(-0.857290\pi\)
0.997169 + 0.0751896i \(0.0239562\pi\)
\(294\) 0 0
\(295\) 11.2831 19.5429i 0.656928 1.13783i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.362164 3.28694i −0.0209445 0.190089i
\(300\) 0 0
\(301\) −3.89760 + 14.5460i −0.224654 + 0.838420i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.0987 14.0987i 0.807292 0.807292i
\(306\) 0 0
\(307\) 1.50595 1.50595i 0.0859492 0.0859492i −0.662825 0.748774i \(-0.730643\pi\)
0.748774 + 0.662825i \(0.230643\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.93805 12.0170i −0.393420 0.681424i 0.599478 0.800391i \(-0.295375\pi\)
−0.992898 + 0.118967i \(0.962042\pi\)
\(312\) 0 0
\(313\) 3.70337 6.41442i 0.209327 0.362565i −0.742176 0.670205i \(-0.766206\pi\)
0.951503 + 0.307641i \(0.0995394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.34561 + 31.1462i 0.468736 + 1.74935i 0.644197 + 0.764860i \(0.277192\pi\)
−0.175461 + 0.984486i \(0.556141\pi\)
\(318\) 0 0
\(319\) −2.41654 0.647510i −0.135300 0.0362536i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.757039 + 0.757039i 0.0421228 + 0.0421228i
\(324\) 0 0
\(325\) 6.49862 + 8.85080i 0.360478 + 0.490954i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.82339 + 8.35436i 0.265922 + 0.460591i
\(330\) 0 0
\(331\) −8.03717 + 2.15355i −0.441763 + 0.118370i −0.472843 0.881147i \(-0.656772\pi\)
0.0310796 + 0.999517i \(0.490105\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.4987 30.3087i 0.956057 1.65594i
\(336\) 0 0
\(337\) 6.73189 3.88666i 0.366709 0.211720i −0.305310 0.952253i \(-0.598760\pi\)
0.672020 + 0.740533i \(0.265427\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.29721i 0.124401i
\(342\) 0 0
\(343\) −14.0790 14.0790i −0.760195 0.760195i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0008 15.5889i 1.44948 0.836856i 0.451027 0.892510i \(-0.351058\pi\)
0.998450 + 0.0556541i \(0.0177244\pi\)
\(348\) 0 0
\(349\) 1.29126 + 4.81905i 0.0691195 + 0.257958i 0.991836 0.127522i \(-0.0407025\pi\)
−0.922716 + 0.385480i \(0.874036\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.749885 + 2.79861i 0.0399124 + 0.148955i 0.983006 0.183571i \(-0.0587657\pi\)
−0.943094 + 0.332526i \(0.892099\pi\)
\(354\) 0 0
\(355\) 2.67278 1.54313i 0.141857 0.0819009i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.8996 20.8996i −1.10304 1.10304i −0.994042 0.108997i \(-0.965236\pi\)
−0.108997 0.994042i \(-0.534764\pi\)
\(360\) 0 0
\(361\) 8.42265i 0.443297i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 17.4510 10.0753i 0.913427 0.527368i
\(366\) 0 0
\(367\) 5.85980 10.1495i 0.305879 0.529798i −0.671577 0.740934i \(-0.734383\pi\)
0.977457 + 0.211136i \(0.0677163\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.5060 5.22661i 1.01270 0.271352i
\(372\) 0 0
\(373\) 6.42101 + 11.1215i 0.332467 + 0.575850i 0.982995 0.183632i \(-0.0587856\pi\)
−0.650528 + 0.759482i \(0.725452\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.71559 11.8702i −0.448876 0.611346i
\(378\) 0 0
\(379\) 9.13990 + 9.13990i 0.469485 + 0.469485i 0.901748 0.432263i \(-0.142285\pi\)
−0.432263 + 0.901748i \(0.642285\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.8266 + 3.97277i 0.757603 + 0.202999i 0.616888 0.787051i \(-0.288393\pi\)
0.140715 + 0.990050i \(0.455060\pi\)
\(384\) 0 0
\(385\) 0.881413 + 3.28948i 0.0449210 + 0.167647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.1965 + 33.2493i −0.973302 + 1.68581i −0.287875 + 0.957668i \(0.592949\pi\)
−0.685428 + 0.728141i \(0.740385\pi\)
\(390\) 0 0
\(391\) 0.150958 + 0.261466i 0.00763426 + 0.0132229i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.5927 18.5927i 0.935502 0.935502i
\(396\) 0 0
\(397\) 10.6225 10.6225i 0.533130 0.533130i −0.388372 0.921503i \(-0.626962\pi\)
0.921503 + 0.388372i \(0.126962\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.33401 16.1747i 0.216430 0.807727i −0.769228 0.638974i \(-0.779359\pi\)
0.985658 0.168753i \(-0.0539742\pi\)
\(402\) 0 0
\(403\) −8.45687 + 10.5512i −0.421267 + 0.525594i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.27295 + 3.93686i −0.112666 + 0.195143i
\(408\) 0 0
\(409\) 3.69860 13.8034i 0.182884 0.682532i −0.812190 0.583394i \(-0.801725\pi\)
0.995074 0.0991389i \(-0.0316088\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.5943 0.767344
\(414\) 0 0
\(415\) 49.0969i 2.41007i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.26586 2.46289i 0.208401 0.120320i −0.392167 0.919894i \(-0.628275\pi\)
0.600568 + 0.799574i \(0.294941\pi\)
\(420\) 0 0
\(421\) 9.31053 2.49475i 0.453768 0.121587i −0.0246942 0.999695i \(-0.507861\pi\)
0.478462 + 0.878108i \(0.341195\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.868202 0.501257i −0.0421140 0.0243145i
\(426\) 0 0
\(427\) 13.3090 + 3.56614i 0.644068 + 0.172577i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.315102 0.315102i 0.0151779 0.0151779i −0.699477 0.714655i \(-0.746584\pi\)
0.714655 + 0.699477i \(0.246584\pi\)
\(432\) 0 0
\(433\) 30.2736i 1.45485i −0.686185 0.727427i \(-0.740716\pi\)
0.686185 0.727427i \(-0.259284\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.772015 + 2.88120i −0.0369305 + 0.137826i
\(438\) 0 0
\(439\) −31.2977 18.0697i −1.49376 0.862421i −0.493783 0.869585i \(-0.664386\pi\)
−0.999974 + 0.00716374i \(0.997720\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.98825 1.14792i −0.0944646 0.0545391i 0.452024 0.892006i \(-0.350702\pi\)
−0.546488 + 0.837467i \(0.684036\pi\)
\(444\) 0 0
\(445\) 16.3235 + 28.2731i 0.773808 + 1.34027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.47243 6.47243i −0.305453 0.305453i 0.537690 0.843143i \(-0.319297\pi\)
−0.843143 + 0.537690i \(0.819297\pi\)
\(450\) 0 0
\(451\) −3.21405 −0.151344
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.06137 + 18.3535i −0.377923 + 0.860428i
\(456\) 0 0
\(457\) 23.4658 6.28764i 1.09768 0.294123i 0.335862 0.941911i \(-0.390972\pi\)
0.761821 + 0.647788i \(0.224306\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.36996 16.3089i −0.203530 0.759583i −0.989893 0.141818i \(-0.954705\pi\)
0.786363 0.617764i \(-0.211961\pi\)
\(462\) 0 0
\(463\) 24.6867 + 6.61478i 1.14729 + 0.307415i 0.781878 0.623432i \(-0.214262\pi\)
0.365410 + 0.930847i \(0.380929\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.4460 −1.08495 −0.542477 0.840071i \(-0.682513\pi\)
−0.542477 + 0.840071i \(0.682513\pi\)
\(468\) 0 0
\(469\) 24.1848 1.11675
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.54563 1.21800i −0.209008 0.0560036i
\(474\) 0 0
\(475\) −2.56348 9.56704i −0.117621 0.438966i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.5359 4.96669i 0.846928 0.226934i 0.190843 0.981621i \(-0.438878\pi\)
0.656085 + 0.754687i \(0.272211\pi\)
\(480\) 0 0
\(481\) −24.9328 + 9.71469i −1.13684 + 0.442952i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.0494 1.00121
\(486\) 0 0
\(487\) −15.8625 15.8625i −0.718800 0.718800i 0.249560 0.968359i \(-0.419714\pi\)
−0.968359 + 0.249560i \(0.919714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.74118 6.47991i −0.168837 0.292434i 0.769174 0.639039i \(-0.220668\pi\)
−0.938011 + 0.346605i \(0.887334\pi\)
\(492\) 0 0
\(493\) 1.16438 + 0.672258i 0.0524412 + 0.0302770i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.84701 + 1.06637i 0.0828498 + 0.0478334i
\(498\) 0 0
\(499\) −3.00769 + 11.2248i −0.134643 + 0.502493i 0.865357 + 0.501157i \(0.167092\pi\)
−0.999999 + 0.00133618i \(0.999575\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.78116i 0.436120i 0.975935 + 0.218060i \(0.0699729\pi\)
−0.975935 + 0.218060i \(0.930027\pi\)
\(504\) 0 0
\(505\) −24.6021 + 24.6021i −1.09478 + 1.09478i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.6846 4.47063i −0.739533 0.198157i −0.130662 0.991427i \(-0.541710\pi\)
−0.608870 + 0.793270i \(0.708377\pi\)
\(510\) 0 0
\(511\) 12.0594 + 6.96251i 0.533477 + 0.308003i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −26.3459 + 7.05935i −1.16094 + 0.311072i
\(516\) 0 0
\(517\) −2.61073 + 1.50731i −0.114820 + 0.0662913i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.17847i 0.314495i −0.987559 0.157247i \(-0.949738\pi\)
0.987559 0.157247i \(-0.0502620\pi\)
\(522\) 0 0
\(523\) 24.9245 1.08987 0.544936 0.838478i \(-0.316554\pi\)
0.544936 + 0.838478i \(0.316554\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.319531 1.19251i 0.0139190 0.0519464i
\(528\) 0 0
\(529\) 11.0794 19.1901i 0.481714 0.834353i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.7623 11.8321i −0.639427 0.512504i
\(534\) 0 0
\(535\) 1.35856 5.07020i 0.0587355 0.219204i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.36780 1.36780i 0.0589154 0.0589154i
\(540\) 0 0
\(541\) −27.7003 + 27.7003i −1.19093 + 1.19093i −0.214120 + 0.976807i \(0.568688\pi\)
−0.976807 + 0.214120i \(0.931312\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.05059 1.81967i −0.0450021 0.0779460i
\(546\) 0 0
\(547\) −15.7394 + 27.2614i −0.672966 + 1.16561i 0.304093 + 0.952642i \(0.401647\pi\)
−0.977059 + 0.212969i \(0.931687\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.43800 + 12.8308i 0.146464 + 0.546610i
\(552\) 0 0
\(553\) 17.5513 + 4.70284i 0.746355 + 0.199985i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.834344 0.834344i −0.0353523 0.0353523i 0.689210 0.724562i \(-0.257958\pi\)
−0.724562 + 0.689210i \(0.757958\pi\)
\(558\) 0 0
\(559\) −16.3944 22.3284i −0.693410 0.944391i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.64883 + 2.85585i 0.0694898 + 0.120360i 0.898677 0.438611i \(-0.144530\pi\)
−0.829187 + 0.558971i \(0.811196\pi\)
\(564\) 0 0
\(565\) −49.3296 + 13.2178i −2.07531 + 0.556078i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.9777 19.0140i 0.460210 0.797107i −0.538761 0.842459i \(-0.681107\pi\)
0.998971 + 0.0453513i \(0.0144407\pi\)
\(570\) 0 0
\(571\) −36.3726 + 20.9997i −1.52215 + 0.878811i −0.522488 + 0.852647i \(0.674996\pi\)
−0.999658 + 0.0261646i \(0.991671\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.79310i 0.116480i
\(576\) 0 0
\(577\) −8.86716 8.86716i −0.369145 0.369145i 0.498021 0.867165i \(-0.334060\pi\)
−0.867165 + 0.498021i \(0.834060\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −29.3826 + 16.9641i −1.21900 + 0.703788i
\(582\) 0 0
\(583\) 1.63331 + 6.09560i 0.0676449 + 0.252454i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.536579 + 2.00254i 0.0221470 + 0.0826537i 0.976115 0.217255i \(-0.0697104\pi\)
−0.953968 + 0.299909i \(0.903044\pi\)
\(588\) 0 0
\(589\) 10.5631 6.09861i 0.435245 0.251289i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.1296 + 17.1296i 0.703427 + 0.703427i 0.965145 0.261717i \(-0.0842888\pi\)
−0.261717 + 0.965145i \(0.584289\pi\)
\(594\) 0 0
\(595\) 1.83020i 0.0750309i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.29688 0.748751i 0.0529889 0.0305931i −0.473272 0.880917i \(-0.656927\pi\)
0.526260 + 0.850323i \(0.323594\pi\)
\(600\) 0 0
\(601\) −9.10896 + 15.7772i −0.371562 + 0.643565i −0.989806 0.142422i \(-0.954511\pi\)
0.618244 + 0.785986i \(0.287844\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.1098 7.79994i 1.18348 0.317113i
\(606\) 0 0
\(607\) −0.761886 1.31963i −0.0309240 0.0535619i 0.850149 0.526542i \(-0.176512\pi\)
−0.881073 + 0.472980i \(0.843178\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.5402 2.68790i −0.709599 0.108741i
\(612\) 0 0
\(613\) −25.9101 25.9101i −1.04650 1.04650i −0.998865 0.0476336i \(-0.984832\pi\)
−0.0476336 0.998865i \(-0.515168\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.2538 7.30263i −1.09720 0.293993i −0.335574 0.942014i \(-0.608930\pi\)
−0.761623 + 0.648021i \(0.775597\pi\)
\(618\) 0 0
\(619\) 2.02380 + 7.55294i 0.0813435 + 0.303578i 0.994597 0.103814i \(-0.0331048\pi\)
−0.913253 + 0.407392i \(0.866438\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.2803 + 19.5380i −0.451934 + 0.782773i
\(624\) 0 0
\(625\) −15.4763 26.8057i −0.619051 1.07223i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.72751 1.72751i 0.0688803 0.0688803i
\(630\) 0 0
\(631\) −10.5595 + 10.5595i −0.420368 + 0.420368i −0.885330 0.464963i \(-0.846068\pi\)
0.464963 + 0.885330i \(0.346068\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.2141 + 41.8515i −0.445017 + 1.66082i
\(636\) 0 0
\(637\) 11.3178 1.24702i 0.448426 0.0494087i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.66091 6.34089i 0.144597 0.250450i −0.784625 0.619970i \(-0.787145\pi\)
0.929223 + 0.369520i \(0.120478\pi\)
\(642\) 0 0
\(643\) 9.98668 37.2708i 0.393836 1.46982i −0.429917 0.902869i \(-0.641457\pi\)
0.823753 0.566949i \(-0.191876\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.7465 −0.658373 −0.329186 0.944265i \(-0.606774\pi\)
−0.329186 + 0.944265i \(0.606774\pi\)
\(648\) 0 0
\(649\) 4.87320i 0.191290i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.1333 + 17.3975i −1.17921 + 0.680816i −0.955831 0.293917i \(-0.905041\pi\)
−0.223376 + 0.974732i \(0.571708\pi\)
\(654\) 0 0
\(655\) −30.2507 + 8.10564i −1.18199 + 0.316713i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.801546 + 0.462773i 0.0312238 + 0.0180271i 0.515531 0.856871i \(-0.327595\pi\)
−0.484307 + 0.874898i \(0.660928\pi\)
\(660\) 0 0
\(661\) −11.7073 3.13696i −0.455361 0.122013i 0.0238460 0.999716i \(-0.492409\pi\)
−0.479207 + 0.877702i \(0.659076\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.7858 12.7858i 0.495812 0.495812i
\(666\) 0 0
\(667\) 3.74595i 0.145044i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.11442 + 4.15905i −0.0430215 + 0.160558i
\(672\) 0 0
\(673\) 14.4389 + 8.33628i 0.556577 + 0.321340i 0.751771 0.659425i \(-0.229200\pi\)
−0.195193 + 0.980765i \(0.562533\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.98589 5.76536i −0.383789 0.221581i 0.295677 0.955288i \(-0.404455\pi\)
−0.679466 + 0.733707i \(0.737788\pi\)
\(678\) 0 0
\(679\) 7.61857 + 13.1957i 0.292374 + 0.506406i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.5505 + 30.5505i 1.16898 + 1.16898i 0.982449 + 0.186534i \(0.0597254\pi\)
0.186534 + 0.982449i \(0.440275\pi\)
\(684\) 0 0
\(685\) 41.9362 1.60230
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.9382 + 34.0103i −0.569100 + 1.29569i
\(690\) 0 0
\(691\) 14.2621 3.82152i 0.542556 0.145377i 0.0228759 0.999738i \(-0.492718\pi\)
0.519680 + 0.854361i \(0.326051\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.36868 34.9644i −0.355374 1.32627i
\(696\) 0 0
\(697\) 1.66845 + 0.447059i 0.0631969 + 0.0169336i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29.4233 −1.11130 −0.555652 0.831415i \(-0.687531\pi\)
−0.555652 + 0.831415i \(0.687531\pi\)
\(702\) 0 0
\(703\) 24.1368 0.910335
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23.2240 6.22286i −0.873429 0.234035i
\(708\) 0 0
\(709\) 1.20861 + 4.51061i 0.0453904 + 0.169399i 0.984900 0.173122i \(-0.0553856\pi\)
−0.939510 + 0.342522i \(0.888719\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.32244 0.890245i 0.124426 0.0333399i
\(714\) 0 0
\(715\) −5.73547 2.51917i −0.214495 0.0942117i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.8659 −0.740872 −0.370436 0.928858i \(-0.620792\pi\)
−0.370436 + 0.928858i \(0.620792\pi\)
\(720\) 0 0
\(721\) −13.3278 13.3278i −0.496354 0.496354i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.21923 10.7720i −0.230976 0.400063i
\(726\) 0 0
\(727\) −13.8730 8.00959i −0.514521 0.297059i 0.220169 0.975462i \(-0.429339\pi\)
−0.734690 + 0.678403i \(0.762673\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.19026 + 1.26455i 0.0810098 + 0.0467710i
\(732\) 0 0
\(733\) −6.38561 + 23.8314i −0.235858 + 0.880234i 0.741902 + 0.670508i \(0.233924\pi\)
−0.977760 + 0.209726i \(0.932743\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.55773i 0.278393i
\(738\) 0 0
\(739\) 8.61409 8.61409i 0.316874 0.316874i −0.530691 0.847565i \(-0.678068\pi\)
0.847565 + 0.530691i \(0.178068\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −33.7923 9.05462i −1.23972 0.332182i −0.421363 0.906892i \(-0.638448\pi\)
−0.818357 + 0.574710i \(0.805115\pi\)
\(744\) 0 0
\(745\) 11.7979 + 6.81150i 0.432240 + 0.249554i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.50374 0.938823i 0.128024 0.0343039i
\(750\) 0 0
\(751\) −38.9810 + 22.5057i −1.42244 + 0.821243i −0.996507 0.0835132i \(-0.973386\pi\)
−0.425929 + 0.904757i \(0.640053\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 30.6205i 1.11439i
\(756\) 0 0
\(757\) 29.8931 1.08648 0.543241 0.839577i \(-0.317197\pi\)
0.543241 + 0.839577i \(0.317197\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.44060 27.7687i 0.269721 1.00661i −0.689575 0.724214i \(-0.742203\pi\)
0.959297 0.282400i \(-0.0911306\pi\)
\(762\) 0 0
\(763\) 0.726001 1.25747i 0.0262830 0.0455235i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17.9400 + 22.3829i −0.647775 + 0.808198i
\(768\) 0 0
\(769\) −3.14317 + 11.7305i −0.113346 + 0.423011i −0.999158 0.0410325i \(-0.986935\pi\)
0.885812 + 0.464044i \(0.153602\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.2102 20.2102i 0.726909 0.726909i −0.243093 0.970003i \(-0.578162\pi\)
0.970003 + 0.243093i \(0.0781622\pi\)
\(774\) 0 0
\(775\) −8.07612 + 8.07612i −0.290103 + 0.290103i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.53262 + 14.7789i 0.305713 + 0.529510i
\(780\) 0 0
\(781\) −0.333241 + 0.577190i −0.0119243 + 0.0206535i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.71135 + 21.3150i 0.203847 + 0.760767i
\(786\) 0 0
\(787\) 37.3018 + 9.99498i 1.32967 + 0.356283i 0.852590 0.522580i \(-0.175030\pi\)
0.477075 + 0.878863i \(0.341697\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −24.9548 24.9548i −0.887292 0.887292i
\(792\) 0 0
\(793\) −20.4295 + 15.0002i −0.725474 + 0.532673i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.6753 46.2030i −0.944887 1.63659i −0.755976 0.654599i \(-0.772838\pi\)
−0.188911 0.981994i \(-0.560496\pi\)
\(798\) 0 0
\(799\) 1.56492 0.419318i 0.0553627 0.0148344i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.17578 + 3.76856i −0.0767816 + 0.132990i
\(804\) 0 0
\(805\) 4.41596 2.54956i 0.155642 0.0898601i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.7326i 0.412496i 0.978500 + 0.206248i \(0.0661253\pi\)
−0.978500 + 0.206248i \(0.933875\pi\)
\(810\) 0 0
\(811\) 22.6077 + 22.6077i 0.793864 + 0.793864i 0.982120 0.188256i \(-0.0602834\pi\)
−0.188256 + 0.982120i \(0.560283\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −40.4499 + 23.3538i −1.41690 + 0.818048i
\(816\) 0 0
\(817\) 6.46704 + 24.1353i 0.226253 + 0.844388i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.37398 + 8.85980i 0.0828524 + 0.309209i 0.994899 0.100878i \(-0.0321651\pi\)
−0.912046 + 0.410087i \(0.865498\pi\)
\(822\) 0 0
\(823\) 15.7820 9.11177i 0.550128 0.317616i −0.199046 0.979990i \(-0.563784\pi\)
0.749173 + 0.662374i \(0.230451\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.8768 15.8768i −0.552091 0.552091i 0.374953 0.927044i \(-0.377659\pi\)
−0.927044 + 0.374953i \(0.877659\pi\)
\(828\) 0 0
\(829\) 38.3708i 1.33267i −0.745652 0.666336i \(-0.767862\pi\)
0.745652 0.666336i \(-0.232138\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.900293 + 0.519785i −0.0311933 + 0.0180095i
\(834\) 0 0
\(835\) −6.79096 + 11.7623i −0.235011 + 0.407051i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 48.0316 12.8700i 1.65823 0.444323i 0.696333 0.717719i \(-0.254814\pi\)
0.961901 + 0.273397i \(0.0881471\pi\)
\(840\) 0 0
\(841\) −6.15911 10.6679i −0.212383 0.367858i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.0694 32.6850i −0.587204 1.12440i
\(846\) 0 0
\(847\) 14.7260 + 14.7260i 0.505993 + 0.505993i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.57469 + 1.76168i 0.225377 + 0.0603897i
\(852\) 0 0
\(853\) −0.0169231 0.0631577i −0.000579435 0.00216248i 0.965636 0.259900i \(-0.0836896\pi\)
−0.966215 + 0.257738i \(0.917023\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.2762 + 43.7796i −0.863418 + 1.49548i 0.00519107 + 0.999987i \(0.498348\pi\)
−0.868609 + 0.495498i \(0.834986\pi\)
\(858\) 0 0
\(859\) −10.9462 18.9593i −0.373478 0.646883i 0.616620 0.787261i \(-0.288502\pi\)
−0.990098 + 0.140378i \(0.955168\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 35.0101 35.0101i 1.19176 1.19176i 0.215183 0.976574i \(-0.430965\pi\)
0.976574 0.215183i \(-0.0690348\pi\)
\(864\) 0 0
\(865\) 38.7686 38.7686i 1.31817 1.31817i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.46964 + 5.48476i −0.0498540 + 0.186058i
\(870\) 0 0
\(871\) −27.8227 + 34.7131i −0.942736 + 1.17621i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.43351 9.41111i 0.183686 0.318154i
\(876\) 0 0
\(877\) −9.45057 + 35.2700i −0.319123 + 1.19098i 0.600966 + 0.799275i \(0.294783\pi\)
−0.920089 + 0.391709i \(0.871884\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39.1376 1.31858 0.659289 0.751889i \(-0.270857\pi\)
0.659289 + 0.751889i \(0.270857\pi\)
\(882\) 0 0
\(883\) 26.4173i 0.889013i 0.895776 + 0.444506i \(0.146621\pi\)
−0.895776 + 0.444506i \(0.853379\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.90171 + 4.56206i −0.265314 + 0.153179i −0.626756 0.779216i \(-0.715618\pi\)
0.361442 + 0.932394i \(0.382284\pi\)
\(888\) 0 0
\(889\) −28.9212 + 7.74942i −0.969987 + 0.259907i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8619 + 8.00315i 0.463869 + 0.267815i
\(894\) 0 0
\(895\) 34.4083 + 9.21968i 1.15014 + 0.308180i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.8313 10.8313i 0.361242 0.361242i
\(900\) 0 0
\(901\) 3.39147i 0.112986i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.5325 57.9683i 0.516319 1.92693i
\(906\) 0 0
\(907\) −6.32175 3.64986i −0.209910 0.121192i 0.391359 0.920238i \(-0.372005\pi\)
−0.601270 + 0.799046i \(0.705338\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.74335 1.00652i −0.0577596 0.0333475i 0.470842 0.882218i \(-0.343950\pi\)
−0.528602 + 0.848870i \(0.677283\pi\)
\(912\) 0 0
\(913\) −5.30126 9.18206i −0.175446 0.303882i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.3032 15.3032i −0.505356 0.505356i
\(918\) 0 0
\(919\) 11.0173 0.363427 0.181713 0.983352i \(-0.441836\pi\)
0.181713 + 0.983352i \(0.441836\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.65544 + 1.42429i −0.120320 + 0.0468810i
\(924\) 0 0
\(925\) −21.8313 + 5.84968i −0.717809 + 0.192336i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.98816 18.6161i −0.163656 0.610773i −0.998208 0.0598435i \(-0.980940\pi\)
0.834552 0.550930i \(-0.185727\pi\)
\(930\) 0 0
\(931\) −9.92067 2.65824i −0.325137 0.0871202i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.571937 0.0187043
\(936\) 0 0
\(937\) −34.3465 −1.12205 −0.561026 0.827798i \(-0.689593\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −37.6670 10.0928i −1.22791 0.329017i −0.414143 0.910212i \(-0.635919\pi\)
−0.813765 + 0.581195i \(0.802585\pi\)
\(942\) 0 0
\(943\) 1.24555 + 4.64845i 0.0405607 + 0.151374i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.3309 + 3.30407i −0.400702 + 0.107368i −0.453541 0.891235i \(-0.649840\pi\)
0.0528395 + 0.998603i \(0.483173\pi\)
\(948\) 0 0
\(949\) −23.8669 + 9.29938i −0.774752 + 0.301871i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50.6036 1.63921 0.819605 0.572929i \(-0.194193\pi\)
0.819605 + 0.572929i \(0.194193\pi\)
\(954\) 0 0
\(955\) −42.0891 42.0891i −1.36197 1.36197i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.4899 + 25.0972i 0.467902 + 0.810431i
\(960\) 0 0
\(961\) 14.6660 + 8.46742i 0.473097 + 0.273143i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.2821 + 12.8646i 0.717285 + 0.414125i
\(966\) 0 0
\(967\) −2.22003 + 8.28527i −0.0713914 + 0.266436i −0.992391 0.123128i \(-0.960708\pi\)
0.920999 + 0.389564i \(0.127374\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.6193i 0.982619i −0.870985 0.491309i \(-0.836518\pi\)
0.870985 0.491309i \(-0.163482\pi\)
\(972\) 0 0
\(973\) 17.6878 17.6878i 0.567044 0.567044i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0021 + 5.62750i 0.671917 + 0.180040i 0.578618 0.815599i \(-0.303592\pi\)
0.0932987 + 0.995638i \(0.470259\pi\)
\(978\) 0 0
\(979\) −6.10561 3.52508i −0.195136 0.112662i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.1423 + 5.66506i −0.674335 + 0.180687i −0.579707 0.814825i \(-0.696833\pi\)
−0.0946281 + 0.995513i \(0.530166\pi\)
\(984\) 0 0
\(985\) 38.2246 22.0690i 1.21794 0.703176i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.04631i 0.224060i
\(990\) 0 0
\(991\) −8.94034 −0.283999 −0.142000 0.989867i \(-0.545353\pi\)
−0.142000 + 0.989867i \(0.545353\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.90586 + 25.7730i −0.218931 + 0.817060i
\(996\) 0 0
\(997\) 16.9719 29.3961i 0.537504 0.930985i −0.461533 0.887123i \(-0.652701\pi\)
0.999038 0.0438619i \(-0.0139662\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cj.a.1061.3 56
3.2 odd 2 468.2.cg.a.281.10 yes 56
9.4 even 3 468.2.cg.a.437.10 yes 56
9.5 odd 6 inner 1404.2.cj.a.125.3 56
13.5 odd 4 inner 1404.2.cj.a.629.3 56
39.5 even 4 468.2.cg.a.317.10 yes 56
117.5 even 12 inner 1404.2.cj.a.1097.3 56
117.31 odd 12 468.2.cg.a.5.10 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.10 56 117.31 odd 12
468.2.cg.a.281.10 yes 56 3.2 odd 2
468.2.cg.a.317.10 yes 56 39.5 even 4
468.2.cg.a.437.10 yes 56 9.4 even 3
1404.2.cj.a.125.3 56 9.5 odd 6 inner
1404.2.cj.a.629.3 56 13.5 odd 4 inner
1404.2.cj.a.1061.3 56 1.1 even 1 trivial
1404.2.cj.a.1097.3 56 117.5 even 12 inner