Properties

Label 1404.2.cj.a.1097.3
Level $1404$
Weight $2$
Character 1404.1097
Analytic conductor $11.211$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1404,2,Mod(125,1404)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1404, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([0, 10, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1404.125"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1404 = 2^{2} \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1404.cj (of order \(12\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.2109964438\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 468)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 1097.3
Character \(\chi\) \(=\) 1404.1097
Dual form 1404.2.cj.a.1061.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73979 + 0.734125i) q^{5} +(-0.507313 + 1.89332i) q^{7} +(0.591661 + 0.158535i) q^{11} +(3.30116 - 1.44996i) q^{13} -0.329188 q^{17} +(-2.29971 + 2.29971i) q^{19} +(-0.458575 + 0.794276i) q^{23} +(2.63740 - 1.52270i) q^{25} +(-3.53714 + 2.04217i) q^{29} +(-0.970663 - 3.62256i) q^{31} -5.55973i q^{35} +(-5.24778 - 5.24778i) q^{37} +(-5.06836 + 1.35806i) q^{41} +(-6.65352 + 3.84141i) q^{43} +(-4.75386 - 1.27379i) q^{47} +(2.73489 + 1.57899i) q^{49} -10.3025i q^{53} -1.73741 q^{55} +(-2.05912 - 7.68473i) q^{59} +(-3.51473 - 6.08768i) q^{61} +(-7.98004 + 6.39604i) q^{65} +(-3.19344 - 11.9181i) q^{67} +(-0.769386 - 0.769386i) q^{71} +(-5.02343 - 5.02343i) q^{73} +(-0.600315 + 1.03978i) q^{77} +(-4.63505 - 8.02814i) q^{79} +(-4.47998 + 16.7195i) q^{83} +(0.901908 - 0.241666i) q^{85} +(-8.13868 + 8.13868i) q^{89} +(1.07051 + 6.98572i) q^{91} +(4.61246 - 7.98901i) q^{95} +(-7.50874 - 2.01196i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 2 q^{7} + 12 q^{11} + 4 q^{19} - 4 q^{31} - 4 q^{37} - 24 q^{41} - 66 q^{47} + 78 q^{65} - 14 q^{67} + 28 q^{73} - 24 q^{79} + 78 q^{83} + 36 q^{85} - 8 q^{91} + 26 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1404\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(703\) \(1081\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.73979 + 0.734125i −1.22527 + 0.328311i −0.812737 0.582631i \(-0.802023\pi\)
−0.412536 + 0.910941i \(0.635357\pi\)
\(6\) 0 0
\(7\) −0.507313 + 1.89332i −0.191746 + 0.715607i 0.801339 + 0.598211i \(0.204121\pi\)
−0.993085 + 0.117396i \(0.962545\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.591661 + 0.158535i 0.178393 + 0.0478001i 0.346909 0.937899i \(-0.387231\pi\)
−0.168517 + 0.985699i \(0.553898\pi\)
\(12\) 0 0
\(13\) 3.30116 1.44996i 0.915576 0.402145i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.329188 −0.0798399 −0.0399200 0.999203i \(-0.512710\pi\)
−0.0399200 + 0.999203i \(0.512710\pi\)
\(18\) 0 0
\(19\) −2.29971 + 2.29971i −0.527590 + 0.527590i −0.919853 0.392263i \(-0.871692\pi\)
0.392263 + 0.919853i \(0.371692\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.458575 + 0.794276i −0.0956196 + 0.165618i −0.909867 0.414900i \(-0.863817\pi\)
0.814247 + 0.580518i \(0.197150\pi\)
\(24\) 0 0
\(25\) 2.63740 1.52270i 0.527480 0.304541i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.53714 + 2.04217i −0.656830 + 0.379221i −0.791068 0.611728i \(-0.790475\pi\)
0.134238 + 0.990949i \(0.457141\pi\)
\(30\) 0 0
\(31\) −0.970663 3.62256i −0.174336 0.650632i −0.996664 0.0816173i \(-0.973991\pi\)
0.822327 0.569015i \(-0.192675\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.55973i 0.939767i
\(36\) 0 0
\(37\) −5.24778 5.24778i −0.862730 0.862730i 0.128925 0.991654i \(-0.458847\pi\)
−0.991654 + 0.128925i \(0.958847\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.06836 + 1.35806i −0.791545 + 0.212094i −0.631869 0.775075i \(-0.717712\pi\)
−0.159677 + 0.987169i \(0.551045\pi\)
\(42\) 0 0
\(43\) −6.65352 + 3.84141i −1.01465 + 0.585810i −0.912550 0.408964i \(-0.865890\pi\)
−0.102102 + 0.994774i \(0.532557\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.75386 1.27379i −0.693421 0.185802i −0.105139 0.994457i \(-0.533529\pi\)
−0.588282 + 0.808656i \(0.700196\pi\)
\(48\) 0 0
\(49\) 2.73489 + 1.57899i 0.390698 + 0.225570i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 10.3025i 1.41516i −0.706633 0.707581i \(-0.749787\pi\)
0.706633 0.707581i \(-0.250213\pi\)
\(54\) 0 0
\(55\) −1.73741 −0.234273
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.05912 7.68473i −0.268074 1.00047i −0.960342 0.278826i \(-0.910055\pi\)
0.692268 0.721641i \(-0.256612\pi\)
\(60\) 0 0
\(61\) −3.51473 6.08768i −0.450015 0.779448i 0.548372 0.836235i \(-0.315248\pi\)
−0.998386 + 0.0567865i \(0.981915\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −7.98004 + 6.39604i −0.989802 + 0.793331i
\(66\) 0 0
\(67\) −3.19344 11.9181i −0.390140 1.45602i −0.829902 0.557909i \(-0.811604\pi\)
0.439762 0.898115i \(-0.355063\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.769386 0.769386i −0.0913093 0.0913093i 0.659977 0.751286i \(-0.270566\pi\)
−0.751286 + 0.659977i \(0.770566\pi\)
\(72\) 0 0
\(73\) −5.02343 5.02343i −0.587949 0.587949i 0.349127 0.937075i \(-0.386478\pi\)
−0.937075 + 0.349127i \(0.886478\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −0.600315 + 1.03978i −0.0684122 + 0.118493i
\(78\) 0 0
\(79\) −4.63505 8.02814i −0.521484 0.903236i −0.999688 0.0249875i \(-0.992045\pi\)
0.478204 0.878249i \(-0.341288\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.47998 + 16.7195i −0.491742 + 1.83521i 0.0558197 + 0.998441i \(0.482223\pi\)
−0.547562 + 0.836765i \(0.684444\pi\)
\(84\) 0 0
\(85\) 0.901908 0.241666i 0.0978257 0.0262123i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.13868 + 8.13868i −0.862699 + 0.862699i −0.991651 0.128952i \(-0.958839\pi\)
0.128952 + 0.991651i \(0.458839\pi\)
\(90\) 0 0
\(91\) 1.07051 + 6.98572i 0.112220 + 0.732303i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.61246 7.98901i 0.473228 0.819655i
\(96\) 0 0
\(97\) −7.50874 2.01196i −0.762397 0.204284i −0.143387 0.989667i \(-0.545799\pi\)
−0.619010 + 0.785383i \(0.712466\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.13315 + 10.6229i 0.610271 + 1.05702i 0.991194 + 0.132414i \(0.0422729\pi\)
−0.380923 + 0.924607i \(0.624394\pi\)
\(102\) 0 0
\(103\) 8.32770 + 4.80800i 0.820553 + 0.473746i 0.850607 0.525802i \(-0.176235\pi\)
−0.0300543 + 0.999548i \(0.509568\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.85058i 0.178902i −0.995991 0.0894511i \(-0.971489\pi\)
0.995991 0.0894511i \(-0.0285113\pi\)
\(108\) 0 0
\(109\) 0.523808 0.523808i 0.0501717 0.0501717i −0.681576 0.731748i \(-0.738705\pi\)
0.731748 + 0.681576i \(0.238705\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15.5927 + 9.00243i 1.46683 + 0.846877i 0.999311 0.0371036i \(-0.0118131\pi\)
0.467523 + 0.883981i \(0.345146\pi\)
\(114\) 0 0
\(115\) 0.673304 2.51280i 0.0627859 0.234320i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.167002 0.623259i 0.0153090 0.0571340i
\(120\) 0 0
\(121\) −9.20135 5.31240i −0.836486 0.482946i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 3.92026 3.92026i 0.350639 0.350639i
\(126\) 0 0
\(127\) 15.2754i 1.35547i 0.735305 + 0.677737i \(0.237039\pi\)
−0.735305 + 0.677737i \(0.762961\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.56197 + 5.52061i 0.835434 + 0.482338i 0.855709 0.517457i \(-0.173121\pi\)
−0.0202759 + 0.999794i \(0.506454\pi\)
\(132\) 0 0
\(133\) −3.18741 5.52076i −0.276384 0.478711i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.2810 3.82658i −1.22011 0.326927i −0.409387 0.912361i \(-0.634258\pi\)
−0.810720 + 0.585434i \(0.800924\pi\)
\(138\) 0 0
\(139\) 6.38084 11.0519i 0.541216 0.937414i −0.457619 0.889149i \(-0.651297\pi\)
0.998835 0.0482650i \(-0.0153692\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.18303 0.334533i 0.182554 0.0279751i
\(144\) 0 0
\(145\) 8.19182 8.19182i 0.680293 0.680293i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −4.63919 + 1.24307i −0.380057 + 0.101836i −0.443790 0.896131i \(-0.646366\pi\)
0.0637324 + 0.997967i \(0.479700\pi\)
\(150\) 0 0
\(151\) −2.79405 + 10.4275i −0.227377 + 0.848581i 0.754062 + 0.656803i \(0.228092\pi\)
−0.981438 + 0.191778i \(0.938575\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.31883 + 9.21249i 0.427219 + 0.739965i
\(156\) 0 0
\(157\) −3.88990 + 6.73750i −0.310448 + 0.537711i −0.978459 0.206440i \(-0.933812\pi\)
0.668012 + 0.744151i \(0.267146\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.27118 1.27118i −0.100183 0.100183i
\(162\) 0 0
\(163\) 11.6439 + 11.6439i 0.912020 + 0.912020i 0.996431 0.0844107i \(-0.0269008\pi\)
−0.0844107 + 0.996431i \(0.526901\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.23932 + 4.62520i 0.0959014 + 0.357909i 0.997155 0.0753839i \(-0.0240182\pi\)
−0.901253 + 0.433293i \(0.857352\pi\)
\(168\) 0 0
\(169\) 8.79526 9.57306i 0.676558 0.736389i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −9.66477 16.7399i −0.734799 1.27271i −0.954812 0.297212i \(-0.903943\pi\)
0.220013 0.975497i \(-0.429390\pi\)
\(174\) 0 0
\(175\) 1.54498 + 5.76593i 0.116789 + 0.435863i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.5587 −0.938684 −0.469342 0.883017i \(-0.655509\pi\)
−0.469342 + 0.883017i \(0.655509\pi\)
\(180\) 0 0
\(181\) 21.1579i 1.57265i −0.617811 0.786327i \(-0.711980\pi\)
0.617811 0.786327i \(-0.288020\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 18.2304 + 10.5253i 1.34032 + 0.773836i
\(186\) 0 0
\(187\) −0.194768 0.0521879i −0.0142428 0.00381636i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 18.1736 10.4925i 1.31500 0.759213i 0.332077 0.943252i \(-0.392251\pi\)
0.982919 + 0.184039i \(0.0589172\pi\)
\(192\) 0 0
\(193\) −8.76182 + 2.34772i −0.630690 + 0.168993i −0.559983 0.828504i \(-0.689192\pi\)
−0.0707070 + 0.997497i \(0.522526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.0033 11.0033i −0.783953 0.783953i 0.196542 0.980495i \(-0.437029\pi\)
−0.980495 + 0.196542i \(0.937029\pi\)
\(198\) 0 0
\(199\) 9.40693i 0.666839i 0.942778 + 0.333420i \(0.108203\pi\)
−0.942778 + 0.333420i \(0.891797\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.07204 7.73295i −0.145428 0.542746i
\(204\) 0 0
\(205\) 12.8893 7.44163i 0.900226 0.519746i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.72524 + 0.996065i −0.119337 + 0.0688993i
\(210\) 0 0
\(211\) −11.9952 + 20.7763i −0.825784 + 1.43030i 0.0755338 + 0.997143i \(0.475934\pi\)
−0.901318 + 0.433157i \(0.857399\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 15.4092 15.4092i 1.05090 1.05090i
\(216\) 0 0
\(217\) 7.35110 0.499025
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −1.08670 + 0.477309i −0.0730995 + 0.0321073i
\(222\) 0 0
\(223\) 23.0018 + 6.16331i 1.54031 + 0.412726i 0.926367 0.376621i \(-0.122914\pi\)
0.613947 + 0.789347i \(0.289581\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.21963 + 26.9440i −0.479183 + 1.78834i 0.125751 + 0.992062i \(0.459866\pi\)
−0.604935 + 0.796275i \(0.706801\pi\)
\(228\) 0 0
\(229\) −2.73139 + 0.731872i −0.180495 + 0.0483635i −0.347934 0.937519i \(-0.613117\pi\)
0.167439 + 0.985882i \(0.446450\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.37193 −0.351927 −0.175963 0.984397i \(-0.556304\pi\)
−0.175963 + 0.984397i \(0.556304\pi\)
\(234\) 0 0
\(235\) 13.9597 0.910631
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.30632 0.885927i 0.213868 0.0573058i −0.150294 0.988641i \(-0.548022\pi\)
0.364162 + 0.931336i \(0.381355\pi\)
\(240\) 0 0
\(241\) −7.46235 + 27.8499i −0.480692 + 1.79397i 0.118030 + 0.993010i \(0.462342\pi\)
−0.598722 + 0.800957i \(0.704325\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.65220 2.31835i −0.552769 0.148114i
\(246\) 0 0
\(247\) −4.25723 + 10.9262i −0.270881 + 0.695217i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.889720 0.0561587 0.0280793 0.999606i \(-0.491061\pi\)
0.0280793 + 0.999606i \(0.491061\pi\)
\(252\) 0 0
\(253\) −0.397242 + 0.397242i −0.0249744 + 0.0249744i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 12.1369 21.0217i 0.757079 1.31130i −0.187256 0.982311i \(-0.559959\pi\)
0.944334 0.328987i \(-0.106707\pi\)
\(258\) 0 0
\(259\) 12.5980 7.27345i 0.782801 0.451950i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 16.3337 9.43028i 1.00718 0.581496i 0.0968159 0.995302i \(-0.469134\pi\)
0.910365 + 0.413806i \(0.135801\pi\)
\(264\) 0 0
\(265\) 7.56335 + 28.2268i 0.464613 + 1.73396i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 24.2986i 1.48151i −0.671774 0.740757i \(-0.734467\pi\)
0.671774 0.740757i \(-0.265533\pi\)
\(270\) 0 0
\(271\) −10.8607 10.8607i −0.659741 0.659741i 0.295578 0.955319i \(-0.404488\pi\)
−0.955319 + 0.295578i \(0.904488\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.80185 0.482804i 0.108656 0.0291142i
\(276\) 0 0
\(277\) −3.90814 + 2.25637i −0.234818 + 0.135572i −0.612793 0.790244i \(-0.709954\pi\)
0.377975 + 0.925816i \(0.376621\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.8164 4.77388i −1.06284 0.284786i −0.315289 0.948996i \(-0.602102\pi\)
−0.747546 + 0.664210i \(0.768768\pi\)
\(282\) 0 0
\(283\) −2.60463 1.50378i −0.154829 0.0893906i 0.420584 0.907254i \(-0.361825\pi\)
−0.575413 + 0.817863i \(0.695159\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 10.2850i 0.607104i
\(288\) 0 0
\(289\) −16.8916 −0.993626
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.64326 + 6.13275i 0.0960005 + 0.358279i 0.997169 0.0751896i \(-0.0239562\pi\)
−0.901169 + 0.433469i \(0.857290\pi\)
\(294\) 0 0
\(295\) 11.2831 + 19.5429i 0.656928 + 1.13783i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.362164 + 3.28694i −0.0209445 + 0.190089i
\(300\) 0 0
\(301\) −3.89760 14.5460i −0.224654 0.838420i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.0987 + 14.0987i 0.807292 + 0.807292i
\(306\) 0 0
\(307\) 1.50595 + 1.50595i 0.0859492 + 0.0859492i 0.748774 0.662825i \(-0.230643\pi\)
−0.662825 + 0.748774i \(0.730643\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.93805 + 12.0170i −0.393420 + 0.681424i −0.992898 0.118967i \(-0.962042\pi\)
0.599478 + 0.800391i \(0.295375\pi\)
\(312\) 0 0
\(313\) 3.70337 + 6.41442i 0.209327 + 0.362565i 0.951503 0.307641i \(-0.0995394\pi\)
−0.742176 + 0.670205i \(0.766206\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.34561 31.1462i 0.468736 1.74935i −0.175461 0.984486i \(-0.556141\pi\)
0.644197 0.764860i \(-0.277192\pi\)
\(318\) 0 0
\(319\) −2.41654 + 0.647510i −0.135300 + 0.0362536i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.757039 0.757039i 0.0421228 0.0421228i
\(324\) 0 0
\(325\) 6.49862 8.85080i 0.360478 0.490954i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 4.82339 8.35436i 0.265922 0.460591i
\(330\) 0 0
\(331\) −8.03717 2.15355i −0.441763 0.118370i 0.0310796 0.999517i \(-0.490105\pi\)
−0.472843 + 0.881147i \(0.656772\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 17.4987 + 30.3087i 0.956057 + 1.65594i
\(336\) 0 0
\(337\) 6.73189 + 3.88666i 0.366709 + 0.211720i 0.672020 0.740533i \(-0.265427\pi\)
−0.305310 + 0.952253i \(0.598760\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.29721i 0.124401i
\(342\) 0 0
\(343\) −14.0790 + 14.0790i −0.760195 + 0.760195i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 27.0008 + 15.5889i 1.44948 + 0.836856i 0.998450 0.0556541i \(-0.0177244\pi\)
0.451027 + 0.892510i \(0.351058\pi\)
\(348\) 0 0
\(349\) 1.29126 4.81905i 0.0691195 0.257958i −0.922716 0.385480i \(-0.874036\pi\)
0.991836 + 0.127522i \(0.0407025\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.749885 2.79861i 0.0399124 0.148955i −0.943094 0.332526i \(-0.892099\pi\)
0.983006 + 0.183571i \(0.0587657\pi\)
\(354\) 0 0
\(355\) 2.67278 + 1.54313i 0.141857 + 0.0819009i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.8996 + 20.8996i −1.10304 + 1.10304i −0.108997 + 0.994042i \(0.534764\pi\)
−0.994042 + 0.108997i \(0.965236\pi\)
\(360\) 0 0
\(361\) 8.42265i 0.443297i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 17.4510 + 10.0753i 0.913427 + 0.527368i
\(366\) 0 0
\(367\) 5.85980 + 10.1495i 0.305879 + 0.529798i 0.977457 0.211136i \(-0.0677163\pi\)
−0.671577 + 0.740934i \(0.734383\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 19.5060 + 5.22661i 1.01270 + 0.271352i
\(372\) 0 0
\(373\) 6.42101 11.1215i 0.332467 0.575850i −0.650528 0.759482i \(-0.725452\pi\)
0.982995 + 0.183632i \(0.0587856\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.71559 + 11.8702i −0.448876 + 0.611346i
\(378\) 0 0
\(379\) 9.13990 9.13990i 0.469485 0.469485i −0.432263 0.901748i \(-0.642285\pi\)
0.901748 + 0.432263i \(0.142285\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.8266 3.97277i 0.757603 0.202999i 0.140715 0.990050i \(-0.455060\pi\)
0.616888 + 0.787051i \(0.288393\pi\)
\(384\) 0 0
\(385\) 0.881413 3.28948i 0.0449210 0.167647i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.1965 33.2493i −0.973302 1.68581i −0.685428 0.728141i \(-0.740385\pi\)
−0.287875 0.957668i \(-0.592949\pi\)
\(390\) 0 0
\(391\) 0.150958 0.261466i 0.00763426 0.0132229i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 18.5927 + 18.5927i 0.935502 + 0.935502i
\(396\) 0 0
\(397\) 10.6225 + 10.6225i 0.533130 + 0.533130i 0.921503 0.388372i \(-0.126962\pi\)
−0.388372 + 0.921503i \(0.626962\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.33401 + 16.1747i 0.216430 + 0.807727i 0.985658 + 0.168753i \(0.0539742\pi\)
−0.769228 + 0.638974i \(0.779359\pi\)
\(402\) 0 0
\(403\) −8.45687 10.5512i −0.421267 0.525594i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.27295 3.93686i −0.112666 0.195143i
\(408\) 0 0
\(409\) 3.69860 + 13.8034i 0.182884 + 0.682532i 0.995074 + 0.0991389i \(0.0316088\pi\)
−0.812190 + 0.583394i \(0.801725\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 15.5943 0.767344
\(414\) 0 0
\(415\) 49.0969i 2.41007i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.26586 + 2.46289i 0.208401 + 0.120320i 0.600568 0.799574i \(-0.294941\pi\)
−0.392167 + 0.919894i \(0.628275\pi\)
\(420\) 0 0
\(421\) 9.31053 + 2.49475i 0.453768 + 0.121587i 0.478462 0.878108i \(-0.341195\pi\)
−0.0246942 + 0.999695i \(0.507861\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.868202 + 0.501257i −0.0421140 + 0.0243145i
\(426\) 0 0
\(427\) 13.3090 3.56614i 0.644068 0.172577i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.315102 + 0.315102i 0.0151779 + 0.0151779i 0.714655 0.699477i \(-0.246584\pi\)
−0.699477 + 0.714655i \(0.746584\pi\)
\(432\) 0 0
\(433\) 30.2736i 1.45485i 0.686185 + 0.727427i \(0.259284\pi\)
−0.686185 + 0.727427i \(0.740716\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.772015 2.88120i −0.0369305 0.137826i
\(438\) 0 0
\(439\) −31.2977 + 18.0697i −1.49376 + 0.862421i −0.999974 0.00716374i \(-0.997720\pi\)
−0.493783 + 0.869585i \(0.664386\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.98825 + 1.14792i −0.0944646 + 0.0545391i −0.546488 0.837467i \(-0.684036\pi\)
0.452024 + 0.892006i \(0.350702\pi\)
\(444\) 0 0
\(445\) 16.3235 28.2731i 0.773808 1.34027i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.47243 + 6.47243i −0.305453 + 0.305453i −0.843143 0.537690i \(-0.819297\pi\)
0.537690 + 0.843143i \(0.319297\pi\)
\(450\) 0 0
\(451\) −3.21405 −0.151344
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.06137 18.3535i −0.377923 0.860428i
\(456\) 0 0
\(457\) 23.4658 + 6.28764i 1.09768 + 0.294123i 0.761821 0.647788i \(-0.224306\pi\)
0.335862 + 0.941911i \(0.390972\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −4.36996 + 16.3089i −0.203530 + 0.759583i 0.786363 + 0.617764i \(0.211961\pi\)
−0.989893 + 0.141818i \(0.954705\pi\)
\(462\) 0 0
\(463\) 24.6867 6.61478i 1.14729 0.307415i 0.365410 0.930847i \(-0.380929\pi\)
0.781878 + 0.623432i \(0.214262\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.4460 −1.08495 −0.542477 0.840071i \(-0.682513\pi\)
−0.542477 + 0.840071i \(0.682513\pi\)
\(468\) 0 0
\(469\) 24.1848 1.11675
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −4.54563 + 1.21800i −0.209008 + 0.0560036i
\(474\) 0 0
\(475\) −2.56348 + 9.56704i −0.117621 + 0.438966i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 18.5359 + 4.96669i 0.846928 + 0.226934i 0.656085 0.754687i \(-0.272211\pi\)
0.190843 + 0.981621i \(0.438878\pi\)
\(480\) 0 0
\(481\) −24.9328 9.71469i −1.13684 0.442952i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 22.0494 1.00121
\(486\) 0 0
\(487\) −15.8625 + 15.8625i −0.718800 + 0.718800i −0.968359 0.249560i \(-0.919714\pi\)
0.249560 + 0.968359i \(0.419714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −3.74118 + 6.47991i −0.168837 + 0.292434i −0.938011 0.346605i \(-0.887334\pi\)
0.769174 + 0.639039i \(0.220668\pi\)
\(492\) 0 0
\(493\) 1.16438 0.672258i 0.0524412 0.0302770i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.84701 1.06637i 0.0828498 0.0478334i
\(498\) 0 0
\(499\) −3.00769 11.2248i −0.134643 0.502493i −0.999999 0.00133618i \(-0.999575\pi\)
0.865357 0.501157i \(-0.167092\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 9.78116i 0.436120i −0.975935 0.218060i \(-0.930027\pi\)
0.975935 0.218060i \(-0.0699729\pi\)
\(504\) 0 0
\(505\) −24.6021 24.6021i −1.09478 1.09478i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −16.6846 + 4.47063i −0.739533 + 0.198157i −0.608870 0.793270i \(-0.708377\pi\)
−0.130662 + 0.991427i \(0.541710\pi\)
\(510\) 0 0
\(511\) 12.0594 6.96251i 0.533477 0.308003i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −26.3459 7.05935i −1.16094 0.311072i
\(516\) 0 0
\(517\) −2.61073 1.50731i −0.114820 0.0662913i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 7.17847i 0.314495i 0.987559 + 0.157247i \(0.0502620\pi\)
−0.987559 + 0.157247i \(0.949738\pi\)
\(522\) 0 0
\(523\) 24.9245 1.08987 0.544936 0.838478i \(-0.316554\pi\)
0.544936 + 0.838478i \(0.316554\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.319531 + 1.19251i 0.0139190 + 0.0519464i
\(528\) 0 0
\(529\) 11.0794 + 19.1901i 0.481714 + 0.834353i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −14.7623 + 11.8321i −0.639427 + 0.512504i
\(534\) 0 0
\(535\) 1.35856 + 5.07020i 0.0587355 + 0.219204i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.36780 + 1.36780i 0.0589154 + 0.0589154i
\(540\) 0 0
\(541\) −27.7003 27.7003i −1.19093 1.19093i −0.976807 0.214120i \(-0.931312\pi\)
−0.214120 0.976807i \(-0.568688\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.05059 + 1.81967i −0.0450021 + 0.0779460i
\(546\) 0 0
\(547\) −15.7394 27.2614i −0.672966 1.16561i −0.977059 0.212969i \(-0.931687\pi\)
0.304093 0.952642i \(-0.401647\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.43800 12.8308i 0.146464 0.546610i
\(552\) 0 0
\(553\) 17.5513 4.70284i 0.746355 0.199985i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −0.834344 + 0.834344i −0.0353523 + 0.0353523i −0.724562 0.689210i \(-0.757958\pi\)
0.689210 + 0.724562i \(0.257958\pi\)
\(558\) 0 0
\(559\) −16.3944 + 22.3284i −0.693410 + 0.944391i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.64883 2.85585i 0.0694898 0.120360i −0.829187 0.558971i \(-0.811196\pi\)
0.898677 + 0.438611i \(0.144530\pi\)
\(564\) 0 0
\(565\) −49.3296 13.2178i −2.07531 0.556078i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.9777 + 19.0140i 0.460210 + 0.797107i 0.998971 0.0453513i \(-0.0144407\pi\)
−0.538761 + 0.842459i \(0.681107\pi\)
\(570\) 0 0
\(571\) −36.3726 20.9997i −1.52215 0.878811i −0.999658 0.0261646i \(-0.991671\pi\)
−0.522488 0.852647i \(-0.674996\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 2.79310i 0.116480i
\(576\) 0 0
\(577\) −8.86716 + 8.86716i −0.369145 + 0.369145i −0.867165 0.498021i \(-0.834060\pi\)
0.498021 + 0.867165i \(0.334060\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −29.3826 16.9641i −1.21900 0.703788i
\(582\) 0 0
\(583\) 1.63331 6.09560i 0.0676449 0.252454i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.536579 2.00254i 0.0221470 0.0826537i −0.953968 0.299909i \(-0.903044\pi\)
0.976115 + 0.217255i \(0.0697104\pi\)
\(588\) 0 0
\(589\) 10.5631 + 6.09861i 0.435245 + 0.251289i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.1296 17.1296i 0.703427 0.703427i −0.261717 0.965145i \(-0.584289\pi\)
0.965145 + 0.261717i \(0.0842888\pi\)
\(594\) 0 0
\(595\) 1.83020i 0.0750309i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.29688 + 0.748751i 0.0529889 + 0.0305931i 0.526260 0.850323i \(-0.323594\pi\)
−0.473272 + 0.880917i \(0.656927\pi\)
\(600\) 0 0
\(601\) −9.10896 15.7772i −0.371562 0.643565i 0.618244 0.785986i \(-0.287844\pi\)
−0.989806 + 0.142422i \(0.954511\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 29.1098 + 7.79994i 1.18348 + 0.317113i
\(606\) 0 0
\(607\) −0.761886 + 1.31963i −0.0309240 + 0.0535619i −0.881073 0.472980i \(-0.843178\pi\)
0.850149 + 0.526542i \(0.176512\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.5402 + 2.68790i −0.709599 + 0.108741i
\(612\) 0 0
\(613\) −25.9101 + 25.9101i −1.04650 + 1.04650i −0.0476336 + 0.998865i \(0.515168\pi\)
−0.998865 + 0.0476336i \(0.984832\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.2538 + 7.30263i −1.09720 + 0.293993i −0.761623 0.648021i \(-0.775597\pi\)
−0.335574 + 0.942014i \(0.608930\pi\)
\(618\) 0 0
\(619\) 2.02380 7.55294i 0.0813435 0.303578i −0.913253 0.407392i \(-0.866438\pi\)
0.994597 + 0.103814i \(0.0331048\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.2803 19.5380i −0.451934 0.782773i
\(624\) 0 0
\(625\) −15.4763 + 26.8057i −0.619051 + 1.07223i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.72751 + 1.72751i 0.0688803 + 0.0688803i
\(630\) 0 0
\(631\) −10.5595 10.5595i −0.420368 0.420368i 0.464963 0.885330i \(-0.346068\pi\)
−0.885330 + 0.464963i \(0.846068\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.2141 41.8515i −0.445017 1.66082i
\(636\) 0 0
\(637\) 11.3178 + 1.24702i 0.448426 + 0.0494087i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 3.66091 + 6.34089i 0.144597 + 0.250450i 0.929223 0.369520i \(-0.120478\pi\)
−0.784625 + 0.619970i \(0.787145\pi\)
\(642\) 0 0
\(643\) 9.98668 + 37.2708i 0.393836 + 1.46982i 0.823753 + 0.566949i \(0.191876\pi\)
−0.429917 + 0.902869i \(0.641457\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.7465 −0.658373 −0.329186 0.944265i \(-0.606774\pi\)
−0.329186 + 0.944265i \(0.606774\pi\)
\(648\) 0 0
\(649\) 4.87320i 0.191290i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −30.1333 17.3975i −1.17921 0.680816i −0.223376 0.974732i \(-0.571708\pi\)
−0.955831 + 0.293917i \(0.905041\pi\)
\(654\) 0 0
\(655\) −30.2507 8.10564i −1.18199 0.316713i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0.801546 0.462773i 0.0312238 0.0180271i −0.484307 0.874898i \(-0.660928\pi\)
0.515531 + 0.856871i \(0.327595\pi\)
\(660\) 0 0
\(661\) −11.7073 + 3.13696i −0.455361 + 0.122013i −0.479207 0.877702i \(-0.659076\pi\)
0.0238460 + 0.999716i \(0.492409\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 12.7858 + 12.7858i 0.495812 + 0.495812i
\(666\) 0 0
\(667\) 3.74595i 0.145044i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.11442 4.15905i −0.0430215 0.160558i
\(672\) 0 0
\(673\) 14.4389 8.33628i 0.556577 0.321340i −0.195193 0.980765i \(-0.562533\pi\)
0.751771 + 0.659425i \(0.229200\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −9.98589 + 5.76536i −0.383789 + 0.221581i −0.679466 0.733707i \(-0.737788\pi\)
0.295677 + 0.955288i \(0.404455\pi\)
\(678\) 0 0
\(679\) 7.61857 13.1957i 0.292374 0.506406i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 30.5505 30.5505i 1.16898 1.16898i 0.186534 0.982449i \(-0.440275\pi\)
0.982449 0.186534i \(-0.0597254\pi\)
\(684\) 0 0
\(685\) 41.9362 1.60230
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −14.9382 34.0103i −0.569100 1.29569i
\(690\) 0 0
\(691\) 14.2621 + 3.82152i 0.542556 + 0.145377i 0.519680 0.854361i \(-0.326051\pi\)
0.0228759 + 0.999738i \(0.492718\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.36868 + 34.9644i −0.355374 + 1.32627i
\(696\) 0 0
\(697\) 1.66845 0.447059i 0.0631969 0.0169336i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29.4233 −1.11130 −0.555652 0.831415i \(-0.687531\pi\)
−0.555652 + 0.831415i \(0.687531\pi\)
\(702\) 0 0
\(703\) 24.1368 0.910335
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −23.2240 + 6.22286i −0.873429 + 0.234035i
\(708\) 0 0
\(709\) 1.20861 4.51061i 0.0453904 0.169399i −0.939510 0.342522i \(-0.888719\pi\)
0.984900 + 0.173122i \(0.0553856\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.32244 + 0.890245i 0.124426 + 0.0333399i
\(714\) 0 0
\(715\) −5.73547 + 2.51917i −0.214495 + 0.0942117i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −19.8659 −0.740872 −0.370436 0.928858i \(-0.620792\pi\)
−0.370436 + 0.928858i \(0.620792\pi\)
\(720\) 0 0
\(721\) −13.3278 + 13.3278i −0.496354 + 0.496354i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −6.21923 + 10.7720i −0.230976 + 0.400063i
\(726\) 0 0
\(727\) −13.8730 + 8.00959i −0.514521 + 0.297059i −0.734690 0.678403i \(-0.762673\pi\)
0.220169 + 0.975462i \(0.429339\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 2.19026 1.26455i 0.0810098 0.0467710i
\(732\) 0 0
\(733\) −6.38561 23.8314i −0.235858 0.880234i −0.977760 0.209726i \(-0.932743\pi\)
0.741902 0.670508i \(-0.233924\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.55773i 0.278393i
\(738\) 0 0
\(739\) 8.61409 + 8.61409i 0.316874 + 0.316874i 0.847565 0.530691i \(-0.178068\pi\)
−0.530691 + 0.847565i \(0.678068\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −33.7923 + 9.05462i −1.23972 + 0.332182i −0.818357 0.574710i \(-0.805115\pi\)
−0.421363 + 0.906892i \(0.638448\pi\)
\(744\) 0 0
\(745\) 11.7979 6.81150i 0.432240 0.249554i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3.50374 + 0.938823i 0.128024 + 0.0343039i
\(750\) 0 0
\(751\) −38.9810 22.5057i −1.42244 0.821243i −0.425929 0.904757i \(-0.640053\pi\)
−0.996507 + 0.0835132i \(0.973386\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 30.6205i 1.11439i
\(756\) 0 0
\(757\) 29.8931 1.08648 0.543241 0.839577i \(-0.317197\pi\)
0.543241 + 0.839577i \(0.317197\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.44060 + 27.7687i 0.269721 + 1.00661i 0.959297 + 0.282400i \(0.0911306\pi\)
−0.689575 + 0.724214i \(0.742203\pi\)
\(762\) 0 0
\(763\) 0.726001 + 1.25747i 0.0262830 + 0.0455235i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −17.9400 22.3829i −0.647775 0.808198i
\(768\) 0 0
\(769\) −3.14317 11.7305i −0.113346 0.423011i 0.885812 0.464044i \(-0.153602\pi\)
−0.999158 + 0.0410325i \(0.986935\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 20.2102 + 20.2102i 0.726909 + 0.726909i 0.970003 0.243093i \(-0.0781622\pi\)
−0.243093 + 0.970003i \(0.578162\pi\)
\(774\) 0 0
\(775\) −8.07612 8.07612i −0.290103 0.290103i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 8.53262 14.7789i 0.305713 0.529510i
\(780\) 0 0
\(781\) −0.333241 0.577190i −0.0119243 0.0206535i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 5.71135 21.3150i 0.203847 0.760767i
\(786\) 0 0
\(787\) 37.3018 9.99498i 1.32967 0.356283i 0.477075 0.878863i \(-0.341697\pi\)
0.852590 + 0.522580i \(0.175030\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −24.9548 + 24.9548i −0.887292 + 0.887292i
\(792\) 0 0
\(793\) −20.4295 15.0002i −0.725474 0.532673i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.6753 + 46.2030i −0.944887 + 1.63659i −0.188911 + 0.981994i \(0.560496\pi\)
−0.755976 + 0.654599i \(0.772838\pi\)
\(798\) 0 0
\(799\) 1.56492 + 0.419318i 0.0553627 + 0.0148344i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −2.17578 3.76856i −0.0767816 0.132990i
\(804\) 0 0
\(805\) 4.41596 + 2.54956i 0.155642 + 0.0898601i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 11.7326i 0.412496i −0.978500 0.206248i \(-0.933875\pi\)
0.978500 0.206248i \(-0.0661253\pi\)
\(810\) 0 0
\(811\) 22.6077 22.6077i 0.793864 0.793864i −0.188256 0.982120i \(-0.560283\pi\)
0.982120 + 0.188256i \(0.0602834\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −40.4499 23.3538i −1.41690 0.818048i
\(816\) 0 0
\(817\) 6.46704 24.1353i 0.226253 0.844388i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.37398 8.85980i 0.0828524 0.309209i −0.912046 0.410087i \(-0.865498\pi\)
0.994899 + 0.100878i \(0.0321651\pi\)
\(822\) 0 0
\(823\) 15.7820 + 9.11177i 0.550128 + 0.317616i 0.749173 0.662374i \(-0.230451\pi\)
−0.199046 + 0.979990i \(0.563784\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −15.8768 + 15.8768i −0.552091 + 0.552091i −0.927044 0.374953i \(-0.877659\pi\)
0.374953 + 0.927044i \(0.377659\pi\)
\(828\) 0 0
\(829\) 38.3708i 1.33267i 0.745652 + 0.666336i \(0.232138\pi\)
−0.745652 + 0.666336i \(0.767862\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −0.900293 0.519785i −0.0311933 0.0180095i
\(834\) 0 0
\(835\) −6.79096 11.7623i −0.235011 0.407051i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 48.0316 + 12.8700i 1.65823 + 0.444323i 0.961901 0.273397i \(-0.0881471\pi\)
0.696333 + 0.717719i \(0.254814\pi\)
\(840\) 0 0
\(841\) −6.15911 + 10.6679i −0.212383 + 0.367858i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −17.0694 + 32.6850i −0.587204 + 1.12440i
\(846\) 0 0
\(847\) 14.7260 14.7260i 0.505993 0.505993i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.57469 1.76168i 0.225377 0.0603897i
\(852\) 0 0
\(853\) −0.0169231 + 0.0631577i −0.000579435 + 0.00216248i −0.966215 0.257738i \(-0.917023\pi\)
0.965636 + 0.259900i \(0.0836896\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −25.2762 43.7796i −0.863418 1.49548i −0.868609 0.495498i \(-0.834986\pi\)
0.00519107 0.999987i \(-0.498348\pi\)
\(858\) 0 0
\(859\) −10.9462 + 18.9593i −0.373478 + 0.646883i −0.990098 0.140378i \(-0.955168\pi\)
0.616620 + 0.787261i \(0.288502\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 35.0101 + 35.0101i 1.19176 + 1.19176i 0.976574 + 0.215183i \(0.0690348\pi\)
0.215183 + 0.976574i \(0.430965\pi\)
\(864\) 0 0
\(865\) 38.7686 + 38.7686i 1.31817 + 1.31817i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.46964 5.48476i −0.0498540 0.186058i
\(870\) 0 0
\(871\) −27.8227 34.7131i −0.942736 1.17621i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.43351 + 9.41111i 0.183686 + 0.318154i
\(876\) 0 0
\(877\) −9.45057 35.2700i −0.319123 1.19098i −0.920089 0.391709i \(-0.871884\pi\)
0.600966 0.799275i \(-0.294783\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 39.1376 1.31858 0.659289 0.751889i \(-0.270857\pi\)
0.659289 + 0.751889i \(0.270857\pi\)
\(882\) 0 0
\(883\) 26.4173i 0.889013i −0.895776 0.444506i \(-0.853379\pi\)
0.895776 0.444506i \(-0.146621\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.90171 4.56206i −0.265314 0.153179i 0.361442 0.932394i \(-0.382284\pi\)
−0.626756 + 0.779216i \(0.715618\pi\)
\(888\) 0 0
\(889\) −28.9212 7.74942i −0.969987 0.259907i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 13.8619 8.00315i 0.463869 0.267815i
\(894\) 0 0
\(895\) 34.4083 9.21968i 1.15014 0.308180i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.8313 + 10.8313i 0.361242 + 0.361242i
\(900\) 0 0
\(901\) 3.39147i 0.112986i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 15.5325 + 57.9683i 0.516319 + 1.92693i
\(906\) 0 0
\(907\) −6.32175 + 3.64986i −0.209910 + 0.121192i −0.601270 0.799046i \(-0.705338\pi\)
0.391359 + 0.920238i \(0.372005\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.74335 + 1.00652i −0.0577596 + 0.0333475i −0.528602 0.848870i \(-0.677283\pi\)
0.470842 + 0.882218i \(0.343950\pi\)
\(912\) 0 0
\(913\) −5.30126 + 9.18206i −0.175446 + 0.303882i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.3032 + 15.3032i −0.505356 + 0.505356i
\(918\) 0 0
\(919\) 11.0173 0.363427 0.181713 0.983352i \(-0.441836\pi\)
0.181713 + 0.983352i \(0.441836\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −3.65544 1.42429i −0.120320 0.0468810i
\(924\) 0 0
\(925\) −21.8313 5.84968i −0.717809 0.192336i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −4.98816 + 18.6161i −0.163656 + 0.610773i 0.834552 + 0.550930i \(0.185727\pi\)
−0.998208 + 0.0598435i \(0.980940\pi\)
\(930\) 0 0
\(931\) −9.92067 + 2.65824i −0.325137 + 0.0871202i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.571937 0.0187043
\(936\) 0 0
\(937\) −34.3465 −1.12205 −0.561026 0.827798i \(-0.689593\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −37.6670 + 10.0928i −1.22791 + 0.329017i −0.813765 0.581195i \(-0.802585\pi\)
−0.414143 + 0.910212i \(0.635919\pi\)
\(942\) 0 0
\(943\) 1.24555 4.64845i 0.0405607 0.151374i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −12.3309 3.30407i −0.400702 0.107368i 0.0528395 0.998603i \(-0.483173\pi\)
−0.453541 + 0.891235i \(0.649840\pi\)
\(948\) 0 0
\(949\) −23.8669 9.29938i −0.774752 0.301871i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 50.6036 1.63921 0.819605 0.572929i \(-0.194193\pi\)
0.819605 + 0.572929i \(0.194193\pi\)
\(954\) 0 0
\(955\) −42.0891 + 42.0891i −1.36197 + 1.36197i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 14.4899 25.0972i 0.467902 0.810431i
\(960\) 0 0
\(961\) 14.6660 8.46742i 0.473097 0.273143i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 22.2821 12.8646i 0.717285 0.414125i
\(966\) 0 0
\(967\) −2.22003 8.28527i −0.0713914 0.266436i 0.920999 0.389564i \(-0.127374\pi\)
−0.992391 + 0.123128i \(0.960708\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 30.6193i 0.982619i 0.870985 + 0.491309i \(0.163482\pi\)
−0.870985 + 0.491309i \(0.836518\pi\)
\(972\) 0 0
\(973\) 17.6878 + 17.6878i 0.567044 + 0.567044i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.0021 5.62750i 0.671917 0.180040i 0.0932987 0.995638i \(-0.470259\pi\)
0.578618 + 0.815599i \(0.303592\pi\)
\(978\) 0 0
\(979\) −6.10561 + 3.52508i −0.195136 + 0.112662i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −21.1423 5.66506i −0.674335 0.180687i −0.0946281 0.995513i \(-0.530166\pi\)
−0.579707 + 0.814825i \(0.696833\pi\)
\(984\) 0 0
\(985\) 38.2246 + 22.0690i 1.21794 + 0.703176i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.04631i 0.224060i
\(990\) 0 0
\(991\) −8.94034 −0.283999 −0.142000 0.989867i \(-0.545353\pi\)
−0.142000 + 0.989867i \(0.545353\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −6.90586 25.7730i −0.218931 0.817060i
\(996\) 0 0
\(997\) 16.9719 + 29.3961i 0.537504 + 0.930985i 0.999038 + 0.0438619i \(0.0139662\pi\)
−0.461533 + 0.887123i \(0.652701\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1404.2.cj.a.1097.3 56
3.2 odd 2 468.2.cg.a.5.10 56
9.2 odd 6 inner 1404.2.cj.a.629.3 56
9.7 even 3 468.2.cg.a.317.10 yes 56
13.8 odd 4 inner 1404.2.cj.a.125.3 56
39.8 even 4 468.2.cg.a.437.10 yes 56
117.34 odd 12 468.2.cg.a.281.10 yes 56
117.47 even 12 inner 1404.2.cj.a.1061.3 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
468.2.cg.a.5.10 56 3.2 odd 2
468.2.cg.a.281.10 yes 56 117.34 odd 12
468.2.cg.a.317.10 yes 56 9.7 even 3
468.2.cg.a.437.10 yes 56 39.8 even 4
1404.2.cj.a.125.3 56 13.8 odd 4 inner
1404.2.cj.a.629.3 56 9.2 odd 6 inner
1404.2.cj.a.1061.3 56 117.47 even 12 inner
1404.2.cj.a.1097.3 56 1.1 even 1 trivial