Properties

Label 4563.2.a.ba.1.4
Level $4563$
Weight $2$
Character 4563.1
Self dual yes
Analytic conductor $36.436$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4563,2,Mod(1,4563)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4563.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4563 = 3^{3} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4563.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,10,0,0,0,0,0,14,0,0,0,0,0,-6,0,0,-12,0,0,8,0,0,12,0,0, 20,0,0,-20,0,0,36,0,0,-4,0,0,32,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(43)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.4357384423\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.7600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 9x^{2} + 19 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.37024\) of defining polynomial
Character \(\chi\) \(=\) 4563.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.37024 q^{2} +3.61803 q^{4} +3.83513 q^{5} +4.47214 q^{7} +3.83513 q^{8} +9.09017 q^{10} -2.92978 q^{11} +10.6000 q^{14} +1.85410 q^{16} +4.74048 q^{17} -0.763932 q^{19} +13.8756 q^{20} -6.94427 q^{22} -2.92978 q^{23} +9.70820 q^{25} +16.1803 q^{28} -2.92978 q^{29} -7.23607 q^{31} -3.27559 q^{32} +11.2361 q^{34} +17.1512 q^{35} -3.23607 q^{37} -1.81070 q^{38} +14.7082 q^{40} -4.74048 q^{41} +0.236068 q^{43} -10.6000 q^{44} -6.94427 q^{46} -3.83513 q^{47} +13.0000 q^{49} +23.0108 q^{50} -5.85955 q^{53} -11.2361 q^{55} +17.1512 q^{56} -6.94427 q^{58} -2.02443 q^{59} +10.2361 q^{61} -17.1512 q^{62} -11.4721 q^{64} +2.76393 q^{67} +17.1512 q^{68} +40.6525 q^{70} -8.57561 q^{71} +10.4721 q^{73} -7.67026 q^{74} -2.76393 q^{76} -13.1024 q^{77} -8.94427 q^{79} +7.11072 q^{80} -11.2361 q^{82} +0.905351 q^{83} +18.1803 q^{85} +0.559538 q^{86} -11.2361 q^{88} +10.3863 q^{89} -10.6000 q^{92} -9.09017 q^{94} -2.92978 q^{95} -18.1803 q^{97} +30.8131 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{4} + 14 q^{10} - 6 q^{16} - 12 q^{19} + 8 q^{22} + 12 q^{25} + 20 q^{28} - 20 q^{31} + 36 q^{34} - 4 q^{37} + 32 q^{40} - 8 q^{43} + 8 q^{46} + 52 q^{49} - 36 q^{55} + 8 q^{58} + 32 q^{61} - 28 q^{64}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.37024 1.67601 0.838006 0.545661i \(-0.183721\pi\)
0.838006 + 0.545661i \(0.183721\pi\)
\(3\) 0 0
\(4\) 3.61803 1.80902
\(5\) 3.83513 1.71512 0.857561 0.514383i \(-0.171979\pi\)
0.857561 + 0.514383i \(0.171979\pi\)
\(6\) 0 0
\(7\) 4.47214 1.69031 0.845154 0.534522i \(-0.179509\pi\)
0.845154 + 0.534522i \(0.179509\pi\)
\(8\) 3.83513 1.35592
\(9\) 0 0
\(10\) 9.09017 2.87456
\(11\) −2.92978 −0.883361 −0.441680 0.897172i \(-0.645618\pi\)
−0.441680 + 0.897172i \(0.645618\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 10.6000 2.83298
\(15\) 0 0
\(16\) 1.85410 0.463525
\(17\) 4.74048 1.14973 0.574867 0.818247i \(-0.305054\pi\)
0.574867 + 0.818247i \(0.305054\pi\)
\(18\) 0 0
\(19\) −0.763932 −0.175258 −0.0876290 0.996153i \(-0.527929\pi\)
−0.0876290 + 0.996153i \(0.527929\pi\)
\(20\) 13.8756 3.10268
\(21\) 0 0
\(22\) −6.94427 −1.48052
\(23\) −2.92978 −0.610901 −0.305450 0.952208i \(-0.598807\pi\)
−0.305450 + 0.952208i \(0.598807\pi\)
\(24\) 0 0
\(25\) 9.70820 1.94164
\(26\) 0 0
\(27\) 0 0
\(28\) 16.1803 3.05780
\(29\) −2.92978 −0.544046 −0.272023 0.962291i \(-0.587693\pi\)
−0.272023 + 0.962291i \(0.587693\pi\)
\(30\) 0 0
\(31\) −7.23607 −1.29964 −0.649818 0.760090i \(-0.725155\pi\)
−0.649818 + 0.760090i \(0.725155\pi\)
\(32\) −3.27559 −0.579048
\(33\) 0 0
\(34\) 11.2361 1.92697
\(35\) 17.1512 2.89908
\(36\) 0 0
\(37\) −3.23607 −0.532006 −0.266003 0.963972i \(-0.585703\pi\)
−0.266003 + 0.963972i \(0.585703\pi\)
\(38\) −1.81070 −0.293735
\(39\) 0 0
\(40\) 14.7082 2.32557
\(41\) −4.74048 −0.740338 −0.370169 0.928964i \(-0.620700\pi\)
−0.370169 + 0.928964i \(0.620700\pi\)
\(42\) 0 0
\(43\) 0.236068 0.0360000 0.0180000 0.999838i \(-0.494270\pi\)
0.0180000 + 0.999838i \(0.494270\pi\)
\(44\) −10.6000 −1.59801
\(45\) 0 0
\(46\) −6.94427 −1.02388
\(47\) −3.83513 −0.559411 −0.279705 0.960086i \(-0.590237\pi\)
−0.279705 + 0.960086i \(0.590237\pi\)
\(48\) 0 0
\(49\) 13.0000 1.85714
\(50\) 23.0108 3.25421
\(51\) 0 0
\(52\) 0 0
\(53\) −5.85955 −0.804872 −0.402436 0.915448i \(-0.631836\pi\)
−0.402436 + 0.915448i \(0.631836\pi\)
\(54\) 0 0
\(55\) −11.2361 −1.51507
\(56\) 17.1512 2.29193
\(57\) 0 0
\(58\) −6.94427 −0.911828
\(59\) −2.02443 −0.263558 −0.131779 0.991279i \(-0.542069\pi\)
−0.131779 + 0.991279i \(0.542069\pi\)
\(60\) 0 0
\(61\) 10.2361 1.31059 0.655297 0.755371i \(-0.272543\pi\)
0.655297 + 0.755371i \(0.272543\pi\)
\(62\) −17.1512 −2.17821
\(63\) 0 0
\(64\) −11.4721 −1.43402
\(65\) 0 0
\(66\) 0 0
\(67\) 2.76393 0.337668 0.168834 0.985644i \(-0.446000\pi\)
0.168834 + 0.985644i \(0.446000\pi\)
\(68\) 17.1512 2.07989
\(69\) 0 0
\(70\) 40.6525 4.85890
\(71\) −8.57561 −1.01774 −0.508869 0.860844i \(-0.669936\pi\)
−0.508869 + 0.860844i \(0.669936\pi\)
\(72\) 0 0
\(73\) 10.4721 1.22567 0.612835 0.790211i \(-0.290029\pi\)
0.612835 + 0.790211i \(0.290029\pi\)
\(74\) −7.67026 −0.891649
\(75\) 0 0
\(76\) −2.76393 −0.317045
\(77\) −13.1024 −1.49315
\(78\) 0 0
\(79\) −8.94427 −1.00631 −0.503155 0.864196i \(-0.667827\pi\)
−0.503155 + 0.864196i \(0.667827\pi\)
\(80\) 7.11072 0.795002
\(81\) 0 0
\(82\) −11.2361 −1.24082
\(83\) 0.905351 0.0993752 0.0496876 0.998765i \(-0.484177\pi\)
0.0496876 + 0.998765i \(0.484177\pi\)
\(84\) 0 0
\(85\) 18.1803 1.97193
\(86\) 0.559538 0.0603365
\(87\) 0 0
\(88\) −11.2361 −1.19777
\(89\) 10.3863 1.10095 0.550473 0.834853i \(-0.314447\pi\)
0.550473 + 0.834853i \(0.314447\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −10.6000 −1.10513
\(93\) 0 0
\(94\) −9.09017 −0.937579
\(95\) −2.92978 −0.300589
\(96\) 0 0
\(97\) −18.1803 −1.84593 −0.922967 0.384879i \(-0.874243\pi\)
−0.922967 + 0.384879i \(0.874243\pi\)
\(98\) 30.8131 3.11259
\(99\) 0 0
\(100\) 35.1246 3.51246
\(101\) 4.74048 0.471695 0.235848 0.971790i \(-0.424213\pi\)
0.235848 + 0.971790i \(0.424213\pi\)
\(102\) 0 0
\(103\) −1.76393 −0.173805 −0.0869027 0.996217i \(-0.527697\pi\)
−0.0869027 + 0.996217i \(0.527697\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −13.8885 −1.34897
\(107\) 7.67026 0.741512 0.370756 0.928730i \(-0.379099\pi\)
0.370756 + 0.928730i \(0.379099\pi\)
\(108\) 0 0
\(109\) −8.94427 −0.856706 −0.428353 0.903612i \(-0.640906\pi\)
−0.428353 + 0.903612i \(0.640906\pi\)
\(110\) −26.6322 −2.53928
\(111\) 0 0
\(112\) 8.29180 0.783501
\(113\) 7.67026 0.721557 0.360778 0.932652i \(-0.382511\pi\)
0.360778 + 0.932652i \(0.382511\pi\)
\(114\) 0 0
\(115\) −11.2361 −1.04777
\(116\) −10.6000 −0.984188
\(117\) 0 0
\(118\) −4.79837 −0.441726
\(119\) 21.2001 1.94341
\(120\) 0 0
\(121\) −2.41641 −0.219673
\(122\) 24.2619 2.19657
\(123\) 0 0
\(124\) −26.1803 −2.35106
\(125\) 18.0566 1.61503
\(126\) 0 0
\(127\) −5.94427 −0.527469 −0.263734 0.964595i \(-0.584954\pi\)
−0.263734 + 0.964595i \(0.584954\pi\)
\(128\) −20.6405 −1.82438
\(129\) 0 0
\(130\) 0 0
\(131\) −20.0810 −1.75448 −0.877242 0.480048i \(-0.840619\pi\)
−0.877242 + 0.480048i \(0.840619\pi\)
\(132\) 0 0
\(133\) −3.41641 −0.296240
\(134\) 6.55118 0.565936
\(135\) 0 0
\(136\) 18.1803 1.55895
\(137\) −10.6000 −0.905622 −0.452811 0.891607i \(-0.649579\pi\)
−0.452811 + 0.891607i \(0.649579\pi\)
\(138\) 0 0
\(139\) 3.18034 0.269753 0.134876 0.990862i \(-0.456936\pi\)
0.134876 + 0.990862i \(0.456936\pi\)
\(140\) 62.0537 5.24449
\(141\) 0 0
\(142\) −20.3262 −1.70574
\(143\) 0 0
\(144\) 0 0
\(145\) −11.2361 −0.933105
\(146\) 24.8215 2.05424
\(147\) 0 0
\(148\) −11.7082 −0.962408
\(149\) 4.95420 0.405864 0.202932 0.979193i \(-0.434953\pi\)
0.202932 + 0.979193i \(0.434953\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) −2.92978 −0.237636
\(153\) 0 0
\(154\) −31.0557 −2.50254
\(155\) −27.7512 −2.22903
\(156\) 0 0
\(157\) 24.4164 1.94864 0.974321 0.225165i \(-0.0722920\pi\)
0.974321 + 0.225165i \(0.0722920\pi\)
\(158\) −21.2001 −1.68659
\(159\) 0 0
\(160\) −12.5623 −0.993137
\(161\) −13.1024 −1.03261
\(162\) 0 0
\(163\) −0.944272 −0.0739611 −0.0369805 0.999316i \(-0.511774\pi\)
−0.0369805 + 0.999316i \(0.511774\pi\)
\(164\) −17.1512 −1.33928
\(165\) 0 0
\(166\) 2.14590 0.166554
\(167\) 4.52675 0.350291 0.175145 0.984543i \(-0.443960\pi\)
0.175145 + 0.984543i \(0.443960\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 43.0918 3.30499
\(171\) 0 0
\(172\) 0.854102 0.0651247
\(173\) 15.3405 1.16632 0.583159 0.812358i \(-0.301817\pi\)
0.583159 + 0.812358i \(0.301817\pi\)
\(174\) 0 0
\(175\) 43.4164 3.28197
\(176\) −5.43210 −0.409460
\(177\) 0 0
\(178\) 24.6180 1.84520
\(179\) −20.7726 −1.55262 −0.776309 0.630352i \(-0.782910\pi\)
−0.776309 + 0.630352i \(0.782910\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.2361 −0.828334
\(185\) −12.4107 −0.912455
\(186\) 0 0
\(187\) −13.8885 −1.01563
\(188\) −13.8756 −1.01198
\(189\) 0 0
\(190\) −6.94427 −0.503790
\(191\) 23.7024 1.71504 0.857522 0.514447i \(-0.172003\pi\)
0.857522 + 0.514447i \(0.172003\pi\)
\(192\) 0 0
\(193\) 14.1803 1.02072 0.510362 0.859960i \(-0.329512\pi\)
0.510362 + 0.859960i \(0.329512\pi\)
\(194\) −43.0918 −3.09381
\(195\) 0 0
\(196\) 47.0344 3.35960
\(197\) −14.4352 −1.02846 −0.514231 0.857652i \(-0.671923\pi\)
−0.514231 + 0.857652i \(0.671923\pi\)
\(198\) 0 0
\(199\) 24.8885 1.76430 0.882151 0.470967i \(-0.156095\pi\)
0.882151 + 0.470967i \(0.156095\pi\)
\(200\) 37.2322 2.63271
\(201\) 0 0
\(202\) 11.2361 0.790567
\(203\) −13.1024 −0.919605
\(204\) 0 0
\(205\) −18.1803 −1.26977
\(206\) −4.18094 −0.291300
\(207\) 0 0
\(208\) 0 0
\(209\) 2.23815 0.154816
\(210\) 0 0
\(211\) 16.4164 1.13015 0.565076 0.825039i \(-0.308847\pi\)
0.565076 + 0.825039i \(0.308847\pi\)
\(212\) −21.2001 −1.45603
\(213\) 0 0
\(214\) 18.1803 1.24278
\(215\) 0.905351 0.0617444
\(216\) 0 0
\(217\) −32.3607 −2.19679
\(218\) −21.2001 −1.43585
\(219\) 0 0
\(220\) −40.6525 −2.74079
\(221\) 0 0
\(222\) 0 0
\(223\) 15.1246 1.01282 0.506409 0.862293i \(-0.330972\pi\)
0.506409 + 0.862293i \(0.330972\pi\)
\(224\) −14.6489 −0.978770
\(225\) 0 0
\(226\) 18.1803 1.20934
\(227\) 18.0566 1.19846 0.599228 0.800578i \(-0.295474\pi\)
0.599228 + 0.800578i \(0.295474\pi\)
\(228\) 0 0
\(229\) −4.76393 −0.314809 −0.157405 0.987534i \(-0.550313\pi\)
−0.157405 + 0.987534i \(0.550313\pi\)
\(230\) −26.6322 −1.75607
\(231\) 0 0
\(232\) −11.2361 −0.737684
\(233\) 20.0810 1.31555 0.657775 0.753215i \(-0.271498\pi\)
0.657775 + 0.753215i \(0.271498\pi\)
\(234\) 0 0
\(235\) −14.7082 −0.959457
\(236\) −7.32444 −0.476781
\(237\) 0 0
\(238\) 50.2492 3.25717
\(239\) −14.6489 −0.947558 −0.473779 0.880644i \(-0.657110\pi\)
−0.473779 + 0.880644i \(0.657110\pi\)
\(240\) 0 0
\(241\) −13.5279 −0.871406 −0.435703 0.900090i \(-0.643500\pi\)
−0.435703 + 0.900090i \(0.643500\pi\)
\(242\) −5.72746 −0.368175
\(243\) 0 0
\(244\) 37.0344 2.37089
\(245\) 49.8567 3.18523
\(246\) 0 0
\(247\) 0 0
\(248\) −27.7512 −1.76221
\(249\) 0 0
\(250\) 42.7984 2.70681
\(251\) 23.0108 1.45243 0.726213 0.687469i \(-0.241278\pi\)
0.726213 + 0.687469i \(0.241278\pi\)
\(252\) 0 0
\(253\) 8.58359 0.539646
\(254\) −14.0893 −0.884044
\(255\) 0 0
\(256\) −25.9787 −1.62367
\(257\) 27.7512 1.73108 0.865538 0.500844i \(-0.166977\pi\)
0.865538 + 0.500844i \(0.166977\pi\)
\(258\) 0 0
\(259\) −14.4721 −0.899255
\(260\) 0 0
\(261\) 0 0
\(262\) −47.5967 −2.94054
\(263\) −28.4429 −1.75386 −0.876931 0.480616i \(-0.840413\pi\)
−0.876931 + 0.480616i \(0.840413\pi\)
\(264\) 0 0
\(265\) −22.4721 −1.38045
\(266\) −8.09770 −0.496502
\(267\) 0 0
\(268\) 10.0000 0.610847
\(269\) 5.43210 0.331201 0.165601 0.986193i \(-0.447044\pi\)
0.165601 + 0.986193i \(0.447044\pi\)
\(270\) 0 0
\(271\) 1.23607 0.0750858 0.0375429 0.999295i \(-0.488047\pi\)
0.0375429 + 0.999295i \(0.488047\pi\)
\(272\) 8.78933 0.532931
\(273\) 0 0
\(274\) −25.1246 −1.51783
\(275\) −28.4429 −1.71517
\(276\) 0 0
\(277\) 7.00000 0.420589 0.210295 0.977638i \(-0.432558\pi\)
0.210295 + 0.977638i \(0.432558\pi\)
\(278\) 7.53817 0.452109
\(279\) 0 0
\(280\) 65.7771 3.93093
\(281\) −19.1756 −1.14392 −0.571961 0.820281i \(-0.693817\pi\)
−0.571961 + 0.820281i \(0.693817\pi\)
\(282\) 0 0
\(283\) 4.41641 0.262528 0.131264 0.991347i \(-0.458096\pi\)
0.131264 + 0.991347i \(0.458096\pi\)
\(284\) −31.0268 −1.84110
\(285\) 0 0
\(286\) 0 0
\(287\) −21.2001 −1.25140
\(288\) 0 0
\(289\) 5.47214 0.321890
\(290\) −26.6322 −1.56389
\(291\) 0 0
\(292\) 37.8885 2.21726
\(293\) 1.11908 0.0653771 0.0326885 0.999466i \(-0.489593\pi\)
0.0326885 + 0.999466i \(0.489593\pi\)
\(294\) 0 0
\(295\) −7.76393 −0.452034
\(296\) −12.4107 −0.721359
\(297\) 0 0
\(298\) 11.7426 0.680233
\(299\) 0 0
\(300\) 0 0
\(301\) 1.05573 0.0608512
\(302\) 0 0
\(303\) 0 0
\(304\) −1.41641 −0.0812366
\(305\) 39.2566 2.24783
\(306\) 0 0
\(307\) 22.9443 1.30950 0.654749 0.755846i \(-0.272774\pi\)
0.654749 + 0.755846i \(0.272774\pi\)
\(308\) −47.4048 −2.70114
\(309\) 0 0
\(310\) −65.7771 −3.73589
\(311\) 15.3405 0.869881 0.434940 0.900459i \(-0.356769\pi\)
0.434940 + 0.900459i \(0.356769\pi\)
\(312\) 0 0
\(313\) 30.7082 1.73573 0.867865 0.496800i \(-0.165492\pi\)
0.867865 + 0.496800i \(0.165492\pi\)
\(314\) 57.8727 3.26595
\(315\) 0 0
\(316\) −32.3607 −1.82043
\(317\) −14.2214 −0.798755 −0.399378 0.916786i \(-0.630774\pi\)
−0.399378 + 0.916786i \(0.630774\pi\)
\(318\) 0 0
\(319\) 8.58359 0.480589
\(320\) −43.9971 −2.45951
\(321\) 0 0
\(322\) −31.0557 −1.73067
\(323\) −3.62140 −0.201500
\(324\) 0 0
\(325\) 0 0
\(326\) −2.23815 −0.123960
\(327\) 0 0
\(328\) −18.1803 −1.00384
\(329\) −17.1512 −0.945577
\(330\) 0 0
\(331\) 26.9443 1.48099 0.740496 0.672061i \(-0.234591\pi\)
0.740496 + 0.672061i \(0.234591\pi\)
\(332\) 3.27559 0.179771
\(333\) 0 0
\(334\) 10.7295 0.587092
\(335\) 10.6000 0.579142
\(336\) 0 0
\(337\) 7.65248 0.416857 0.208428 0.978038i \(-0.433165\pi\)
0.208428 + 0.978038i \(0.433165\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 65.7771 3.56726
\(341\) 21.2001 1.14805
\(342\) 0 0
\(343\) 26.8328 1.44884
\(344\) 0.905351 0.0488132
\(345\) 0 0
\(346\) 36.3607 1.95476
\(347\) −27.7512 −1.48976 −0.744882 0.667196i \(-0.767494\pi\)
−0.744882 + 0.667196i \(0.767494\pi\)
\(348\) 0 0
\(349\) −0.180340 −0.00965337 −0.00482669 0.999988i \(-0.501536\pi\)
−0.00482669 + 0.999988i \(0.501536\pi\)
\(350\) 102.907 5.50063
\(351\) 0 0
\(352\) 9.59675 0.511508
\(353\) −28.6566 −1.52524 −0.762618 0.646849i \(-0.776087\pi\)
−0.762618 + 0.646849i \(0.776087\pi\)
\(354\) 0 0
\(355\) −32.8885 −1.74554
\(356\) 37.5780 1.99163
\(357\) 0 0
\(358\) −49.2361 −2.60221
\(359\) 25.7268 1.35781 0.678905 0.734226i \(-0.262455\pi\)
0.678905 + 0.734226i \(0.262455\pi\)
\(360\) 0 0
\(361\) −18.4164 −0.969285
\(362\) −16.5917 −0.872039
\(363\) 0 0
\(364\) 0 0
\(365\) 40.1620 2.10217
\(366\) 0 0
\(367\) 7.41641 0.387133 0.193567 0.981087i \(-0.437994\pi\)
0.193567 + 0.981087i \(0.437994\pi\)
\(368\) −5.43210 −0.283168
\(369\) 0 0
\(370\) −29.4164 −1.52929
\(371\) −26.2047 −1.36048
\(372\) 0 0
\(373\) −8.70820 −0.450894 −0.225447 0.974255i \(-0.572384\pi\)
−0.225447 + 0.974255i \(0.572384\pi\)
\(374\) −32.9192 −1.70221
\(375\) 0 0
\(376\) −14.7082 −0.758518
\(377\) 0 0
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) −10.6000 −0.543770
\(381\) 0 0
\(382\) 56.1803 2.87444
\(383\) −25.5131 −1.30366 −0.651829 0.758366i \(-0.725998\pi\)
−0.651829 + 0.758366i \(0.725998\pi\)
\(384\) 0 0
\(385\) −50.2492 −2.56094
\(386\) 33.6108 1.71074
\(387\) 0 0
\(388\) −65.7771 −3.33933
\(389\) 11.2917 0.572510 0.286255 0.958153i \(-0.407590\pi\)
0.286255 + 0.958153i \(0.407590\pi\)
\(390\) 0 0
\(391\) −13.8885 −0.702374
\(392\) 49.8567 2.51814
\(393\) 0 0
\(394\) −34.2148 −1.72372
\(395\) −34.3024 −1.72594
\(396\) 0 0
\(397\) 0.291796 0.0146448 0.00732241 0.999973i \(-0.497669\pi\)
0.00732241 + 0.999973i \(0.497669\pi\)
\(398\) 58.9918 2.95699
\(399\) 0 0
\(400\) 18.0000 0.900000
\(401\) 12.6245 0.630435 0.315218 0.949019i \(-0.397922\pi\)
0.315218 + 0.949019i \(0.397922\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 17.1512 0.853305
\(405\) 0 0
\(406\) −31.0557 −1.54127
\(407\) 9.48096 0.469954
\(408\) 0 0
\(409\) −21.7082 −1.07340 −0.536701 0.843773i \(-0.680330\pi\)
−0.536701 + 0.843773i \(0.680330\pi\)
\(410\) −43.0918 −2.12815
\(411\) 0 0
\(412\) −6.38197 −0.314417
\(413\) −9.05351 −0.445494
\(414\) 0 0
\(415\) 3.47214 0.170440
\(416\) 0 0
\(417\) 0 0
\(418\) 5.30495 0.259474
\(419\) −17.8428 −0.871680 −0.435840 0.900024i \(-0.643549\pi\)
−0.435840 + 0.900024i \(0.643549\pi\)
\(420\) 0 0
\(421\) 39.0132 1.90138 0.950692 0.310135i \(-0.100374\pi\)
0.950692 + 0.310135i \(0.100374\pi\)
\(422\) 38.9108 1.89415
\(423\) 0 0
\(424\) −22.4721 −1.09134
\(425\) 46.0215 2.23237
\(426\) 0 0
\(427\) 45.7771 2.21531
\(428\) 27.7512 1.34141
\(429\) 0 0
\(430\) 2.14590 0.103484
\(431\) 13.3161 0.641413 0.320707 0.947179i \(-0.396080\pi\)
0.320707 + 0.947179i \(0.396080\pi\)
\(432\) 0 0
\(433\) 24.4721 1.17606 0.588028 0.808841i \(-0.299905\pi\)
0.588028 + 0.808841i \(0.299905\pi\)
\(434\) −76.7026 −3.68184
\(435\) 0 0
\(436\) −32.3607 −1.54980
\(437\) 2.23815 0.107065
\(438\) 0 0
\(439\) 24.7082 1.17926 0.589629 0.807674i \(-0.299274\pi\)
0.589629 + 0.807674i \(0.299274\pi\)
\(440\) −43.0918 −2.05432
\(441\) 0 0
\(442\) 0 0
\(443\) −2.92978 −0.139198 −0.0695989 0.997575i \(-0.522172\pi\)
−0.0695989 + 0.997575i \(0.522172\pi\)
\(444\) 0 0
\(445\) 39.8328 1.88826
\(446\) 35.8489 1.69750
\(447\) 0 0
\(448\) −51.3050 −2.42393
\(449\) 3.83513 0.180991 0.0904954 0.995897i \(-0.471155\pi\)
0.0904954 + 0.995897i \(0.471155\pi\)
\(450\) 0 0
\(451\) 13.8885 0.653986
\(452\) 27.7512 1.30531
\(453\) 0 0
\(454\) 42.7984 2.00863
\(455\) 0 0
\(456\) 0 0
\(457\) 7.34752 0.343703 0.171851 0.985123i \(-0.445025\pi\)
0.171851 + 0.985123i \(0.445025\pi\)
\(458\) −11.2917 −0.527625
\(459\) 0 0
\(460\) −40.6525 −1.89543
\(461\) 35.2078 1.63979 0.819895 0.572514i \(-0.194032\pi\)
0.819895 + 0.572514i \(0.194032\pi\)
\(462\) 0 0
\(463\) 0.291796 0.0135609 0.00678046 0.999977i \(-0.497842\pi\)
0.00678046 + 0.999977i \(0.497842\pi\)
\(464\) −5.43210 −0.252179
\(465\) 0 0
\(466\) 47.5967 2.20488
\(467\) −37.6596 −1.74268 −0.871340 0.490679i \(-0.836749\pi\)
−0.871340 + 0.490679i \(0.836749\pi\)
\(468\) 0 0
\(469\) 12.3607 0.570763
\(470\) −34.8620 −1.60806
\(471\) 0 0
\(472\) −7.76393 −0.357364
\(473\) −0.691626 −0.0318010
\(474\) 0 0
\(475\) −7.41641 −0.340288
\(476\) 76.7026 3.51566
\(477\) 0 0
\(478\) −34.7214 −1.58812
\(479\) −32.7054 −1.49435 −0.747175 0.664627i \(-0.768590\pi\)
−0.747175 + 0.664627i \(0.768590\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −32.0643 −1.46049
\(483\) 0 0
\(484\) −8.74265 −0.397393
\(485\) −69.7239 −3.16600
\(486\) 0 0
\(487\) −16.4721 −0.746424 −0.373212 0.927746i \(-0.621744\pi\)
−0.373212 + 0.927746i \(0.621744\pi\)
\(488\) 39.2566 1.77706
\(489\) 0 0
\(490\) 118.172 5.33848
\(491\) −41.2811 −1.86299 −0.931494 0.363757i \(-0.881494\pi\)
−0.931494 + 0.363757i \(0.881494\pi\)
\(492\) 0 0
\(493\) −13.8885 −0.625509
\(494\) 0 0
\(495\) 0 0
\(496\) −13.4164 −0.602414
\(497\) −38.3513 −1.72029
\(498\) 0 0
\(499\) 4.36068 0.195211 0.0976054 0.995225i \(-0.468882\pi\)
0.0976054 + 0.995225i \(0.468882\pi\)
\(500\) 65.3293 2.92161
\(501\) 0 0
\(502\) 54.5410 2.43428
\(503\) 10.6000 0.472632 0.236316 0.971676i \(-0.424060\pi\)
0.236316 + 0.971676i \(0.424060\pi\)
\(504\) 0 0
\(505\) 18.1803 0.809015
\(506\) 20.3452 0.904453
\(507\) 0 0
\(508\) −21.5066 −0.954200
\(509\) −12.1970 −0.540623 −0.270311 0.962773i \(-0.587127\pi\)
−0.270311 + 0.962773i \(0.587127\pi\)
\(510\) 0 0
\(511\) 46.8328 2.07176
\(512\) −20.2947 −0.896908
\(513\) 0 0
\(514\) 65.7771 2.90130
\(515\) −6.76490 −0.298097
\(516\) 0 0
\(517\) 11.2361 0.494162
\(518\) −34.3024 −1.50716
\(519\) 0 0
\(520\) 0 0
\(521\) 6.97863 0.305739 0.152870 0.988246i \(-0.451149\pi\)
0.152870 + 0.988246i \(0.451149\pi\)
\(522\) 0 0
\(523\) −7.65248 −0.334619 −0.167310 0.985904i \(-0.553508\pi\)
−0.167310 + 0.985904i \(0.553508\pi\)
\(524\) −72.6537 −3.17389
\(525\) 0 0
\(526\) −67.4164 −2.93950
\(527\) −34.3024 −1.49424
\(528\) 0 0
\(529\) −14.4164 −0.626800
\(530\) −53.2643 −2.31366
\(531\) 0 0
\(532\) −12.3607 −0.535903
\(533\) 0 0
\(534\) 0 0
\(535\) 29.4164 1.27178
\(536\) 10.6000 0.457852
\(537\) 0 0
\(538\) 12.8754 0.555097
\(539\) −38.0871 −1.64053
\(540\) 0 0
\(541\) 23.7082 1.01930 0.509648 0.860383i \(-0.329776\pi\)
0.509648 + 0.860383i \(0.329776\pi\)
\(542\) 2.92978 0.125845
\(543\) 0 0
\(544\) −15.5279 −0.665752
\(545\) −34.3024 −1.46935
\(546\) 0 0
\(547\) −25.3050 −1.08196 −0.540981 0.841035i \(-0.681947\pi\)
−0.540981 + 0.841035i \(0.681947\pi\)
\(548\) −38.3513 −1.63829
\(549\) 0 0
\(550\) −67.4164 −2.87465
\(551\) 2.23815 0.0953484
\(552\) 0 0
\(553\) −40.0000 −1.70097
\(554\) 16.5917 0.704913
\(555\) 0 0
\(556\) 11.5066 0.487988
\(557\) −16.4596 −0.697415 −0.348708 0.937232i \(-0.613379\pi\)
−0.348708 + 0.937232i \(0.613379\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 31.8001 1.34380
\(561\) 0 0
\(562\) −45.4508 −1.91723
\(563\) −2.50233 −0.105461 −0.0527303 0.998609i \(-0.516792\pi\)
−0.0527303 + 0.998609i \(0.516792\pi\)
\(564\) 0 0
\(565\) 29.4164 1.23756
\(566\) 10.4679 0.440000
\(567\) 0 0
\(568\) −32.8885 −1.37997
\(569\) −5.85955 −0.245645 −0.122823 0.992429i \(-0.539195\pi\)
−0.122823 + 0.992429i \(0.539195\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) −50.2492 −2.09736
\(575\) −28.4429 −1.18615
\(576\) 0 0
\(577\) −21.4164 −0.891577 −0.445788 0.895138i \(-0.647077\pi\)
−0.445788 + 0.895138i \(0.647077\pi\)
\(578\) 12.9703 0.539492
\(579\) 0 0
\(580\) −40.6525 −1.68800
\(581\) 4.04885 0.167975
\(582\) 0 0
\(583\) 17.1672 0.710992
\(584\) 40.1620 1.66191
\(585\) 0 0
\(586\) 2.65248 0.109573
\(587\) −8.78933 −0.362774 −0.181387 0.983412i \(-0.558059\pi\)
−0.181387 + 0.983412i \(0.558059\pi\)
\(588\) 0 0
\(589\) 5.52786 0.227772
\(590\) −18.4024 −0.757614
\(591\) 0 0
\(592\) −6.00000 −0.246598
\(593\) 14.2214 0.584004 0.292002 0.956418i \(-0.405679\pi\)
0.292002 + 0.956418i \(0.405679\pi\)
\(594\) 0 0
\(595\) 81.3050 3.33318
\(596\) 17.9245 0.734215
\(597\) 0 0
\(598\) 0 0
\(599\) −1.11908 −0.0457242 −0.0228621 0.999739i \(-0.507278\pi\)
−0.0228621 + 0.999739i \(0.507278\pi\)
\(600\) 0 0
\(601\) −2.59675 −0.105924 −0.0529618 0.998597i \(-0.516866\pi\)
−0.0529618 + 0.998597i \(0.516866\pi\)
\(602\) 2.50233 0.101987
\(603\) 0 0
\(604\) 0 0
\(605\) −9.26723 −0.376767
\(606\) 0 0
\(607\) 8.00000 0.324710 0.162355 0.986732i \(-0.448091\pi\)
0.162355 + 0.986732i \(0.448091\pi\)
\(608\) 2.50233 0.101483
\(609\) 0 0
\(610\) 93.0476 3.76739
\(611\) 0 0
\(612\) 0 0
\(613\) 3.05573 0.123420 0.0617098 0.998094i \(-0.480345\pi\)
0.0617098 + 0.998094i \(0.480345\pi\)
\(614\) 54.3834 2.19474
\(615\) 0 0
\(616\) −50.2492 −2.02460
\(617\) −30.8947 −1.24378 −0.621888 0.783106i \(-0.713634\pi\)
−0.621888 + 0.783106i \(0.713634\pi\)
\(618\) 0 0
\(619\) 45.3050 1.82096 0.910480 0.413553i \(-0.135712\pi\)
0.910480 + 0.413553i \(0.135712\pi\)
\(620\) −100.405 −4.03236
\(621\) 0 0
\(622\) 36.3607 1.45793
\(623\) 46.4490 1.86094
\(624\) 0 0
\(625\) 20.7082 0.828328
\(626\) 72.7858 2.90911
\(627\) 0 0
\(628\) 88.3394 3.52513
\(629\) −15.3405 −0.611666
\(630\) 0 0
\(631\) −19.3050 −0.768518 −0.384259 0.923225i \(-0.625543\pi\)
−0.384259 + 0.923225i \(0.625543\pi\)
\(632\) −34.3024 −1.36448
\(633\) 0 0
\(634\) −33.7082 −1.33872
\(635\) −22.7970 −0.904673
\(636\) 0 0
\(637\) 0 0
\(638\) 20.3452 0.805473
\(639\) 0 0
\(640\) −79.1591 −3.12904
\(641\) −33.6108 −1.32755 −0.663773 0.747934i \(-0.731046\pi\)
−0.663773 + 0.747934i \(0.731046\pi\)
\(642\) 0 0
\(643\) −17.8197 −0.702739 −0.351369 0.936237i \(-0.614284\pi\)
−0.351369 + 0.936237i \(0.614284\pi\)
\(644\) −47.4048 −1.86801
\(645\) 0 0
\(646\) −8.58359 −0.337717
\(647\) −25.2489 −0.992637 −0.496319 0.868140i \(-0.665315\pi\)
−0.496319 + 0.868140i \(0.665315\pi\)
\(648\) 0 0
\(649\) 5.93112 0.232817
\(650\) 0 0
\(651\) 0 0
\(652\) −3.41641 −0.133797
\(653\) 24.8215 0.971339 0.485670 0.874142i \(-0.338576\pi\)
0.485670 + 0.874142i \(0.338576\pi\)
\(654\) 0 0
\(655\) −77.0132 −3.00915
\(656\) −8.78933 −0.343166
\(657\) 0 0
\(658\) −40.6525 −1.58480
\(659\) −9.90841 −0.385977 −0.192988 0.981201i \(-0.561818\pi\)
−0.192988 + 0.981201i \(0.561818\pi\)
\(660\) 0 0
\(661\) −3.70820 −0.144232 −0.0721162 0.997396i \(-0.522975\pi\)
−0.0721162 + 0.997396i \(0.522975\pi\)
\(662\) 63.8644 2.48216
\(663\) 0 0
\(664\) 3.47214 0.134745
\(665\) −13.1024 −0.508088
\(666\) 0 0
\(667\) 8.58359 0.332358
\(668\) 16.3780 0.633682
\(669\) 0 0
\(670\) 25.1246 0.970648
\(671\) −29.9894 −1.15773
\(672\) 0 0
\(673\) −5.94427 −0.229135 −0.114567 0.993415i \(-0.536548\pi\)
−0.114567 + 0.993415i \(0.536548\pi\)
\(674\) 18.1382 0.698657
\(675\) 0 0
\(676\) 0 0
\(677\) −23.7024 −0.910957 −0.455478 0.890247i \(-0.650532\pi\)
−0.455478 + 0.890247i \(0.650532\pi\)
\(678\) 0 0
\(679\) −81.3050 −3.12020
\(680\) 69.7239 2.67379
\(681\) 0 0
\(682\) 50.2492 1.92414
\(683\) 19.8673 0.760200 0.380100 0.924945i \(-0.375890\pi\)
0.380100 + 0.924945i \(0.375890\pi\)
\(684\) 0 0
\(685\) −40.6525 −1.55325
\(686\) 63.6002 2.42827
\(687\) 0 0
\(688\) 0.437694 0.0166869
\(689\) 0 0
\(690\) 0 0
\(691\) 11.8197 0.449641 0.224821 0.974400i \(-0.427820\pi\)
0.224821 + 0.974400i \(0.427820\pi\)
\(692\) 55.5025 2.10989
\(693\) 0 0
\(694\) −65.7771 −2.49686
\(695\) 12.1970 0.462659
\(696\) 0 0
\(697\) −22.4721 −0.851193
\(698\) −0.427449 −0.0161792
\(699\) 0 0
\(700\) 157.082 5.93714
\(701\) 8.36188 0.315824 0.157912 0.987453i \(-0.449524\pi\)
0.157912 + 0.987453i \(0.449524\pi\)
\(702\) 0 0
\(703\) 2.47214 0.0932384
\(704\) 33.6108 1.26675
\(705\) 0 0
\(706\) −67.9230 −2.55632
\(707\) 21.2001 0.797310
\(708\) 0 0
\(709\) 51.5967 1.93776 0.968878 0.247538i \(-0.0796214\pi\)
0.968878 + 0.247538i \(0.0796214\pi\)
\(710\) −77.9537 −2.92555
\(711\) 0 0
\(712\) 39.8328 1.49280
\(713\) 21.2001 0.793949
\(714\) 0 0
\(715\) 0 0
\(716\) −75.1560 −2.80871
\(717\) 0 0
\(718\) 60.9787 2.27571
\(719\) 8.36188 0.311846 0.155923 0.987769i \(-0.450165\pi\)
0.155923 + 0.987769i \(0.450165\pi\)
\(720\) 0 0
\(721\) −7.88854 −0.293785
\(722\) −43.6513 −1.62453
\(723\) 0 0
\(724\) −25.3262 −0.941242
\(725\) −28.4429 −1.05634
\(726\) 0 0
\(727\) −0.944272 −0.0350211 −0.0175106 0.999847i \(-0.505574\pi\)
−0.0175106 + 0.999847i \(0.505574\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 95.1935 3.52327
\(731\) 1.11908 0.0413905
\(732\) 0 0
\(733\) 14.7639 0.545318 0.272659 0.962111i \(-0.412097\pi\)
0.272659 + 0.962111i \(0.412097\pi\)
\(734\) 17.5787 0.648840
\(735\) 0 0
\(736\) 9.59675 0.353741
\(737\) −8.09770 −0.298283
\(738\) 0 0
\(739\) −8.11146 −0.298385 −0.149192 0.988808i \(-0.547667\pi\)
−0.149192 + 0.988808i \(0.547667\pi\)
\(740\) −44.9025 −1.65065
\(741\) 0 0
\(742\) −62.1115 −2.28018
\(743\) −37.0185 −1.35808 −0.679038 0.734103i \(-0.737603\pi\)
−0.679038 + 0.734103i \(0.737603\pi\)
\(744\) 0 0
\(745\) 19.0000 0.696106
\(746\) −20.6405 −0.755703
\(747\) 0 0
\(748\) −50.2492 −1.83729
\(749\) 34.3024 1.25338
\(750\) 0 0
\(751\) 42.8328 1.56299 0.781496 0.623910i \(-0.214457\pi\)
0.781496 + 0.623910i \(0.214457\pi\)
\(752\) −7.11072 −0.259301
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41641 0.0514802 0.0257401 0.999669i \(-0.491806\pi\)
0.0257401 + 0.999669i \(0.491806\pi\)
\(758\) −23.7024 −0.860910
\(759\) 0 0
\(760\) −11.2361 −0.407575
\(761\) 39.9483 1.44812 0.724062 0.689735i \(-0.242273\pi\)
0.724062 + 0.689735i \(0.242273\pi\)
\(762\) 0 0
\(763\) −40.0000 −1.44810
\(764\) 85.7561 3.10255
\(765\) 0 0
\(766\) −60.4721 −2.18495
\(767\) 0 0
\(768\) 0 0
\(769\) −37.4164 −1.34927 −0.674635 0.738151i \(-0.735699\pi\)
−0.674635 + 0.738151i \(0.735699\pi\)
\(770\) −119.103 −4.29216
\(771\) 0 0
\(772\) 51.3050 1.84651
\(773\) −44.6887 −1.60734 −0.803671 0.595074i \(-0.797123\pi\)
−0.803671 + 0.595074i \(0.797123\pi\)
\(774\) 0 0
\(775\) −70.2492 −2.52343
\(776\) −69.7239 −2.50294
\(777\) 0 0
\(778\) 26.7639 0.959533
\(779\) 3.62140 0.129750
\(780\) 0 0
\(781\) 25.1246 0.899029
\(782\) −32.9192 −1.17719
\(783\) 0 0
\(784\) 24.1033 0.860833
\(785\) 93.6400 3.34216
\(786\) 0 0
\(787\) −1.88854 −0.0673193 −0.0336597 0.999433i \(-0.510716\pi\)
−0.0336597 + 0.999433i \(0.510716\pi\)
\(788\) −52.2269 −1.86051
\(789\) 0 0
\(790\) −81.3050 −2.89270
\(791\) 34.3024 1.21965
\(792\) 0 0
\(793\) 0 0
\(794\) 0.691626 0.0245449
\(795\) 0 0
\(796\) 90.0476 3.19165
\(797\) −36.1131 −1.27919 −0.639596 0.768711i \(-0.720898\pi\)
−0.639596 + 0.768711i \(0.720898\pi\)
\(798\) 0 0
\(799\) −18.1803 −0.643174
\(800\) −31.8001 −1.12430
\(801\) 0 0
\(802\) 29.9230 1.05662
\(803\) −30.6810 −1.08271
\(804\) 0 0
\(805\) −50.2492 −1.77105
\(806\) 0 0
\(807\) 0 0
\(808\) 18.1803 0.639582
\(809\) −43.7834 −1.53934 −0.769671 0.638441i \(-0.779580\pi\)
−0.769671 + 0.638441i \(0.779580\pi\)
\(810\) 0 0
\(811\) −33.5279 −1.17732 −0.588661 0.808380i \(-0.700345\pi\)
−0.588661 + 0.808380i \(0.700345\pi\)
\(812\) −47.4048 −1.66358
\(813\) 0 0
\(814\) 22.4721 0.787648
\(815\) −3.62140 −0.126852
\(816\) 0 0
\(817\) −0.180340 −0.00630929
\(818\) −51.4536 −1.79903
\(819\) 0 0
\(820\) −65.7771 −2.29704
\(821\) −22.3191 −0.778943 −0.389472 0.921038i \(-0.627342\pi\)
−0.389472 + 0.921038i \(0.627342\pi\)
\(822\) 0 0
\(823\) −7.87539 −0.274519 −0.137259 0.990535i \(-0.543829\pi\)
−0.137259 + 0.990535i \(0.543829\pi\)
\(824\) −6.76490 −0.235667
\(825\) 0 0
\(826\) −21.4590 −0.746653
\(827\) −31.3726 −1.09093 −0.545467 0.838132i \(-0.683648\pi\)
−0.545467 + 0.838132i \(0.683648\pi\)
\(828\) 0 0
\(829\) 11.1803 0.388309 0.194155 0.980971i \(-0.437804\pi\)
0.194155 + 0.980971i \(0.437804\pi\)
\(830\) 8.22979 0.285660
\(831\) 0 0
\(832\) 0 0
\(833\) 61.6262 2.13522
\(834\) 0 0
\(835\) 17.3607 0.600791
\(836\) 8.09770 0.280065
\(837\) 0 0
\(838\) −42.2918 −1.46095
\(839\) 21.6780 0.748407 0.374203 0.927347i \(-0.377916\pi\)
0.374203 + 0.927347i \(0.377916\pi\)
\(840\) 0 0
\(841\) −20.4164 −0.704014
\(842\) 92.4705 3.18674
\(843\) 0 0
\(844\) 59.3951 2.04446
\(845\) 0 0
\(846\) 0 0
\(847\) −10.8065 −0.371316
\(848\) −10.8642 −0.373078
\(849\) 0 0
\(850\) 109.082 3.74148
\(851\) 9.48096 0.325003
\(852\) 0 0
\(853\) 8.11146 0.277731 0.138865 0.990311i \(-0.455654\pi\)
0.138865 + 0.990311i \(0.455654\pi\)
\(854\) 108.503 3.71288
\(855\) 0 0
\(856\) 29.4164 1.00543
\(857\) 12.4107 0.423943 0.211971 0.977276i \(-0.432012\pi\)
0.211971 + 0.977276i \(0.432012\pi\)
\(858\) 0 0
\(859\) 4.36068 0.148784 0.0743922 0.997229i \(-0.476298\pi\)
0.0743922 + 0.997229i \(0.476298\pi\)
\(860\) 3.27559 0.111697
\(861\) 0 0
\(862\) 31.5623 1.07502
\(863\) −16.2459 −0.553016 −0.276508 0.961012i \(-0.589177\pi\)
−0.276508 + 0.961012i \(0.589177\pi\)
\(864\) 0 0
\(865\) 58.8328 2.00038
\(866\) 58.0048 1.97108
\(867\) 0 0
\(868\) −117.082 −3.97402
\(869\) 26.2047 0.888934
\(870\) 0 0
\(871\) 0 0
\(872\) −34.3024 −1.16163
\(873\) 0 0
\(874\) 5.30495 0.179443
\(875\) 80.7514 2.72990
\(876\) 0 0
\(877\) −0.360680 −0.0121793 −0.00608965 0.999981i \(-0.501938\pi\)
−0.00608965 + 0.999981i \(0.501938\pi\)
\(878\) 58.5644 1.97645
\(879\) 0 0
\(880\) −20.8328 −0.702274
\(881\) 32.0643 1.08027 0.540136 0.841577i \(-0.318373\pi\)
0.540136 + 0.841577i \(0.318373\pi\)
\(882\) 0 0
\(883\) 41.8885 1.40966 0.704831 0.709375i \(-0.251023\pi\)
0.704831 + 0.709375i \(0.251023\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −6.94427 −0.233297
\(887\) −23.4382 −0.786978 −0.393489 0.919329i \(-0.628732\pi\)
−0.393489 + 0.919329i \(0.628732\pi\)
\(888\) 0 0
\(889\) −26.5836 −0.891585
\(890\) 94.4133 3.16474
\(891\) 0 0
\(892\) 54.7214 1.83221
\(893\) 2.92978 0.0980412
\(894\) 0 0
\(895\) −79.6656 −2.66293
\(896\) −92.3072 −3.08377
\(897\) 0 0
\(898\) 9.09017 0.303343
\(899\) 21.2001 0.707062
\(900\) 0 0
\(901\) −27.7771 −0.925389
\(902\) 32.9192 1.09609
\(903\) 0 0
\(904\) 29.4164 0.978375
\(905\) −26.8459 −0.892388
\(906\) 0 0
\(907\) 39.8328 1.32263 0.661313 0.750110i \(-0.269999\pi\)
0.661313 + 0.750110i \(0.269999\pi\)
\(908\) 65.3293 2.16803
\(909\) 0 0
\(910\) 0 0
\(911\) −8.36188 −0.277042 −0.138521 0.990360i \(-0.544235\pi\)
−0.138521 + 0.990360i \(0.544235\pi\)
\(912\) 0 0
\(913\) −2.65248 −0.0877841
\(914\) 17.4154 0.576050
\(915\) 0 0
\(916\) −17.2361 −0.569496
\(917\) −89.8049 −2.96562
\(918\) 0 0
\(919\) 41.3607 1.36436 0.682181 0.731183i \(-0.261031\pi\)
0.682181 + 0.731183i \(0.261031\pi\)
\(920\) −43.0918 −1.42069
\(921\) 0 0
\(922\) 83.4508 2.74831
\(923\) 0 0
\(924\) 0 0
\(925\) −31.4164 −1.03297
\(926\) 0.691626 0.0227283
\(927\) 0 0
\(928\) 9.59675 0.315029
\(929\) 22.3191 0.732267 0.366134 0.930562i \(-0.380681\pi\)
0.366134 + 0.930562i \(0.380681\pi\)
\(930\) 0 0
\(931\) −9.93112 −0.325479
\(932\) 72.6537 2.37985
\(933\) 0 0
\(934\) −89.2624 −2.92075
\(935\) −53.2643 −1.74193
\(936\) 0 0
\(937\) −46.4853 −1.51861 −0.759304 0.650736i \(-0.774461\pi\)
−0.759304 + 0.650736i \(0.774461\pi\)
\(938\) 29.2978 0.956606
\(939\) 0 0
\(940\) −53.2148 −1.73567
\(941\) −22.3191 −0.727583 −0.363792 0.931480i \(-0.618518\pi\)
−0.363792 + 0.931480i \(0.618518\pi\)
\(942\) 0 0
\(943\) 13.8885 0.452273
\(944\) −3.75349 −0.122166
\(945\) 0 0
\(946\) −1.63932 −0.0532989
\(947\) 5.21838 0.169575 0.0847873 0.996399i \(-0.472979\pi\)
0.0847873 + 0.996399i \(0.472979\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −17.5787 −0.570327
\(951\) 0 0
\(952\) 81.3050 2.63511
\(953\) 0.691626 0.0224040 0.0112020 0.999937i \(-0.496434\pi\)
0.0112020 + 0.999937i \(0.496434\pi\)
\(954\) 0 0
\(955\) 90.9017 2.94151
\(956\) −53.0002 −1.71415
\(957\) 0 0
\(958\) −77.5197 −2.50455
\(959\) −47.4048 −1.53078
\(960\) 0 0
\(961\) 21.3607 0.689054
\(962\) 0 0
\(963\) 0 0
\(964\) −48.9443 −1.57639
\(965\) 54.3834 1.75066
\(966\) 0 0
\(967\) −10.7639 −0.346145 −0.173072 0.984909i \(-0.555369\pi\)
−0.173072 + 0.984909i \(0.555369\pi\)
\(968\) −9.26723 −0.297860
\(969\) 0 0
\(970\) −165.262 −5.30626
\(971\) 45.3299 1.45471 0.727353 0.686264i \(-0.240750\pi\)
0.727353 + 0.686264i \(0.240750\pi\)
\(972\) 0 0
\(973\) 14.2229 0.455966
\(974\) −39.0429 −1.25102
\(975\) 0 0
\(976\) 18.9787 0.607494
\(977\) −36.3269 −1.16220 −0.581099 0.813833i \(-0.697377\pi\)
−0.581099 + 0.813833i \(0.697377\pi\)
\(978\) 0 0
\(979\) −30.4296 −0.972533
\(980\) 180.383 5.76213
\(981\) 0 0
\(982\) −97.8460 −3.12239
\(983\) −40.8536 −1.30303 −0.651514 0.758637i \(-0.725866\pi\)
−0.651514 + 0.758637i \(0.725866\pi\)
\(984\) 0 0
\(985\) −55.3607 −1.76394
\(986\) −32.9192 −1.04836
\(987\) 0 0
\(988\) 0 0
\(989\) −0.691626 −0.0219924
\(990\) 0 0
\(991\) 12.3475 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(992\) 23.7024 0.752552
\(993\) 0 0
\(994\) −90.9017 −2.88323
\(995\) 95.4507 3.02599
\(996\) 0 0
\(997\) −15.1115 −0.478585 −0.239292 0.970948i \(-0.576915\pi\)
−0.239292 + 0.970948i \(0.576915\pi\)
\(998\) 10.3359 0.327176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4563.2.a.ba.1.4 4
3.2 odd 2 inner 4563.2.a.ba.1.1 4
13.12 even 2 351.2.a.f.1.1 4
39.38 odd 2 351.2.a.f.1.4 yes 4
52.51 odd 2 5616.2.a.ch.1.1 4
65.64 even 2 8775.2.a.bo.1.4 4
117.25 even 6 1053.2.e.p.352.4 8
117.38 odd 6 1053.2.e.p.352.1 8
117.77 odd 6 1053.2.e.p.703.1 8
117.103 even 6 1053.2.e.p.703.4 8
156.155 even 2 5616.2.a.ch.1.4 4
195.194 odd 2 8775.2.a.bo.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.a.f.1.1 4 13.12 even 2
351.2.a.f.1.4 yes 4 39.38 odd 2
1053.2.e.p.352.1 8 117.38 odd 6
1053.2.e.p.352.4 8 117.25 even 6
1053.2.e.p.703.1 8 117.77 odd 6
1053.2.e.p.703.4 8 117.103 even 6
4563.2.a.ba.1.1 4 3.2 odd 2 inner
4563.2.a.ba.1.4 4 1.1 even 1 trivial
5616.2.a.ch.1.1 4 52.51 odd 2
5616.2.a.ch.1.4 4 156.155 even 2
8775.2.a.bo.1.1 4 195.194 odd 2
8775.2.a.bo.1.4 4 65.64 even 2