Properties

Label 1053.2.e.p.703.1
Level $1053$
Weight $2$
Character 1053.703
Analytic conductor $8.408$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-10,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.4678560000.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 62x^{4} + 171x^{2} + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 703.1
Root \(1.18512 + 2.05269i\) of defining polynomial
Character \(\chi\) \(=\) 1053.703
Dual form 1053.2.e.p.352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18512 + 2.05269i) q^{2} +(-1.80902 - 3.13331i) q^{4} +(-1.91756 - 3.32132i) q^{5} +(2.23607 - 3.87298i) q^{7} +3.83513 q^{8} +9.09017 q^{10} +(1.46489 - 2.53726i) q^{11} +(0.500000 + 0.866025i) q^{13} +(5.30002 + 9.17990i) q^{14} +(-0.927051 + 1.60570i) q^{16} -4.74048 q^{17} +0.763932 q^{19} +(-6.93781 + 12.0166i) q^{20} +(3.47214 + 6.01392i) q^{22} +(-1.46489 - 2.53726i) q^{23} +(-4.85410 + 8.40755i) q^{25} -2.37024 q^{26} -16.1803 q^{28} +(-1.46489 + 2.53726i) q^{29} +(-3.61803 - 6.26662i) q^{31} +(1.63780 + 2.83674i) q^{32} +(5.61803 - 9.73072i) q^{34} -17.1512 q^{35} +3.23607 q^{37} +(-0.905351 + 1.56811i) q^{38} +(-7.35410 - 12.7377i) q^{40} +(2.37024 + 4.10537i) q^{41} +(-0.118034 + 0.204441i) q^{43} -10.6000 q^{44} +6.94427 q^{46} +(1.91756 - 3.32132i) q^{47} +(-6.50000 - 11.2583i) q^{49} +(-11.5054 - 19.9279i) q^{50} +(1.80902 - 3.13331i) q^{52} +5.85955 q^{53} -11.2361 q^{55} +(8.57561 - 14.8534i) q^{56} +(-3.47214 - 6.01392i) q^{58} +(1.01221 + 1.75320i) q^{59} +(-5.11803 + 8.86469i) q^{61} +17.1512 q^{62} -11.4721 q^{64} +(1.91756 - 3.32132i) q^{65} +(1.38197 + 2.39364i) q^{67} +(8.57561 + 14.8534i) q^{68} +(20.3262 - 35.2061i) q^{70} -8.57561 q^{71} -10.4721 q^{73} +(-3.83513 + 6.64264i) q^{74} +(-1.38197 - 2.39364i) q^{76} +(-6.55118 - 11.3470i) q^{77} +(4.47214 - 7.74597i) q^{79} +7.11072 q^{80} -11.2361 q^{82} +(-0.452675 + 0.784057i) q^{83} +(9.09017 + 15.7446i) q^{85} +(-0.279769 - 0.484574i) q^{86} +(5.61803 - 9.73072i) q^{88} +10.3863 q^{89} +4.47214 q^{91} +(-5.30002 + 9.17990i) q^{92} +(4.54508 + 7.87232i) q^{94} +(-1.46489 - 2.53726i) q^{95} +(-9.09017 + 15.7446i) q^{97} +30.8131 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 10 q^{4} + 28 q^{10} + 4 q^{13} + 6 q^{16} + 24 q^{19} - 8 q^{22} - 12 q^{25} - 40 q^{28} - 20 q^{31} + 36 q^{34} + 8 q^{37} - 32 q^{40} + 8 q^{43} - 16 q^{46} - 52 q^{49} + 10 q^{52} - 72 q^{55}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18512 + 2.05269i −0.838006 + 1.45147i 0.0535531 + 0.998565i \(0.482945\pi\)
−0.891559 + 0.452904i \(0.850388\pi\)
\(3\) 0 0
\(4\) −1.80902 3.13331i −0.904508 1.56665i
\(5\) −1.91756 3.32132i −0.857561 1.48534i −0.874249 0.485478i \(-0.838646\pi\)
0.0166884 0.999861i \(-0.494688\pi\)
\(6\) 0 0
\(7\) 2.23607 3.87298i 0.845154 1.46385i −0.0403329 0.999186i \(-0.512842\pi\)
0.885487 0.464664i \(-0.153825\pi\)
\(8\) 3.83513 1.35592
\(9\) 0 0
\(10\) 9.09017 2.87456
\(11\) 1.46489 2.53726i 0.441680 0.765013i −0.556134 0.831093i \(-0.687716\pi\)
0.997814 + 0.0660797i \(0.0210492\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) 5.30002 + 9.17990i 1.41649 + 2.45343i
\(15\) 0 0
\(16\) −0.927051 + 1.60570i −0.231763 + 0.401425i
\(17\) −4.74048 −1.14973 −0.574867 0.818247i \(-0.694946\pi\)
−0.574867 + 0.818247i \(0.694946\pi\)
\(18\) 0 0
\(19\) 0.763932 0.175258 0.0876290 0.996153i \(-0.472071\pi\)
0.0876290 + 0.996153i \(0.472071\pi\)
\(20\) −6.93781 + 12.0166i −1.55134 + 2.68700i
\(21\) 0 0
\(22\) 3.47214 + 6.01392i 0.740262 + 1.28217i
\(23\) −1.46489 2.53726i −0.305450 0.529056i 0.671911 0.740632i \(-0.265474\pi\)
−0.977361 + 0.211576i \(0.932140\pi\)
\(24\) 0 0
\(25\) −4.85410 + 8.40755i −0.970820 + 1.68151i
\(26\) −2.37024 −0.464842
\(27\) 0 0
\(28\) −16.1803 −3.05780
\(29\) −1.46489 + 2.53726i −0.272023 + 0.471158i −0.969380 0.245567i \(-0.921026\pi\)
0.697357 + 0.716724i \(0.254359\pi\)
\(30\) 0 0
\(31\) −3.61803 6.26662i −0.649818 1.12552i −0.983166 0.182714i \(-0.941512\pi\)
0.333348 0.942804i \(-0.391822\pi\)
\(32\) 1.63780 + 2.83674i 0.289524 + 0.501470i
\(33\) 0 0
\(34\) 5.61803 9.73072i 0.963485 1.66880i
\(35\) −17.1512 −2.89908
\(36\) 0 0
\(37\) 3.23607 0.532006 0.266003 0.963972i \(-0.414297\pi\)
0.266003 + 0.963972i \(0.414297\pi\)
\(38\) −0.905351 + 1.56811i −0.146867 + 0.254382i
\(39\) 0 0
\(40\) −7.35410 12.7377i −1.16279 2.01400i
\(41\) 2.37024 + 4.10537i 0.370169 + 0.641152i 0.989591 0.143906i \(-0.0459664\pi\)
−0.619422 + 0.785058i \(0.712633\pi\)
\(42\) 0 0
\(43\) −0.118034 + 0.204441i −0.0180000 + 0.0311769i −0.874885 0.484331i \(-0.839063\pi\)
0.856885 + 0.515507i \(0.172397\pi\)
\(44\) −10.6000 −1.59801
\(45\) 0 0
\(46\) 6.94427 1.02388
\(47\) 1.91756 3.32132i 0.279705 0.484464i −0.691606 0.722275i \(-0.743097\pi\)
0.971311 + 0.237811i \(0.0764299\pi\)
\(48\) 0 0
\(49\) −6.50000 11.2583i −0.928571 1.60833i
\(50\) −11.5054 19.9279i −1.62711 2.81823i
\(51\) 0 0
\(52\) 1.80902 3.13331i 0.250866 0.434512i
\(53\) 5.85955 0.804872 0.402436 0.915448i \(-0.368164\pi\)
0.402436 + 0.915448i \(0.368164\pi\)
\(54\) 0 0
\(55\) −11.2361 −1.51507
\(56\) 8.57561 14.8534i 1.14596 1.98487i
\(57\) 0 0
\(58\) −3.47214 6.01392i −0.455914 0.789666i
\(59\) 1.01221 + 1.75320i 0.131779 + 0.228248i 0.924362 0.381516i \(-0.124598\pi\)
−0.792583 + 0.609763i \(0.791264\pi\)
\(60\) 0 0
\(61\) −5.11803 + 8.86469i −0.655297 + 1.13501i 0.326522 + 0.945190i \(0.394123\pi\)
−0.981819 + 0.189818i \(0.939210\pi\)
\(62\) 17.1512 2.17821
\(63\) 0 0
\(64\) −11.4721 −1.43402
\(65\) 1.91756 3.32132i 0.237845 0.411959i
\(66\) 0 0
\(67\) 1.38197 + 2.39364i 0.168834 + 0.292429i 0.938010 0.346608i \(-0.112666\pi\)
−0.769176 + 0.639037i \(0.779333\pi\)
\(68\) 8.57561 + 14.8534i 1.03994 + 1.80124i
\(69\) 0 0
\(70\) 20.3262 35.2061i 2.42945 4.20793i
\(71\) −8.57561 −1.01774 −0.508869 0.860844i \(-0.669936\pi\)
−0.508869 + 0.860844i \(0.669936\pi\)
\(72\) 0 0
\(73\) −10.4721 −1.22567 −0.612835 0.790211i \(-0.709971\pi\)
−0.612835 + 0.790211i \(0.709971\pi\)
\(74\) −3.83513 + 6.64264i −0.445825 + 0.772191i
\(75\) 0 0
\(76\) −1.38197 2.39364i −0.158522 0.274569i
\(77\) −6.55118 11.3470i −0.746576 1.29311i
\(78\) 0 0
\(79\) 4.47214 7.74597i 0.503155 0.871489i −0.496839 0.867843i \(-0.665506\pi\)
0.999993 0.00364646i \(-0.00116071\pi\)
\(80\) 7.11072 0.795002
\(81\) 0 0
\(82\) −11.2361 −1.24082
\(83\) −0.452675 + 0.784057i −0.0496876 + 0.0860614i −0.889799 0.456352i \(-0.849156\pi\)
0.840112 + 0.542413i \(0.182489\pi\)
\(84\) 0 0
\(85\) 9.09017 + 15.7446i 0.985967 + 1.70775i
\(86\) −0.279769 0.484574i −0.0301682 0.0522529i
\(87\) 0 0
\(88\) 5.61803 9.73072i 0.598884 1.03730i
\(89\) 10.3863 1.10095 0.550473 0.834853i \(-0.314447\pi\)
0.550473 + 0.834853i \(0.314447\pi\)
\(90\) 0 0
\(91\) 4.47214 0.468807
\(92\) −5.30002 + 9.17990i −0.552565 + 0.957070i
\(93\) 0 0
\(94\) 4.54508 + 7.87232i 0.468790 + 0.811968i
\(95\) −1.46489 2.53726i −0.150294 0.260318i
\(96\) 0 0
\(97\) −9.09017 + 15.7446i −0.922967 + 1.59863i −0.128168 + 0.991752i \(0.540910\pi\)
−0.794799 + 0.606873i \(0.792424\pi\)
\(98\) 30.8131 3.11259
\(99\) 0 0
\(100\) 35.1246 3.51246
\(101\) 2.37024 4.10537i 0.235848 0.408500i −0.723671 0.690145i \(-0.757547\pi\)
0.959519 + 0.281645i \(0.0908800\pi\)
\(102\) 0 0
\(103\) 0.881966 + 1.52761i 0.0869027 + 0.150520i 0.906200 0.422848i \(-0.138970\pi\)
−0.819298 + 0.573368i \(0.805636\pi\)
\(104\) 1.91756 + 3.32132i 0.188033 + 0.325682i
\(105\) 0 0
\(106\) −6.94427 + 12.0278i −0.674487 + 1.16825i
\(107\) −7.67026 −0.741512 −0.370756 0.928730i \(-0.620901\pi\)
−0.370756 + 0.928730i \(0.620901\pi\)
\(108\) 0 0
\(109\) 8.94427 0.856706 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(110\) 13.3161 23.0641i 1.26964 2.19908i
\(111\) 0 0
\(112\) 4.14590 + 7.18091i 0.391751 + 0.678532i
\(113\) 3.83513 + 6.64264i 0.360778 + 0.624887i 0.988089 0.153882i \(-0.0491777\pi\)
−0.627311 + 0.778769i \(0.715844\pi\)
\(114\) 0 0
\(115\) −5.61803 + 9.73072i −0.523884 + 0.907394i
\(116\) 10.6000 0.984188
\(117\) 0 0
\(118\) −4.79837 −0.441726
\(119\) −10.6000 + 18.3598i −0.971703 + 1.68304i
\(120\) 0 0
\(121\) 1.20820 + 2.09267i 0.109837 + 0.190243i
\(122\) −12.1310 21.0114i −1.09829 1.90229i
\(123\) 0 0
\(124\) −13.0902 + 22.6728i −1.17553 + 2.03608i
\(125\) 18.0566 1.61503
\(126\) 0 0
\(127\) −5.94427 −0.527469 −0.263734 0.964595i \(-0.584954\pi\)
−0.263734 + 0.964595i \(0.584954\pi\)
\(128\) 10.3203 17.8752i 0.912191 1.57996i
\(129\) 0 0
\(130\) 4.54508 + 7.87232i 0.398630 + 0.690448i
\(131\) −10.0405 17.3906i −0.877242 1.51943i −0.854355 0.519690i \(-0.826048\pi\)
−0.0228870 0.999738i \(-0.507286\pi\)
\(132\) 0 0
\(133\) 1.70820 2.95870i 0.148120 0.256551i
\(134\) −6.55118 −0.565936
\(135\) 0 0
\(136\) −18.1803 −1.55895
\(137\) 5.30002 9.17990i 0.452811 0.784292i −0.545748 0.837949i \(-0.683755\pi\)
0.998559 + 0.0536575i \(0.0170879\pi\)
\(138\) 0 0
\(139\) −1.59017 2.75426i −0.134876 0.233613i 0.790674 0.612238i \(-0.209730\pi\)
−0.925550 + 0.378625i \(0.876397\pi\)
\(140\) 31.0268 + 53.7401i 2.62225 + 4.54186i
\(141\) 0 0
\(142\) 10.1631 17.6030i 0.852870 1.47721i
\(143\) 2.92978 0.245000
\(144\) 0 0
\(145\) 11.2361 0.933105
\(146\) 12.4107 21.4960i 1.02712 1.77902i
\(147\) 0 0
\(148\) −5.85410 10.1396i −0.481204 0.833470i
\(149\) −2.47710 4.29047i −0.202932 0.351489i 0.746540 0.665341i \(-0.231714\pi\)
−0.949472 + 0.313852i \(0.898380\pi\)
\(150\) 0 0
\(151\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(152\) 2.92978 0.237636
\(153\) 0 0
\(154\) 31.0557 2.50254
\(155\) −13.8756 + 24.0333i −1.11452 + 1.93040i
\(156\) 0 0
\(157\) −12.2082 21.1452i −0.974321 1.68757i −0.682159 0.731204i \(-0.738959\pi\)
−0.292162 0.956369i \(-0.594375\pi\)
\(158\) 10.6000 + 18.3598i 0.843293 + 1.46063i
\(159\) 0 0
\(160\) 6.28115 10.8793i 0.496569 0.860082i
\(161\) −13.1024 −1.03261
\(162\) 0 0
\(163\) 0.944272 0.0739611 0.0369805 0.999316i \(-0.488226\pi\)
0.0369805 + 0.999316i \(0.488226\pi\)
\(164\) 8.57561 14.8534i 0.669642 1.15985i
\(165\) 0 0
\(166\) −1.07295 1.85840i −0.0832770 0.144240i
\(167\) −2.26338 3.92028i −0.175145 0.303361i 0.765066 0.643952i \(-0.222706\pi\)
−0.940212 + 0.340591i \(0.889373\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) −43.0918 −3.30499
\(171\) 0 0
\(172\) 0.854102 0.0651247
\(173\) 7.67026 13.2853i 0.583159 1.01006i −0.411944 0.911209i \(-0.635150\pi\)
0.995102 0.0988511i \(-0.0315168\pi\)
\(174\) 0 0
\(175\) 21.7082 + 37.5997i 1.64099 + 2.84227i
\(176\) 2.71605 + 4.70434i 0.204730 + 0.354603i
\(177\) 0 0
\(178\) −12.3090 + 21.3198i −0.922600 + 1.59799i
\(179\) 20.7726 1.55262 0.776309 0.630352i \(-0.217090\pi\)
0.776309 + 0.630352i \(0.217090\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) −5.30002 + 9.17990i −0.392863 + 0.680459i
\(183\) 0 0
\(184\) −5.61803 9.73072i −0.414167 0.717358i
\(185\) −6.20537 10.7480i −0.456228 0.790209i
\(186\) 0 0
\(187\) −6.94427 + 12.0278i −0.507815 + 0.879562i
\(188\) −13.8756 −1.01198
\(189\) 0 0
\(190\) 6.94427 0.503790
\(191\) 11.8512 20.5269i 0.857522 1.48527i −0.0167625 0.999859i \(-0.505336\pi\)
0.874285 0.485413i \(-0.161331\pi\)
\(192\) 0 0
\(193\) 7.09017 + 12.2805i 0.510362 + 0.883972i 0.999928 + 0.0120062i \(0.00382177\pi\)
−0.489566 + 0.871966i \(0.662845\pi\)
\(194\) −21.5459 37.3186i −1.54690 2.67932i
\(195\) 0 0
\(196\) −23.5172 + 40.7330i −1.67980 + 2.90950i
\(197\) −14.4352 −1.02846 −0.514231 0.857652i \(-0.671923\pi\)
−0.514231 + 0.857652i \(0.671923\pi\)
\(198\) 0 0
\(199\) 24.8885 1.76430 0.882151 0.470967i \(-0.156095\pi\)
0.882151 + 0.470967i \(0.156095\pi\)
\(200\) −18.6161 + 32.2440i −1.31636 + 2.28000i
\(201\) 0 0
\(202\) 5.61803 + 9.73072i 0.395283 + 0.684651i
\(203\) 6.55118 + 11.3470i 0.459803 + 0.796402i
\(204\) 0 0
\(205\) 9.09017 15.7446i 0.634885 1.09965i
\(206\) −4.18094 −0.291300
\(207\) 0 0
\(208\) −1.85410 −0.128559
\(209\) 1.11908 1.93830i 0.0774080 0.134075i
\(210\) 0 0
\(211\) −8.20820 14.2170i −0.565076 0.978740i −0.997043 0.0768508i \(-0.975513\pi\)
0.431967 0.901890i \(-0.357820\pi\)
\(212\) −10.6000 18.3598i −0.728013 1.26096i
\(213\) 0 0
\(214\) 9.09017 15.7446i 0.621391 1.07628i
\(215\) 0.905351 0.0617444
\(216\) 0 0
\(217\) −32.3607 −2.19679
\(218\) −10.6000 + 18.3598i −0.717925 + 1.24348i
\(219\) 0 0
\(220\) 20.3262 + 35.2061i 1.37039 + 2.37359i
\(221\) −2.37024 4.10537i −0.159440 0.276157i
\(222\) 0 0
\(223\) 7.56231 13.0983i 0.506409 0.877127i −0.493563 0.869710i \(-0.664306\pi\)
0.999972 0.00741689i \(-0.00236089\pi\)
\(224\) 14.6489 0.978770
\(225\) 0 0
\(226\) −18.1803 −1.20934
\(227\) −9.02828 + 15.6374i −0.599228 + 1.03789i 0.393707 + 0.919236i \(0.371192\pi\)
−0.992935 + 0.118658i \(0.962141\pi\)
\(228\) 0 0
\(229\) −2.38197 4.12569i −0.157405 0.272633i 0.776527 0.630084i \(-0.216979\pi\)
−0.933932 + 0.357451i \(0.883646\pi\)
\(230\) −13.3161 23.0641i −0.878037 1.52080i
\(231\) 0 0
\(232\) −5.61803 + 9.73072i −0.368842 + 0.638853i
\(233\) −20.0810 −1.31555 −0.657775 0.753215i \(-0.728502\pi\)
−0.657775 + 0.753215i \(0.728502\pi\)
\(234\) 0 0
\(235\) −14.7082 −0.959457
\(236\) 3.66222 6.34315i 0.238390 0.412904i
\(237\) 0 0
\(238\) −25.1246 43.5171i −1.62859 2.82079i
\(239\) 7.32444 + 12.6863i 0.473779 + 0.820609i 0.999549 0.0300175i \(-0.00955630\pi\)
−0.525771 + 0.850626i \(0.676223\pi\)
\(240\) 0 0
\(241\) −6.76393 + 11.7155i −0.435703 + 0.754660i −0.997353 0.0727152i \(-0.976834\pi\)
0.561650 + 0.827375i \(0.310167\pi\)
\(242\) −5.72746 −0.368175
\(243\) 0 0
\(244\) 37.0344 2.37089
\(245\) −24.9283 + 43.1771i −1.59261 + 2.75849i
\(246\) 0 0
\(247\) 0.381966 + 0.661585i 0.0243039 + 0.0420956i
\(248\) −13.8756 24.0333i −0.881103 1.52611i
\(249\) 0 0
\(250\) −21.3992 + 37.0645i −1.35340 + 2.34416i
\(251\) −23.0108 −1.45243 −0.726213 0.687469i \(-0.758722\pi\)
−0.726213 + 0.687469i \(0.758722\pi\)
\(252\) 0 0
\(253\) −8.58359 −0.539646
\(254\) 7.04467 12.2017i 0.442022 0.765605i
\(255\) 0 0
\(256\) 12.9894 + 22.4982i 0.811835 + 1.40614i
\(257\) 13.8756 + 24.0333i 0.865538 + 1.49915i 0.866512 + 0.499155i \(0.166356\pi\)
−0.000974931 1.00000i \(0.500310\pi\)
\(258\) 0 0
\(259\) 7.23607 12.5332i 0.449627 0.778777i
\(260\) −13.8756 −0.860530
\(261\) 0 0
\(262\) 47.5967 2.94054
\(263\) −14.2214 + 24.6322i −0.876931 + 1.51889i −0.0222401 + 0.999753i \(0.507080\pi\)
−0.854691 + 0.519137i \(0.826253\pi\)
\(264\) 0 0
\(265\) −11.2361 19.4614i −0.690226 1.19551i
\(266\) 4.04885 + 7.01282i 0.248251 + 0.429983i
\(267\) 0 0
\(268\) 5.00000 8.66025i 0.305424 0.529009i
\(269\) −5.43210 −0.331201 −0.165601 0.986193i \(-0.552956\pi\)
−0.165601 + 0.986193i \(0.552956\pi\)
\(270\) 0 0
\(271\) −1.23607 −0.0750858 −0.0375429 0.999295i \(-0.511953\pi\)
−0.0375429 + 0.999295i \(0.511953\pi\)
\(272\) 4.39467 7.61178i 0.266466 0.461532i
\(273\) 0 0
\(274\) 12.5623 + 21.7586i 0.758917 + 1.31448i
\(275\) 14.2214 + 24.6322i 0.857585 + 1.48538i
\(276\) 0 0
\(277\) −3.50000 + 6.06218i −0.210295 + 0.364241i −0.951807 0.306699i \(-0.900776\pi\)
0.741512 + 0.670940i \(0.234109\pi\)
\(278\) 7.53817 0.452109
\(279\) 0 0
\(280\) −65.7771 −3.93093
\(281\) 9.58782 16.6066i 0.571961 0.990666i −0.424403 0.905473i \(-0.639516\pi\)
0.996364 0.0851928i \(-0.0271506\pi\)
\(282\) 0 0
\(283\) −2.20820 3.82472i −0.131264 0.227356i 0.792900 0.609352i \(-0.208570\pi\)
−0.924164 + 0.381996i \(0.875237\pi\)
\(284\) 15.5134 + 26.8700i 0.920552 + 1.59444i
\(285\) 0 0
\(286\) −3.47214 + 6.01392i −0.205312 + 0.355610i
\(287\) 21.2001 1.25140
\(288\) 0 0
\(289\) 5.47214 0.321890
\(290\) −13.3161 + 23.0641i −0.781947 + 1.35437i
\(291\) 0 0
\(292\) 18.9443 + 32.8124i 1.10863 + 1.92020i
\(293\) −0.559538 0.969148i −0.0326885 0.0566182i 0.849218 0.528042i \(-0.177074\pi\)
−0.881907 + 0.471424i \(0.843740\pi\)
\(294\) 0 0
\(295\) 3.88197 6.72376i 0.226017 0.391473i
\(296\) 12.4107 0.721359
\(297\) 0 0
\(298\) 11.7426 0.680233
\(299\) 1.46489 2.53726i 0.0847167 0.146734i
\(300\) 0 0
\(301\) 0.527864 + 0.914287i 0.0304256 + 0.0526986i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.708204 + 1.22665i −0.0406183 + 0.0703529i
\(305\) 39.2566 2.24783
\(306\) 0 0
\(307\) −22.9443 −1.30950 −0.654749 0.755846i \(-0.727226\pi\)
−0.654749 + 0.755846i \(0.727226\pi\)
\(308\) −23.7024 + 41.0537i −1.35057 + 2.33925i
\(309\) 0 0
\(310\) −32.8885 56.9646i −1.86794 3.23537i
\(311\) 7.67026 + 13.2853i 0.434940 + 0.753339i 0.997291 0.0735603i \(-0.0234361\pi\)
−0.562350 + 0.826899i \(0.690103\pi\)
\(312\) 0 0
\(313\) −15.3541 + 26.5941i −0.867865 + 1.50319i −0.00369130 + 0.999993i \(0.501175\pi\)
−0.864174 + 0.503193i \(0.832158\pi\)
\(314\) 57.8727 3.26595
\(315\) 0 0
\(316\) −32.3607 −1.82043
\(317\) 7.11072 12.3161i 0.399378 0.691742i −0.594272 0.804264i \(-0.702560\pi\)
0.993649 + 0.112522i \(0.0358929\pi\)
\(318\) 0 0
\(319\) 4.29180 + 7.43361i 0.240294 + 0.416202i
\(320\) 21.9986 + 38.1026i 1.22976 + 2.13000i
\(321\) 0 0
\(322\) 15.5279 26.8950i 0.865334 1.49880i
\(323\) −3.62140 −0.201500
\(324\) 0 0
\(325\) −9.70820 −0.538514
\(326\) −1.11908 + 1.93830i −0.0619798 + 0.107352i
\(327\) 0 0
\(328\) 9.09017 + 15.7446i 0.501921 + 0.869352i
\(329\) −8.57561 14.8534i −0.472788 0.818894i
\(330\) 0 0
\(331\) 13.4721 23.3344i 0.740496 1.28258i −0.211774 0.977319i \(-0.567924\pi\)
0.952270 0.305257i \(-0.0987425\pi\)
\(332\) 3.27559 0.179771
\(333\) 0 0
\(334\) 10.7295 0.587092
\(335\) 5.30002 9.17990i 0.289571 0.501551i
\(336\) 0 0
\(337\) −3.82624 6.62724i −0.208428 0.361009i 0.742791 0.669523i \(-0.233502\pi\)
−0.951220 + 0.308514i \(0.900168\pi\)
\(338\) −1.18512 2.05269i −0.0644620 0.111651i
\(339\) 0 0
\(340\) 32.8885 56.9646i 1.78363 3.08934i
\(341\) −21.2001 −1.14805
\(342\) 0 0
\(343\) −26.8328 −1.44884
\(344\) −0.452675 + 0.784057i −0.0244066 + 0.0422735i
\(345\) 0 0
\(346\) 18.1803 + 31.4893i 0.977381 + 1.69287i
\(347\) −13.8756 24.0333i −0.744882 1.29017i −0.950250 0.311489i \(-0.899172\pi\)
0.205367 0.978685i \(-0.434161\pi\)
\(348\) 0 0
\(349\) −0.0901699 + 0.156179i −0.00482669 + 0.00836007i −0.868429 0.495814i \(-0.834870\pi\)
0.863602 + 0.504174i \(0.168203\pi\)
\(350\) −102.907 −5.50063
\(351\) 0 0
\(352\) 9.59675 0.511508
\(353\) 14.3283 24.8173i 0.762618 1.32089i −0.178878 0.983871i \(-0.557247\pi\)
0.941497 0.337022i \(-0.109420\pi\)
\(354\) 0 0
\(355\) 16.4443 + 28.4823i 0.872771 + 1.51168i
\(356\) −18.7890 32.5435i −0.995815 1.72480i
\(357\) 0 0
\(358\) −24.6180 + 42.6397i −1.30110 + 2.25358i
\(359\) 25.7268 1.35781 0.678905 0.734226i \(-0.262455\pi\)
0.678905 + 0.734226i \(0.262455\pi\)
\(360\) 0 0
\(361\) −18.4164 −0.969285
\(362\) 8.29584 14.3688i 0.436020 0.755208i
\(363\) 0 0
\(364\) −8.09017 14.0126i −0.424040 0.734459i
\(365\) 20.0810 + 34.7813i 1.05109 + 1.82054i
\(366\) 0 0
\(367\) −3.70820 + 6.42280i −0.193567 + 0.335267i −0.946430 0.322910i \(-0.895339\pi\)
0.752863 + 0.658177i \(0.228672\pi\)
\(368\) 5.43210 0.283168
\(369\) 0 0
\(370\) 29.4164 1.52929
\(371\) 13.1024 22.6940i 0.680241 1.17821i
\(372\) 0 0
\(373\) 4.35410 + 7.54153i 0.225447 + 0.390485i 0.956453 0.291885i \(-0.0942825\pi\)
−0.731007 + 0.682370i \(0.760949\pi\)
\(374\) −16.4596 28.5088i −0.851105 1.47416i
\(375\) 0 0
\(376\) 7.35410 12.7377i 0.379259 0.656896i
\(377\) −2.92978 −0.150891
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) −5.30002 + 9.17990i −0.271885 + 0.470919i
\(381\) 0 0
\(382\) 28.0902 + 48.6536i 1.43722 + 2.48933i
\(383\) 12.7565 + 22.0950i 0.651829 + 1.12900i 0.982679 + 0.185318i \(0.0593314\pi\)
−0.330850 + 0.943684i \(0.607335\pi\)
\(384\) 0 0
\(385\) −25.1246 + 43.5171i −1.28047 + 2.21784i
\(386\) −33.6108 −1.71074
\(387\) 0 0
\(388\) 65.7771 3.33933
\(389\) 5.64583 9.77886i 0.286255 0.495808i −0.686658 0.726981i \(-0.740923\pi\)
0.972913 + 0.231173i \(0.0742562\pi\)
\(390\) 0 0
\(391\) 6.94427 + 12.0278i 0.351187 + 0.608274i
\(392\) −24.9283 43.1771i −1.25907 2.18077i
\(393\) 0 0
\(394\) 17.1074 29.6309i 0.861858 1.49278i
\(395\) −34.3024 −1.72594
\(396\) 0 0
\(397\) −0.291796 −0.0146448 −0.00732241 0.999973i \(-0.502331\pi\)
−0.00732241 + 0.999973i \(0.502331\pi\)
\(398\) −29.4959 + 51.0884i −1.47850 + 2.56083i
\(399\) 0 0
\(400\) −9.00000 15.5885i −0.450000 0.779423i
\(401\) −6.31223 10.9331i −0.315218 0.545973i 0.664266 0.747496i \(-0.268744\pi\)
−0.979484 + 0.201523i \(0.935411\pi\)
\(402\) 0 0
\(403\) 3.61803 6.26662i 0.180227 0.312163i
\(404\) −17.1512 −0.853305
\(405\) 0 0
\(406\) −31.0557 −1.54127
\(407\) 4.74048 8.21075i 0.234977 0.406992i
\(408\) 0 0
\(409\) −10.8541 18.7999i −0.536701 0.929593i −0.999079 0.0429102i \(-0.986337\pi\)
0.462378 0.886683i \(-0.346996\pi\)
\(410\) 21.5459 + 37.3186i 1.06408 + 1.84303i
\(411\) 0 0
\(412\) 3.19098 5.52694i 0.157208 0.272293i
\(413\) 9.05351 0.445494
\(414\) 0 0
\(415\) 3.47214 0.170440
\(416\) −1.63780 + 2.83674i −0.0802995 + 0.139083i
\(417\) 0 0
\(418\) 2.65248 + 4.59422i 0.129737 + 0.224711i
\(419\) −8.92142 15.4524i −0.435840 0.754897i 0.561524 0.827461i \(-0.310215\pi\)
−0.997364 + 0.0725637i \(0.976882\pi\)
\(420\) 0 0
\(421\) 19.5066 33.7864i 0.950692 1.64665i 0.206761 0.978391i \(-0.433708\pi\)
0.743931 0.668256i \(-0.232959\pi\)
\(422\) 38.9108 1.89415
\(423\) 0 0
\(424\) 22.4721 1.09134
\(425\) 23.0108 39.8558i 1.11619 1.93329i
\(426\) 0 0
\(427\) 22.8885 + 39.6441i 1.10765 + 1.91851i
\(428\) 13.8756 + 24.0333i 0.670704 + 1.16169i
\(429\) 0 0
\(430\) −1.07295 + 1.85840i −0.0517422 + 0.0896201i
\(431\) 13.3161 0.641413 0.320707 0.947179i \(-0.396080\pi\)
0.320707 + 0.947179i \(0.396080\pi\)
\(432\) 0 0
\(433\) 24.4721 1.17606 0.588028 0.808841i \(-0.299905\pi\)
0.588028 + 0.808841i \(0.299905\pi\)
\(434\) 38.3513 66.4264i 1.84092 3.18857i
\(435\) 0 0
\(436\) −16.1803 28.0252i −0.774898 1.34216i
\(437\) −1.11908 1.93830i −0.0535326 0.0927212i
\(438\) 0 0
\(439\) −12.3541 + 21.3979i −0.589629 + 1.02127i 0.404652 + 0.914471i \(0.367393\pi\)
−0.994281 + 0.106797i \(0.965941\pi\)
\(440\) −43.0918 −2.05432
\(441\) 0 0
\(442\) 11.2361 0.534445
\(443\) −1.46489 + 2.53726i −0.0695989 + 0.120549i −0.898725 0.438513i \(-0.855505\pi\)
0.829126 + 0.559062i \(0.188839\pi\)
\(444\) 0 0
\(445\) −19.9164 34.4962i −0.944128 1.63528i
\(446\) 17.9245 + 31.0461i 0.848748 + 1.47008i
\(447\) 0 0
\(448\) −25.6525 + 44.4314i −1.21197 + 2.09919i
\(449\) 3.83513 0.180991 0.0904954 0.995897i \(-0.471155\pi\)
0.0904954 + 0.995897i \(0.471155\pi\)
\(450\) 0 0
\(451\) 13.8885 0.653986
\(452\) 13.8756 24.0333i 0.652654 1.13043i
\(453\) 0 0
\(454\) −21.3992 37.0645i −1.00431 1.73952i
\(455\) −8.57561 14.8534i −0.402031 0.696337i
\(456\) 0 0
\(457\) 3.67376 6.36314i 0.171851 0.297655i −0.767216 0.641389i \(-0.778358\pi\)
0.939067 + 0.343734i \(0.111692\pi\)
\(458\) 11.2917 0.527625
\(459\) 0 0
\(460\) 40.6525 1.89543
\(461\) −17.6039 + 30.4908i −0.819895 + 1.42010i 0.0858645 + 0.996307i \(0.472635\pi\)
−0.905759 + 0.423793i \(0.860699\pi\)
\(462\) 0 0
\(463\) 0.145898 + 0.252703i 0.00678046 + 0.0117441i 0.869396 0.494116i \(-0.164508\pi\)
−0.862615 + 0.505861i \(0.831175\pi\)
\(464\) −2.71605 4.70434i −0.126090 0.218394i
\(465\) 0 0
\(466\) 23.7984 41.2200i 1.10244 1.90948i
\(467\) 37.6596 1.74268 0.871340 0.490679i \(-0.163251\pi\)
0.871340 + 0.490679i \(0.163251\pi\)
\(468\) 0 0
\(469\) 12.3607 0.570763
\(470\) 17.4310 30.1913i 0.804031 1.39262i
\(471\) 0 0
\(472\) 3.88197 + 6.72376i 0.178682 + 0.309486i
\(473\) 0.345813 + 0.598966i 0.0159005 + 0.0275405i
\(474\) 0 0
\(475\) −3.70820 + 6.42280i −0.170144 + 0.294698i
\(476\) 76.7026 3.51566
\(477\) 0 0
\(478\) −34.7214 −1.58812
\(479\) 16.3527 28.3237i 0.747175 1.29415i −0.201997 0.979386i \(-0.564743\pi\)
0.949172 0.314759i \(-0.101924\pi\)
\(480\) 0 0
\(481\) 1.61803 + 2.80252i 0.0737760 + 0.127784i
\(482\) −16.0321 27.7685i −0.730244 1.26482i
\(483\) 0 0
\(484\) 4.37132 7.57135i 0.198696 0.344152i
\(485\) 69.7239 3.16600
\(486\) 0 0
\(487\) 16.4721 0.746424 0.373212 0.927746i \(-0.378256\pi\)
0.373212 + 0.927746i \(0.378256\pi\)
\(488\) −19.6283 + 33.9972i −0.888532 + 1.53898i
\(489\) 0 0
\(490\) −59.0861 102.340i −2.66924 4.62326i
\(491\) −20.6405 35.7504i −0.931494 1.61339i −0.780770 0.624819i \(-0.785173\pi\)
−0.150724 0.988576i \(-0.548161\pi\)
\(492\) 0 0
\(493\) 6.94427 12.0278i 0.312754 0.541706i
\(494\) −1.81070 −0.0814673
\(495\) 0 0
\(496\) 13.4164 0.602414
\(497\) −19.1756 + 33.2132i −0.860145 + 1.48981i
\(498\) 0 0
\(499\) 2.18034 + 3.77646i 0.0976054 + 0.169058i 0.910693 0.413084i \(-0.135548\pi\)
−0.813088 + 0.582141i \(0.802215\pi\)
\(500\) −32.6646 56.5768i −1.46081 2.53019i
\(501\) 0 0
\(502\) 27.2705 47.2339i 1.21714 2.10815i
\(503\) −10.6000 −0.472632 −0.236316 0.971676i \(-0.575940\pi\)
−0.236316 + 0.971676i \(0.575940\pi\)
\(504\) 0 0
\(505\) −18.1803 −0.809015
\(506\) 10.1726 17.6194i 0.452226 0.783279i
\(507\) 0 0
\(508\) 10.7533 + 18.6252i 0.477100 + 0.826362i
\(509\) 6.09850 + 10.5629i 0.270311 + 0.468193i 0.968942 0.247290i \(-0.0795400\pi\)
−0.698630 + 0.715483i \(0.746207\pi\)
\(510\) 0 0
\(511\) −23.4164 + 40.5584i −1.03588 + 1.79420i
\(512\) −20.2947 −0.896908
\(513\) 0 0
\(514\) −65.7771 −2.90130
\(515\) 3.38245 5.85858i 0.149049 0.258160i
\(516\) 0 0
\(517\) −5.61803 9.73072i −0.247081 0.427957i
\(518\) 17.1512 + 29.7068i 0.753581 + 1.30524i
\(519\) 0 0
\(520\) 7.35410 12.7377i 0.322499 0.558584i
\(521\) −6.97863 −0.305739 −0.152870 0.988246i \(-0.548851\pi\)
−0.152870 + 0.988246i \(0.548851\pi\)
\(522\) 0 0
\(523\) −7.65248 −0.334619 −0.167310 0.985904i \(-0.553508\pi\)
−0.167310 + 0.985904i \(0.553508\pi\)
\(524\) −36.3269 + 62.9200i −1.58695 + 2.74867i
\(525\) 0 0
\(526\) −33.7082 58.3843i −1.46975 2.54568i
\(527\) 17.1512 + 29.7068i 0.747119 + 1.29405i
\(528\) 0 0
\(529\) 7.20820 12.4850i 0.313400 0.542825i
\(530\) 53.2643 2.31366
\(531\) 0 0
\(532\) −12.3607 −0.535903
\(533\) −2.37024 + 4.10537i −0.102666 + 0.177824i
\(534\) 0 0
\(535\) 14.7082 + 25.4754i 0.635891 + 1.10140i
\(536\) 5.30002 + 9.17990i 0.228926 + 0.396511i
\(537\) 0 0
\(538\) 6.43769 11.1504i 0.277549 0.480728i
\(539\) −38.0871 −1.64053
\(540\) 0 0
\(541\) −23.7082 −1.01930 −0.509648 0.860383i \(-0.670224\pi\)
−0.509648 + 0.860383i \(0.670224\pi\)
\(542\) 1.46489 2.53726i 0.0629223 0.108985i
\(543\) 0 0
\(544\) −7.76393 13.4475i −0.332876 0.576558i
\(545\) −17.1512 29.7068i −0.734677 1.27250i
\(546\) 0 0
\(547\) 12.6525 21.9147i 0.540981 0.937006i −0.457867 0.889021i \(-0.651386\pi\)
0.998848 0.0479856i \(-0.0152802\pi\)
\(548\) −38.3513 −1.63829
\(549\) 0 0
\(550\) −67.4164 −2.87465
\(551\) −1.11908 + 1.93830i −0.0476742 + 0.0825741i
\(552\) 0 0
\(553\) −20.0000 34.6410i −0.850487 1.47309i
\(554\) −8.29584 14.3688i −0.352456 0.610472i
\(555\) 0 0
\(556\) −5.75329 + 9.96499i −0.243994 + 0.422610i
\(557\) −16.4596 −0.697415 −0.348708 0.937232i \(-0.613379\pi\)
−0.348708 + 0.937232i \(0.613379\pi\)
\(558\) 0 0
\(559\) −0.236068 −0.00998461
\(560\) 15.9000 27.5397i 0.671900 1.16376i
\(561\) 0 0
\(562\) 22.7254 + 39.3616i 0.958614 + 1.66037i
\(563\) −1.25116 2.16708i −0.0527303 0.0913315i 0.838455 0.544970i \(-0.183459\pi\)
−0.891186 + 0.453639i \(0.850126\pi\)
\(564\) 0 0
\(565\) 14.7082 25.4754i 0.618779 1.07176i
\(566\) 10.4679 0.440000
\(567\) 0 0
\(568\) −32.8885 −1.37997
\(569\) −2.92978 + 5.07452i −0.122823 + 0.212735i −0.920880 0.389847i \(-0.872528\pi\)
0.798057 + 0.602582i \(0.205861\pi\)
\(570\) 0 0
\(571\) −3.50000 6.06218i −0.146470 0.253694i 0.783450 0.621455i \(-0.213458\pi\)
−0.929921 + 0.367760i \(0.880125\pi\)
\(572\) −5.30002 9.17990i −0.221605 0.383831i
\(573\) 0 0
\(574\) −25.1246 + 43.5171i −1.04868 + 1.81637i
\(575\) 28.4429 1.18615
\(576\) 0 0
\(577\) 21.4164 0.891577 0.445788 0.895138i \(-0.352923\pi\)
0.445788 + 0.895138i \(0.352923\pi\)
\(578\) −6.48514 + 11.2326i −0.269746 + 0.467214i
\(579\) 0 0
\(580\) −20.3262 35.2061i −0.844001 1.46185i
\(581\) 2.02443 + 3.50641i 0.0839873 + 0.145470i
\(582\) 0 0
\(583\) 8.58359 14.8672i 0.355496 0.615737i
\(584\) −40.1620 −1.66191
\(585\) 0 0
\(586\) 2.65248 0.109573
\(587\) 4.39467 7.61178i 0.181387 0.314172i −0.760966 0.648792i \(-0.775275\pi\)
0.942353 + 0.334620i \(0.108608\pi\)
\(588\) 0 0
\(589\) −2.76393 4.78727i −0.113886 0.197256i
\(590\) 9.20119 + 15.9369i 0.378807 + 0.656113i
\(591\) 0 0
\(592\) −3.00000 + 5.19615i −0.123299 + 0.213561i
\(593\) 14.2214 0.584004 0.292002 0.956418i \(-0.405679\pi\)
0.292002 + 0.956418i \(0.405679\pi\)
\(594\) 0 0
\(595\) 81.3050 3.33318
\(596\) −8.96224 + 15.5230i −0.367108 + 0.635849i
\(597\) 0 0
\(598\) 3.47214 + 6.01392i 0.141986 + 0.245927i
\(599\) −0.559538 0.969148i −0.0228621 0.0395983i 0.854368 0.519668i \(-0.173945\pi\)
−0.877230 + 0.480070i \(0.840611\pi\)
\(600\) 0 0
\(601\) 1.29837 2.24885i 0.0529618 0.0917325i −0.838329 0.545165i \(-0.816467\pi\)
0.891291 + 0.453432i \(0.149801\pi\)
\(602\) −2.50233 −0.101987
\(603\) 0 0
\(604\) 0 0
\(605\) 4.63362 8.02566i 0.188383 0.326289i
\(606\) 0 0
\(607\) −4.00000 6.92820i −0.162355 0.281207i 0.773358 0.633970i \(-0.218576\pi\)
−0.935713 + 0.352763i \(0.885242\pi\)
\(608\) 1.25116 + 2.16708i 0.0507414 + 0.0878867i
\(609\) 0 0
\(610\) −46.5238 + 80.5816i −1.88369 + 3.26265i
\(611\) 3.83513 0.155153
\(612\) 0 0
\(613\) −3.05573 −0.123420 −0.0617098 0.998094i \(-0.519655\pi\)
−0.0617098 + 0.998094i \(0.519655\pi\)
\(614\) 27.1917 47.0974i 1.09737 1.90070i
\(615\) 0 0
\(616\) −25.1246 43.5171i −1.01230 1.75335i
\(617\) 15.4474 + 26.7556i 0.621888 + 1.07714i 0.989134 + 0.147017i \(0.0469674\pi\)
−0.367246 + 0.930124i \(0.619699\pi\)
\(618\) 0 0
\(619\) 22.6525 39.2352i 0.910480 1.57700i 0.0970922 0.995275i \(-0.469046\pi\)
0.813388 0.581722i \(-0.197621\pi\)
\(620\) 100.405 4.03236
\(621\) 0 0
\(622\) −36.3607 −1.45793
\(623\) 23.2245 40.2260i 0.930470 1.61162i
\(624\) 0 0
\(625\) −10.3541 17.9338i −0.414164 0.717353i
\(626\) −36.3929 63.0343i −1.45455 2.51936i
\(627\) 0 0
\(628\) −44.1697 + 76.5042i −1.76256 + 3.05285i
\(629\) −15.3405 −0.611666
\(630\) 0 0
\(631\) 19.3050 0.768518 0.384259 0.923225i \(-0.374457\pi\)
0.384259 + 0.923225i \(0.374457\pi\)
\(632\) 17.1512 29.7068i 0.682239 1.18167i
\(633\) 0 0
\(634\) 16.8541 + 29.1922i 0.669362 + 1.15937i
\(635\) 11.3985 + 19.7428i 0.452336 + 0.783470i
\(636\) 0 0
\(637\) 6.50000 11.2583i 0.257539 0.446071i
\(638\) −20.3452 −0.805473
\(639\) 0 0
\(640\) −79.1591 −3.12904
\(641\) −16.8054 + 29.1078i −0.663773 + 1.14969i 0.315843 + 0.948811i \(0.397713\pi\)
−0.979616 + 0.200878i \(0.935621\pi\)
\(642\) 0 0
\(643\) −8.90983 15.4323i −0.351369 0.608590i 0.635120 0.772413i \(-0.280951\pi\)
−0.986490 + 0.163824i \(0.947617\pi\)
\(644\) 23.7024 + 41.0537i 0.934005 + 1.61774i
\(645\) 0 0
\(646\) 4.29180 7.43361i 0.168858 0.292471i
\(647\) 25.2489 0.992637 0.496319 0.868140i \(-0.334685\pi\)
0.496319 + 0.868140i \(0.334685\pi\)
\(648\) 0 0
\(649\) 5.93112 0.232817
\(650\) 11.5054 19.9279i 0.451278 0.781637i
\(651\) 0 0
\(652\) −1.70820 2.95870i −0.0668984 0.115871i
\(653\) 12.4107 + 21.4960i 0.485670 + 0.841204i 0.999864 0.0164691i \(-0.00524251\pi\)
−0.514195 + 0.857673i \(0.671909\pi\)
\(654\) 0 0
\(655\) −38.5066 + 66.6953i −1.50458 + 2.60600i
\(656\) −8.78933 −0.343166
\(657\) 0 0
\(658\) 40.6525 1.58480
\(659\) −4.95420 + 8.58093i −0.192988 + 0.334266i −0.946239 0.323468i \(-0.895151\pi\)
0.753251 + 0.657733i \(0.228485\pi\)
\(660\) 0 0
\(661\) −1.85410 3.21140i −0.0721162 0.124909i 0.827712 0.561153i \(-0.189642\pi\)
−0.899829 + 0.436244i \(0.856309\pi\)
\(662\) 31.9322 + 55.3082i 1.24108 + 2.14961i
\(663\) 0 0
\(664\) −1.73607 + 3.00696i −0.0673725 + 0.116693i
\(665\) −13.1024 −0.508088
\(666\) 0 0
\(667\) 8.58359 0.332358
\(668\) −8.18898 + 14.1837i −0.316841 + 0.548785i
\(669\) 0 0
\(670\) 12.5623 + 21.7586i 0.485324 + 0.840606i
\(671\) 14.9947 + 25.9716i 0.578864 + 1.00262i
\(672\) 0 0
\(673\) 2.97214 5.14789i 0.114567 0.198437i −0.803039 0.595926i \(-0.796785\pi\)
0.917607 + 0.397489i \(0.130118\pi\)
\(674\) 18.1382 0.698657
\(675\) 0 0
\(676\) 3.61803 0.139155
\(677\) −11.8512 + 20.5269i −0.455478 + 0.788912i −0.998716 0.0506675i \(-0.983865\pi\)
0.543237 + 0.839579i \(0.317198\pi\)
\(678\) 0 0
\(679\) 40.6525 + 70.4122i 1.56010 + 2.70217i
\(680\) 34.8620 + 60.3827i 1.33690 + 2.31557i
\(681\) 0 0
\(682\) 25.1246 43.5171i 0.962071 1.66636i
\(683\) 19.8673 0.760200 0.380100 0.924945i \(-0.375890\pi\)
0.380100 + 0.924945i \(0.375890\pi\)
\(684\) 0 0
\(685\) −40.6525 −1.55325
\(686\) 31.8001 55.0794i 1.21413 2.10294i
\(687\) 0 0
\(688\) −0.218847 0.379054i −0.00834347 0.0144513i
\(689\) 2.92978 + 5.07452i 0.111616 + 0.193324i
\(690\) 0 0
\(691\) 5.90983 10.2361i 0.224821 0.389401i −0.731445 0.681900i \(-0.761154\pi\)
0.956266 + 0.292500i \(0.0944871\pi\)
\(692\) −55.5025 −2.10989
\(693\) 0 0
\(694\) 65.7771 2.49686
\(695\) −6.09850 + 10.5629i −0.231329 + 0.400674i
\(696\) 0 0
\(697\) −11.2361 19.4614i −0.425596 0.737155i
\(698\) −0.213724 0.370181i −0.00808959 0.0140116i
\(699\) 0 0
\(700\) 78.5410 136.037i 2.96857 5.14172i
\(701\) −8.36188 −0.315824 −0.157912 0.987453i \(-0.550476\pi\)
−0.157912 + 0.987453i \(0.550476\pi\)
\(702\) 0 0
\(703\) 2.47214 0.0932384
\(704\) −16.8054 + 29.1078i −0.633377 + 1.09704i
\(705\) 0 0
\(706\) 33.9615 + 58.8230i 1.27816 + 2.21383i
\(707\) −10.6000 18.3598i −0.398655 0.690491i
\(708\) 0 0
\(709\) 25.7984 44.6841i 0.968878 1.67815i 0.270065 0.962842i \(-0.412955\pi\)
0.698813 0.715304i \(-0.253712\pi\)
\(710\) −77.9537 −2.92555
\(711\) 0 0
\(712\) 39.8328 1.49280
\(713\) −10.6000 + 18.3598i −0.396974 + 0.687580i
\(714\) 0 0
\(715\) −5.61803 9.73072i −0.210103 0.363908i
\(716\) −37.5780 65.0870i −1.40436 2.43242i
\(717\) 0 0
\(718\) −30.4894 + 52.8091i −1.13785 + 1.97082i
\(719\) −8.36188 −0.311846 −0.155923 0.987769i \(-0.549835\pi\)
−0.155923 + 0.987769i \(0.549835\pi\)
\(720\) 0 0
\(721\) 7.88854 0.293785
\(722\) 21.8256 37.8031i 0.812266 1.40689i
\(723\) 0 0
\(724\) 12.6631 + 21.9332i 0.470621 + 0.815140i
\(725\) −14.2214 24.6322i −0.528171 0.914819i
\(726\) 0 0
\(727\) 0.472136 0.817763i 0.0175106 0.0303292i −0.857137 0.515088i \(-0.827759\pi\)
0.874648 + 0.484759i \(0.161093\pi\)
\(728\) 17.1512 0.635666
\(729\) 0 0
\(730\) −95.1935 −3.52327
\(731\) 0.559538 0.969148i 0.0206952 0.0358452i
\(732\) 0 0
\(733\) 7.38197 + 12.7859i 0.272659 + 0.472259i 0.969542 0.244926i \(-0.0787635\pi\)
−0.696883 + 0.717185i \(0.745430\pi\)
\(734\) −8.78933 15.2236i −0.324420 0.561912i
\(735\) 0 0
\(736\) 4.79837 8.31103i 0.176870 0.306349i
\(737\) 8.09770 0.298283
\(738\) 0 0
\(739\) 8.11146 0.298385 0.149192 0.988808i \(-0.452333\pi\)
0.149192 + 0.988808i \(0.452333\pi\)
\(740\) −22.4512 + 38.8867i −0.825324 + 1.42950i
\(741\) 0 0
\(742\) 31.0557 + 53.7901i 1.14009 + 1.97470i
\(743\) 18.5092 + 32.0589i 0.679038 + 1.17613i 0.975271 + 0.221013i \(0.0709362\pi\)
−0.296233 + 0.955116i \(0.595730\pi\)
\(744\) 0 0
\(745\) −9.50000 + 16.4545i −0.348053 + 0.602846i
\(746\) −20.6405 −0.755703
\(747\) 0 0
\(748\) 50.2492 1.83729
\(749\) −17.1512 + 29.7068i −0.626692 + 1.08546i
\(750\) 0 0
\(751\) −21.4164 37.0943i −0.781496 1.35359i −0.931070 0.364840i \(-0.881124\pi\)
0.149574 0.988750i \(-0.452210\pi\)
\(752\) 3.55536 + 6.15806i 0.129651 + 0.224561i
\(753\) 0 0
\(754\) 3.47214 6.01392i 0.126448 0.219014i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41641 0.0514802 0.0257401 0.999669i \(-0.491806\pi\)
0.0257401 + 0.999669i \(0.491806\pi\)
\(758\) −11.8512 + 20.5269i −0.430455 + 0.745570i
\(759\) 0 0
\(760\) −5.61803 9.73072i −0.203788 0.352970i
\(761\) −19.9741 34.5962i −0.724062 1.25411i −0.959359 0.282188i \(-0.908940\pi\)
0.235298 0.971923i \(-0.424394\pi\)
\(762\) 0 0
\(763\) 20.0000 34.6410i 0.724049 1.25409i
\(764\) −85.7561 −3.10255
\(765\) 0 0
\(766\) −60.4721 −2.18495
\(767\) −1.01221 + 1.75320i −0.0365489 + 0.0633045i
\(768\) 0 0
\(769\) −18.7082 32.4036i −0.674635 1.16850i −0.976575 0.215175i \(-0.930968\pi\)
0.301940 0.953327i \(-0.402366\pi\)
\(770\) −59.5513 103.146i −2.14608 3.71712i
\(771\) 0 0
\(772\) 25.6525 44.4314i 0.923253 1.59912i
\(773\) −44.6887 −1.60734 −0.803671 0.595074i \(-0.797123\pi\)
−0.803671 + 0.595074i \(0.797123\pi\)
\(774\) 0 0
\(775\) 70.2492 2.52343
\(776\) −34.8620 + 60.3827i −1.25147 + 2.16761i
\(777\) 0 0
\(778\) 13.3820 + 23.1782i 0.479767 + 0.830980i
\(779\) 1.81070 + 3.13623i 0.0648751 + 0.112367i
\(780\) 0 0
\(781\) −12.5623 + 21.7586i −0.449515 + 0.778582i
\(782\) −32.9192 −1.17719
\(783\) 0 0
\(784\) 24.1033 0.860833
\(785\) −46.8200 + 81.0947i −1.67108 + 2.89439i
\(786\) 0 0
\(787\) −0.944272 1.63553i −0.0336597 0.0583002i 0.848705 0.528867i \(-0.177383\pi\)
−0.882365 + 0.470567i \(0.844050\pi\)
\(788\) 26.1134 + 45.2298i 0.930253 + 1.61125i
\(789\) 0 0
\(790\) 40.6525 70.4122i 1.44635 2.50515i
\(791\) 34.3024 1.21965
\(792\) 0 0
\(793\) −10.2361 −0.363493
\(794\) 0.345813 0.598966i 0.0122725 0.0212565i
\(795\) 0 0
\(796\) −45.0238 77.9835i −1.59583 2.76405i
\(797\) −18.0566 31.2749i −0.639596 1.10781i −0.985521 0.169551i \(-0.945768\pi\)
0.345925 0.938262i \(-0.387565\pi\)
\(798\) 0 0
\(799\) −9.09017 + 15.7446i −0.321587 + 0.557005i
\(800\) −31.8001 −1.12430
\(801\) 0 0
\(802\) 29.9230 1.05662
\(803\) −15.3405 + 26.5705i −0.541355 + 0.937654i
\(804\) 0 0
\(805\) 25.1246 + 43.5171i 0.885526 + 1.53378i
\(806\) 8.57561 + 14.8534i 0.302063 + 0.523188i
\(807\) 0 0
\(808\) 9.09017 15.7446i 0.319791 0.553894i
\(809\) 43.7834 1.53934 0.769671 0.638441i \(-0.220420\pi\)
0.769671 + 0.638441i \(0.220420\pi\)
\(810\) 0 0
\(811\) 33.5279 1.17732 0.588661 0.808380i \(-0.299655\pi\)
0.588661 + 0.808380i \(0.299655\pi\)
\(812\) 23.7024 41.0537i 0.831791 1.44070i
\(813\) 0 0
\(814\) 11.2361 + 19.4614i 0.393824 + 0.682123i
\(815\) −1.81070 3.13623i −0.0634261 0.109857i
\(816\) 0 0
\(817\) −0.0901699 + 0.156179i −0.00315465 + 0.00546401i
\(818\) 51.4536 1.79903
\(819\) 0 0
\(820\) −65.7771 −2.29704
\(821\) 11.1596 19.3289i 0.389472 0.674585i −0.602907 0.797812i \(-0.705991\pi\)
0.992379 + 0.123227i \(0.0393243\pi\)
\(822\) 0 0
\(823\) 3.93769 + 6.82029i 0.137259 + 0.237740i 0.926458 0.376397i \(-0.122837\pi\)
−0.789199 + 0.614138i \(0.789504\pi\)
\(824\) 3.38245 + 5.85858i 0.117833 + 0.204093i
\(825\) 0 0
\(826\) −10.7295 + 18.5840i −0.373327 + 0.646621i
\(827\) −31.3726 −1.09093 −0.545467 0.838132i \(-0.683648\pi\)
−0.545467 + 0.838132i \(0.683648\pi\)
\(828\) 0 0
\(829\) 11.1803 0.388309 0.194155 0.980971i \(-0.437804\pi\)
0.194155 + 0.980971i \(0.437804\pi\)
\(830\) −4.11490 + 7.12721i −0.142830 + 0.247389i
\(831\) 0 0
\(832\) −5.73607 9.93516i −0.198862 0.344440i
\(833\) 30.8131 + 53.3699i 1.06761 + 1.84916i
\(834\) 0 0
\(835\) −8.68034 + 15.0348i −0.300396 + 0.520300i
\(836\) −8.09770 −0.280065
\(837\) 0 0
\(838\) 42.2918 1.46095
\(839\) −10.8390 + 18.7737i −0.374203 + 0.648139i −0.990207 0.139604i \(-0.955417\pi\)
0.616004 + 0.787743i \(0.288750\pi\)
\(840\) 0 0
\(841\) 10.2082 + 17.6811i 0.352007 + 0.609694i
\(842\) 46.2353 + 80.0818i 1.59337 + 2.75980i
\(843\) 0 0
\(844\) −29.6976 + 51.4377i −1.02223 + 1.77056i
\(845\) 3.83513 0.131932
\(846\) 0 0
\(847\) 10.8065 0.371316
\(848\) −5.43210 + 9.40868i −0.186539 + 0.323095i
\(849\) 0 0
\(850\) 54.5410 + 94.4678i 1.87074 + 3.24022i
\(851\) −4.74048 8.21075i −0.162502 0.281461i
\(852\) 0 0
\(853\) 4.05573 7.02473i 0.138865 0.240522i −0.788202 0.615417i \(-0.788988\pi\)
0.927067 + 0.374895i \(0.122321\pi\)
\(854\) −108.503 −3.71288
\(855\) 0 0
\(856\) −29.4164 −1.00543
\(857\) 6.20537 10.7480i 0.211971 0.367145i −0.740360 0.672210i \(-0.765345\pi\)
0.952331 + 0.305065i \(0.0986783\pi\)
\(858\) 0 0
\(859\) −2.18034 3.77646i −0.0743922 0.128851i 0.826430 0.563040i \(-0.190368\pi\)
−0.900822 + 0.434189i \(0.857035\pi\)
\(860\) −1.63780 2.83674i −0.0558483 0.0967322i
\(861\) 0 0
\(862\) −15.7812 + 27.3338i −0.537508 + 0.930992i
\(863\) −16.2459 −0.553016 −0.276508 0.961012i \(-0.589177\pi\)
−0.276508 + 0.961012i \(0.589177\pi\)
\(864\) 0 0
\(865\) −58.8328 −2.00038
\(866\) −29.0024 + 50.2336i −0.985542 + 1.70701i
\(867\) 0 0
\(868\) 58.5410 + 101.396i 1.98701 + 3.44161i
\(869\) −13.1024 22.6940i −0.444467 0.769840i
\(870\) 0 0
\(871\) −1.38197 + 2.39364i −0.0468261 + 0.0811052i
\(872\) 34.3024 1.16163
\(873\) 0 0
\(874\) 5.30495 0.179443
\(875\) 40.3757 69.9328i 1.36495 2.36416i
\(876\) 0 0
\(877\) −0.180340 0.312358i −0.00608965 0.0105476i 0.862965 0.505265i \(-0.168605\pi\)
−0.869054 + 0.494717i \(0.835272\pi\)
\(878\) −29.2822 50.7182i −0.988226 1.71166i
\(879\) 0 0
\(880\) 10.4164 18.0417i 0.351137 0.608187i
\(881\) −32.0643 −1.08027 −0.540136 0.841577i \(-0.681627\pi\)
−0.540136 + 0.841577i \(0.681627\pi\)
\(882\) 0 0
\(883\) 41.8885 1.40966 0.704831 0.709375i \(-0.251023\pi\)
0.704831 + 0.709375i \(0.251023\pi\)
\(884\) −8.57561 + 14.8534i −0.288429 + 0.499573i
\(885\) 0 0
\(886\) −3.47214 6.01392i −0.116649 0.202041i
\(887\) −11.7191 20.2981i −0.393489 0.681543i 0.599418 0.800436i \(-0.295399\pi\)
−0.992907 + 0.118893i \(0.962065\pi\)
\(888\) 0 0
\(889\) −13.2918 + 23.0221i −0.445793 + 0.772135i
\(890\) 94.4133 3.16474
\(891\) 0 0
\(892\) −54.7214 −1.83221
\(893\) 1.46489 2.53726i 0.0490206 0.0849062i
\(894\) 0 0
\(895\) −39.8328 68.9925i −1.33146 2.30616i
\(896\) −46.1536 79.9404i −1.54188 2.67062i
\(897\) 0 0
\(898\) −4.54508 + 7.87232i −0.151671 + 0.262703i
\(899\) 21.2001 0.707062
\(900\) 0 0
\(901\) −27.7771 −0.925389
\(902\) −16.4596 + 28.5088i −0.548044 + 0.949240i
\(903\) 0 0
\(904\) 14.7082 + 25.4754i 0.489188 + 0.847298i
\(905\) 13.4229 + 23.2492i 0.446194 + 0.772830i
\(906\) 0 0
\(907\) −19.9164 + 34.4962i −0.661313 + 1.14543i 0.318957 + 0.947769i \(0.396667\pi\)
−0.980271 + 0.197659i \(0.936666\pi\)
\(908\) 65.3293 2.16803
\(909\) 0 0
\(910\) 40.6525 1.34762
\(911\) −4.18094 + 7.24160i −0.138521 + 0.239925i −0.926937 0.375217i \(-0.877568\pi\)
0.788416 + 0.615142i \(0.210901\pi\)
\(912\) 0 0
\(913\) 1.32624 + 2.29711i 0.0438921 + 0.0760233i
\(914\) 8.70769 + 15.0822i 0.288025 + 0.498874i
\(915\) 0 0
\(916\) −8.61803 + 14.9269i −0.284748 + 0.493198i
\(917\) −89.8049 −2.96562
\(918\) 0 0
\(919\) 41.3607 1.36436 0.682181 0.731183i \(-0.261031\pi\)
0.682181 + 0.731183i \(0.261031\pi\)
\(920\) −21.5459 + 37.3186i −0.710347 + 1.23036i
\(921\) 0 0
\(922\) −41.7254 72.2706i −1.37415 2.38010i
\(923\) −4.28780 7.42669i −0.141135 0.244453i
\(924\) 0 0
\(925\) −15.7082 + 27.2074i −0.516483 + 0.894574i
\(926\) −0.691626 −0.0227283
\(927\) 0 0
\(928\) −9.59675 −0.315029
\(929\) −11.1596 + 19.3289i −0.366134 + 0.634162i −0.988957 0.148200i \(-0.952652\pi\)
0.622824 + 0.782362i \(0.285985\pi\)
\(930\) 0 0
\(931\) −4.96556 8.60060i −0.162740 0.281873i
\(932\) 36.3269 + 62.9200i 1.18993 + 2.06101i
\(933\) 0 0
\(934\) −44.6312 + 77.3035i −1.46038 + 2.52945i
\(935\) 53.2643 1.74193
\(936\) 0 0
\(937\) −46.4853 −1.51861 −0.759304 0.650736i \(-0.774461\pi\)
−0.759304 + 0.650736i \(0.774461\pi\)
\(938\) −14.6489 + 25.3726i −0.478303 + 0.828445i
\(939\) 0 0
\(940\) 26.6074 + 46.0854i 0.867837 + 1.50314i
\(941\) 11.1596 + 19.3289i 0.363792 + 0.630105i 0.988581 0.150687i \(-0.0481487\pi\)
−0.624790 + 0.780793i \(0.714815\pi\)
\(942\) 0 0
\(943\) 6.94427 12.0278i 0.226137 0.391680i
\(944\) −3.75349 −0.122166
\(945\) 0 0
\(946\) −1.63932 −0.0532989
\(947\) −2.60919 + 4.51925i −0.0847873 + 0.146856i −0.905301 0.424772i \(-0.860354\pi\)
0.820513 + 0.571627i \(0.193688\pi\)
\(948\) 0 0
\(949\) −5.23607 9.06914i −0.169970 0.294397i
\(950\) −8.78933 15.2236i −0.285164 0.493918i
\(951\) 0 0
\(952\) −40.6525 + 70.4122i −1.31755 + 2.28207i
\(953\) −0.691626 −0.0224040 −0.0112020 0.999937i \(-0.503566\pi\)
−0.0112020 + 0.999937i \(0.503566\pi\)
\(954\) 0 0
\(955\) −90.9017 −2.94151
\(956\) 26.5001 45.8995i 0.857074 1.48450i
\(957\) 0 0
\(958\) 38.7599 + 67.1341i 1.25227 + 2.16900i
\(959\) −23.7024 41.0537i −0.765390 1.32569i
\(960\) 0 0
\(961\) −10.6803 + 18.4989i −0.344527 + 0.596738i
\(962\) −7.67026 −0.247299
\(963\) 0 0
\(964\) 48.9443 1.57639
\(965\) 27.1917 47.0974i 0.875332 1.51612i
\(966\) 0 0
\(967\) −5.38197 9.32184i −0.173072 0.299770i 0.766420 0.642340i \(-0.222036\pi\)
−0.939492 + 0.342569i \(0.888703\pi\)
\(968\) 4.63362 + 8.02566i 0.148930 + 0.257954i
\(969\) 0 0
\(970\) −82.6312 + 143.121i −2.65313 + 4.59535i
\(971\) −45.3299 −1.45471 −0.727353 0.686264i \(-0.759250\pi\)
−0.727353 + 0.686264i \(0.759250\pi\)
\(972\) 0 0
\(973\) −14.2229 −0.455966
\(974\) −19.5215 + 33.8121i −0.625508 + 1.08341i
\(975\) 0 0
\(976\) −9.48936 16.4360i −0.303747 0.526105i
\(977\) 18.1634 + 31.4600i 0.581099 + 1.00649i 0.995349 + 0.0963306i \(0.0307106\pi\)
−0.414250 + 0.910163i \(0.635956\pi\)
\(978\) 0 0
\(979\) 15.2148 26.3528i 0.486267 0.842238i
\(980\) 180.383 5.76213
\(981\) 0 0
\(982\) 97.8460 3.12239
\(983\) 20.4268 35.3803i 0.651514 1.12846i −0.331242 0.943546i \(-0.607468\pi\)
0.982756 0.184909i \(-0.0591991\pi\)
\(984\) 0 0
\(985\) 27.6803 + 47.9438i 0.881969 + 1.52762i
\(986\) 16.4596 + 28.5088i 0.524180 + 0.907906i
\(987\) 0 0
\(988\) 1.38197 2.39364i 0.0439662 0.0761517i
\(989\) 0.691626 0.0219924
\(990\) 0 0
\(991\) 12.3475 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(992\) 11.8512 20.5269i 0.376276 0.651729i
\(993\) 0 0
\(994\) −45.4508 78.7232i −1.44161 2.49695i
\(995\) −47.7254 82.6628i −1.51300 2.62059i
\(996\) 0 0
\(997\) 7.55573 13.0869i 0.239292 0.414466i −0.721219 0.692707i \(-0.756418\pi\)
0.960511 + 0.278241i \(0.0897512\pi\)
\(998\) −10.3359 −0.327176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.p.703.1 8
3.2 odd 2 inner 1053.2.e.p.703.4 8
9.2 odd 6 351.2.a.f.1.1 4
9.4 even 3 inner 1053.2.e.p.352.1 8
9.5 odd 6 inner 1053.2.e.p.352.4 8
9.7 even 3 351.2.a.f.1.4 yes 4
36.7 odd 6 5616.2.a.ch.1.4 4
36.11 even 6 5616.2.a.ch.1.1 4
45.29 odd 6 8775.2.a.bo.1.4 4
45.34 even 6 8775.2.a.bo.1.1 4
117.25 even 6 4563.2.a.ba.1.1 4
117.38 odd 6 4563.2.a.ba.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.a.f.1.1 4 9.2 odd 6
351.2.a.f.1.4 yes 4 9.7 even 3
1053.2.e.p.352.1 8 9.4 even 3 inner
1053.2.e.p.352.4 8 9.5 odd 6 inner
1053.2.e.p.703.1 8 1.1 even 1 trivial
1053.2.e.p.703.4 8 3.2 odd 2 inner
4563.2.a.ba.1.1 4 117.25 even 6
4563.2.a.ba.1.4 4 117.38 odd 6
5616.2.a.ch.1.1 4 36.11 even 6
5616.2.a.ch.1.4 4 36.7 odd 6
8775.2.a.bo.1.1 4 45.34 even 6
8775.2.a.bo.1.4 4 45.29 odd 6