Properties

Label 1053.2.e.p.352.1
Level $1053$
Weight $2$
Character 1053.352
Analytic conductor $8.408$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-10,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.4678560000.4
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 9x^{6} + 62x^{4} + 171x^{2} + 361 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 352.1
Root \(1.18512 - 2.05269i\) of defining polynomial
Character \(\chi\) \(=\) 1053.352
Dual form 1053.2.e.p.703.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.18512 - 2.05269i) q^{2} +(-1.80902 + 3.13331i) q^{4} +(-1.91756 + 3.32132i) q^{5} +(2.23607 + 3.87298i) q^{7} +3.83513 q^{8} +9.09017 q^{10} +(1.46489 + 2.53726i) q^{11} +(0.500000 - 0.866025i) q^{13} +(5.30002 - 9.17990i) q^{14} +(-0.927051 - 1.60570i) q^{16} -4.74048 q^{17} +0.763932 q^{19} +(-6.93781 - 12.0166i) q^{20} +(3.47214 - 6.01392i) q^{22} +(-1.46489 + 2.53726i) q^{23} +(-4.85410 - 8.40755i) q^{25} -2.37024 q^{26} -16.1803 q^{28} +(-1.46489 - 2.53726i) q^{29} +(-3.61803 + 6.26662i) q^{31} +(1.63780 - 2.83674i) q^{32} +(5.61803 + 9.73072i) q^{34} -17.1512 q^{35} +3.23607 q^{37} +(-0.905351 - 1.56811i) q^{38} +(-7.35410 + 12.7377i) q^{40} +(2.37024 - 4.10537i) q^{41} +(-0.118034 - 0.204441i) q^{43} -10.6000 q^{44} +6.94427 q^{46} +(1.91756 + 3.32132i) q^{47} +(-6.50000 + 11.2583i) q^{49} +(-11.5054 + 19.9279i) q^{50} +(1.80902 + 3.13331i) q^{52} +5.85955 q^{53} -11.2361 q^{55} +(8.57561 + 14.8534i) q^{56} +(-3.47214 + 6.01392i) q^{58} +(1.01221 - 1.75320i) q^{59} +(-5.11803 - 8.86469i) q^{61} +17.1512 q^{62} -11.4721 q^{64} +(1.91756 + 3.32132i) q^{65} +(1.38197 - 2.39364i) q^{67} +(8.57561 - 14.8534i) q^{68} +(20.3262 + 35.2061i) q^{70} -8.57561 q^{71} -10.4721 q^{73} +(-3.83513 - 6.64264i) q^{74} +(-1.38197 + 2.39364i) q^{76} +(-6.55118 + 11.3470i) q^{77} +(4.47214 + 7.74597i) q^{79} +7.11072 q^{80} -11.2361 q^{82} +(-0.452675 - 0.784057i) q^{83} +(9.09017 - 15.7446i) q^{85} +(-0.279769 + 0.484574i) q^{86} +(5.61803 + 9.73072i) q^{88} +10.3863 q^{89} +4.47214 q^{91} +(-5.30002 - 9.17990i) q^{92} +(4.54508 - 7.87232i) q^{94} +(-1.46489 + 2.53726i) q^{95} +(-9.09017 - 15.7446i) q^{97} +30.8131 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 10 q^{4} + 28 q^{10} + 4 q^{13} + 6 q^{16} + 24 q^{19} - 8 q^{22} - 12 q^{25} - 40 q^{28} - 20 q^{31} + 36 q^{34} + 8 q^{37} - 32 q^{40} + 8 q^{43} - 16 q^{46} - 52 q^{49} + 10 q^{52} - 72 q^{55}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.18512 2.05269i −0.838006 1.45147i −0.891559 0.452904i \(-0.850388\pi\)
0.0535531 0.998565i \(-0.482945\pi\)
\(3\) 0 0
\(4\) −1.80902 + 3.13331i −0.904508 + 1.56665i
\(5\) −1.91756 + 3.32132i −0.857561 + 1.48534i 0.0166884 + 0.999861i \(0.494688\pi\)
−0.874249 + 0.485478i \(0.838646\pi\)
\(6\) 0 0
\(7\) 2.23607 + 3.87298i 0.845154 + 1.46385i 0.885487 + 0.464664i \(0.153825\pi\)
−0.0403329 + 0.999186i \(0.512842\pi\)
\(8\) 3.83513 1.35592
\(9\) 0 0
\(10\) 9.09017 2.87456
\(11\) 1.46489 + 2.53726i 0.441680 + 0.765013i 0.997814 0.0660797i \(-0.0210492\pi\)
−0.556134 + 0.831093i \(0.687716\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 5.30002 9.17990i 1.41649 2.45343i
\(15\) 0 0
\(16\) −0.927051 1.60570i −0.231763 0.401425i
\(17\) −4.74048 −1.14973 −0.574867 0.818247i \(-0.694946\pi\)
−0.574867 + 0.818247i \(0.694946\pi\)
\(18\) 0 0
\(19\) 0.763932 0.175258 0.0876290 0.996153i \(-0.472071\pi\)
0.0876290 + 0.996153i \(0.472071\pi\)
\(20\) −6.93781 12.0166i −1.55134 2.68700i
\(21\) 0 0
\(22\) 3.47214 6.01392i 0.740262 1.28217i
\(23\) −1.46489 + 2.53726i −0.305450 + 0.529056i −0.977361 0.211576i \(-0.932140\pi\)
0.671911 + 0.740632i \(0.265474\pi\)
\(24\) 0 0
\(25\) −4.85410 8.40755i −0.970820 1.68151i
\(26\) −2.37024 −0.464842
\(27\) 0 0
\(28\) −16.1803 −3.05780
\(29\) −1.46489 2.53726i −0.272023 0.471158i 0.697357 0.716724i \(-0.254359\pi\)
−0.969380 + 0.245567i \(0.921026\pi\)
\(30\) 0 0
\(31\) −3.61803 + 6.26662i −0.649818 + 1.12552i 0.333348 + 0.942804i \(0.391822\pi\)
−0.983166 + 0.182714i \(0.941512\pi\)
\(32\) 1.63780 2.83674i 0.289524 0.501470i
\(33\) 0 0
\(34\) 5.61803 + 9.73072i 0.963485 + 1.66880i
\(35\) −17.1512 −2.89908
\(36\) 0 0
\(37\) 3.23607 0.532006 0.266003 0.963972i \(-0.414297\pi\)
0.266003 + 0.963972i \(0.414297\pi\)
\(38\) −0.905351 1.56811i −0.146867 0.254382i
\(39\) 0 0
\(40\) −7.35410 + 12.7377i −1.16279 + 2.01400i
\(41\) 2.37024 4.10537i 0.370169 0.641152i −0.619422 0.785058i \(-0.712633\pi\)
0.989591 + 0.143906i \(0.0459664\pi\)
\(42\) 0 0
\(43\) −0.118034 0.204441i −0.0180000 0.0311769i 0.856885 0.515507i \(-0.172397\pi\)
−0.874885 + 0.484331i \(0.839063\pi\)
\(44\) −10.6000 −1.59801
\(45\) 0 0
\(46\) 6.94427 1.02388
\(47\) 1.91756 + 3.32132i 0.279705 + 0.484464i 0.971311 0.237811i \(-0.0764299\pi\)
−0.691606 + 0.722275i \(0.743097\pi\)
\(48\) 0 0
\(49\) −6.50000 + 11.2583i −0.928571 + 1.60833i
\(50\) −11.5054 + 19.9279i −1.62711 + 2.81823i
\(51\) 0 0
\(52\) 1.80902 + 3.13331i 0.250866 + 0.434512i
\(53\) 5.85955 0.804872 0.402436 0.915448i \(-0.368164\pi\)
0.402436 + 0.915448i \(0.368164\pi\)
\(54\) 0 0
\(55\) −11.2361 −1.51507
\(56\) 8.57561 + 14.8534i 1.14596 + 1.98487i
\(57\) 0 0
\(58\) −3.47214 + 6.01392i −0.455914 + 0.789666i
\(59\) 1.01221 1.75320i 0.131779 0.228248i −0.792583 0.609763i \(-0.791264\pi\)
0.924362 + 0.381516i \(0.124598\pi\)
\(60\) 0 0
\(61\) −5.11803 8.86469i −0.655297 1.13501i −0.981819 0.189818i \(-0.939210\pi\)
0.326522 0.945190i \(-0.394123\pi\)
\(62\) 17.1512 2.17821
\(63\) 0 0
\(64\) −11.4721 −1.43402
\(65\) 1.91756 + 3.32132i 0.237845 + 0.411959i
\(66\) 0 0
\(67\) 1.38197 2.39364i 0.168834 0.292429i −0.769176 0.639037i \(-0.779333\pi\)
0.938010 + 0.346608i \(0.112666\pi\)
\(68\) 8.57561 14.8534i 1.03994 1.80124i
\(69\) 0 0
\(70\) 20.3262 + 35.2061i 2.42945 + 4.20793i
\(71\) −8.57561 −1.01774 −0.508869 0.860844i \(-0.669936\pi\)
−0.508869 + 0.860844i \(0.669936\pi\)
\(72\) 0 0
\(73\) −10.4721 −1.22567 −0.612835 0.790211i \(-0.709971\pi\)
−0.612835 + 0.790211i \(0.709971\pi\)
\(74\) −3.83513 6.64264i −0.445825 0.772191i
\(75\) 0 0
\(76\) −1.38197 + 2.39364i −0.158522 + 0.274569i
\(77\) −6.55118 + 11.3470i −0.746576 + 1.29311i
\(78\) 0 0
\(79\) 4.47214 + 7.74597i 0.503155 + 0.871489i 0.999993 + 0.00364646i \(0.00116071\pi\)
−0.496839 + 0.867843i \(0.665506\pi\)
\(80\) 7.11072 0.795002
\(81\) 0 0
\(82\) −11.2361 −1.24082
\(83\) −0.452675 0.784057i −0.0496876 0.0860614i 0.840112 0.542413i \(-0.182489\pi\)
−0.889799 + 0.456352i \(0.849156\pi\)
\(84\) 0 0
\(85\) 9.09017 15.7446i 0.985967 1.70775i
\(86\) −0.279769 + 0.484574i −0.0301682 + 0.0522529i
\(87\) 0 0
\(88\) 5.61803 + 9.73072i 0.598884 + 1.03730i
\(89\) 10.3863 1.10095 0.550473 0.834853i \(-0.314447\pi\)
0.550473 + 0.834853i \(0.314447\pi\)
\(90\) 0 0
\(91\) 4.47214 0.468807
\(92\) −5.30002 9.17990i −0.552565 0.957070i
\(93\) 0 0
\(94\) 4.54508 7.87232i 0.468790 0.811968i
\(95\) −1.46489 + 2.53726i −0.150294 + 0.260318i
\(96\) 0 0
\(97\) −9.09017 15.7446i −0.922967 1.59863i −0.794799 0.606873i \(-0.792424\pi\)
−0.128168 0.991752i \(-0.540910\pi\)
\(98\) 30.8131 3.11259
\(99\) 0 0
\(100\) 35.1246 3.51246
\(101\) 2.37024 + 4.10537i 0.235848 + 0.408500i 0.959519 0.281645i \(-0.0908800\pi\)
−0.723671 + 0.690145i \(0.757547\pi\)
\(102\) 0 0
\(103\) 0.881966 1.52761i 0.0869027 0.150520i −0.819298 0.573368i \(-0.805636\pi\)
0.906200 + 0.422848i \(0.138970\pi\)
\(104\) 1.91756 3.32132i 0.188033 0.325682i
\(105\) 0 0
\(106\) −6.94427 12.0278i −0.674487 1.16825i
\(107\) −7.67026 −0.741512 −0.370756 0.928730i \(-0.620901\pi\)
−0.370756 + 0.928730i \(0.620901\pi\)
\(108\) 0 0
\(109\) 8.94427 0.856706 0.428353 0.903612i \(-0.359094\pi\)
0.428353 + 0.903612i \(0.359094\pi\)
\(110\) 13.3161 + 23.0641i 1.26964 + 2.19908i
\(111\) 0 0
\(112\) 4.14590 7.18091i 0.391751 0.678532i
\(113\) 3.83513 6.64264i 0.360778 0.624887i −0.627311 0.778769i \(-0.715844\pi\)
0.988089 + 0.153882i \(0.0491777\pi\)
\(114\) 0 0
\(115\) −5.61803 9.73072i −0.523884 0.907394i
\(116\) 10.6000 0.984188
\(117\) 0 0
\(118\) −4.79837 −0.441726
\(119\) −10.6000 18.3598i −0.971703 1.68304i
\(120\) 0 0
\(121\) 1.20820 2.09267i 0.109837 0.190243i
\(122\) −12.1310 + 21.0114i −1.09829 + 1.90229i
\(123\) 0 0
\(124\) −13.0902 22.6728i −1.17553 2.03608i
\(125\) 18.0566 1.61503
\(126\) 0 0
\(127\) −5.94427 −0.527469 −0.263734 0.964595i \(-0.584954\pi\)
−0.263734 + 0.964595i \(0.584954\pi\)
\(128\) 10.3203 + 17.8752i 0.912191 + 1.57996i
\(129\) 0 0
\(130\) 4.54508 7.87232i 0.398630 0.690448i
\(131\) −10.0405 + 17.3906i −0.877242 + 1.51943i −0.0228870 + 0.999738i \(0.507286\pi\)
−0.854355 + 0.519690i \(0.826048\pi\)
\(132\) 0 0
\(133\) 1.70820 + 2.95870i 0.148120 + 0.256551i
\(134\) −6.55118 −0.565936
\(135\) 0 0
\(136\) −18.1803 −1.55895
\(137\) 5.30002 + 9.17990i 0.452811 + 0.784292i 0.998559 0.0536575i \(-0.0170879\pi\)
−0.545748 + 0.837949i \(0.683755\pi\)
\(138\) 0 0
\(139\) −1.59017 + 2.75426i −0.134876 + 0.233613i −0.925550 0.378625i \(-0.876397\pi\)
0.790674 + 0.612238i \(0.209730\pi\)
\(140\) 31.0268 53.7401i 2.62225 4.54186i
\(141\) 0 0
\(142\) 10.1631 + 17.6030i 0.852870 + 1.47721i
\(143\) 2.92978 0.245000
\(144\) 0 0
\(145\) 11.2361 0.933105
\(146\) 12.4107 + 21.4960i 1.02712 + 1.77902i
\(147\) 0 0
\(148\) −5.85410 + 10.1396i −0.481204 + 0.833470i
\(149\) −2.47710 + 4.29047i −0.202932 + 0.351489i −0.949472 0.313852i \(-0.898380\pi\)
0.746540 + 0.665341i \(0.231714\pi\)
\(150\) 0 0
\(151\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(152\) 2.92978 0.237636
\(153\) 0 0
\(154\) 31.0557 2.50254
\(155\) −13.8756 24.0333i −1.11452 1.93040i
\(156\) 0 0
\(157\) −12.2082 + 21.1452i −0.974321 + 1.68757i −0.292162 + 0.956369i \(0.594375\pi\)
−0.682159 + 0.731204i \(0.738959\pi\)
\(158\) 10.6000 18.3598i 0.843293 1.46063i
\(159\) 0 0
\(160\) 6.28115 + 10.8793i 0.496569 + 0.860082i
\(161\) −13.1024 −1.03261
\(162\) 0 0
\(163\) 0.944272 0.0739611 0.0369805 0.999316i \(-0.488226\pi\)
0.0369805 + 0.999316i \(0.488226\pi\)
\(164\) 8.57561 + 14.8534i 0.669642 + 1.15985i
\(165\) 0 0
\(166\) −1.07295 + 1.85840i −0.0832770 + 0.144240i
\(167\) −2.26338 + 3.92028i −0.175145 + 0.303361i −0.940212 0.340591i \(-0.889373\pi\)
0.765066 + 0.643952i \(0.222706\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −43.0918 −3.30499
\(171\) 0 0
\(172\) 0.854102 0.0651247
\(173\) 7.67026 + 13.2853i 0.583159 + 1.01006i 0.995102 + 0.0988511i \(0.0315168\pi\)
−0.411944 + 0.911209i \(0.635150\pi\)
\(174\) 0 0
\(175\) 21.7082 37.5997i 1.64099 2.84227i
\(176\) 2.71605 4.70434i 0.204730 0.354603i
\(177\) 0 0
\(178\) −12.3090 21.3198i −0.922600 1.59799i
\(179\) 20.7726 1.55262 0.776309 0.630352i \(-0.217090\pi\)
0.776309 + 0.630352i \(0.217090\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) −5.30002 9.17990i −0.392863 0.680459i
\(183\) 0 0
\(184\) −5.61803 + 9.73072i −0.414167 + 0.717358i
\(185\) −6.20537 + 10.7480i −0.456228 + 0.790209i
\(186\) 0 0
\(187\) −6.94427 12.0278i −0.507815 0.879562i
\(188\) −13.8756 −1.01198
\(189\) 0 0
\(190\) 6.94427 0.503790
\(191\) 11.8512 + 20.5269i 0.857522 + 1.48527i 0.874285 + 0.485413i \(0.161331\pi\)
−0.0167625 + 0.999859i \(0.505336\pi\)
\(192\) 0 0
\(193\) 7.09017 12.2805i 0.510362 0.883972i −0.489566 0.871966i \(-0.662845\pi\)
0.999928 0.0120062i \(-0.00382177\pi\)
\(194\) −21.5459 + 37.3186i −1.54690 + 2.67932i
\(195\) 0 0
\(196\) −23.5172 40.7330i −1.67980 2.90950i
\(197\) −14.4352 −1.02846 −0.514231 0.857652i \(-0.671923\pi\)
−0.514231 + 0.857652i \(0.671923\pi\)
\(198\) 0 0
\(199\) 24.8885 1.76430 0.882151 0.470967i \(-0.156095\pi\)
0.882151 + 0.470967i \(0.156095\pi\)
\(200\) −18.6161 32.2440i −1.31636 2.28000i
\(201\) 0 0
\(202\) 5.61803 9.73072i 0.395283 0.684651i
\(203\) 6.55118 11.3470i 0.459803 0.796402i
\(204\) 0 0
\(205\) 9.09017 + 15.7446i 0.634885 + 1.09965i
\(206\) −4.18094 −0.291300
\(207\) 0 0
\(208\) −1.85410 −0.128559
\(209\) 1.11908 + 1.93830i 0.0774080 + 0.134075i
\(210\) 0 0
\(211\) −8.20820 + 14.2170i −0.565076 + 0.978740i 0.431967 + 0.901890i \(0.357820\pi\)
−0.997043 + 0.0768508i \(0.975513\pi\)
\(212\) −10.6000 + 18.3598i −0.728013 + 1.26096i
\(213\) 0 0
\(214\) 9.09017 + 15.7446i 0.621391 + 1.07628i
\(215\) 0.905351 0.0617444
\(216\) 0 0
\(217\) −32.3607 −2.19679
\(218\) −10.6000 18.3598i −0.717925 1.24348i
\(219\) 0 0
\(220\) 20.3262 35.2061i 1.37039 2.37359i
\(221\) −2.37024 + 4.10537i −0.159440 + 0.276157i
\(222\) 0 0
\(223\) 7.56231 + 13.0983i 0.506409 + 0.877127i 0.999972 + 0.00741689i \(0.00236089\pi\)
−0.493563 + 0.869710i \(0.664306\pi\)
\(224\) 14.6489 0.978770
\(225\) 0 0
\(226\) −18.1803 −1.20934
\(227\) −9.02828 15.6374i −0.599228 1.03789i −0.992935 0.118658i \(-0.962141\pi\)
0.393707 0.919236i \(-0.371192\pi\)
\(228\) 0 0
\(229\) −2.38197 + 4.12569i −0.157405 + 0.272633i −0.933932 0.357451i \(-0.883646\pi\)
0.776527 + 0.630084i \(0.216979\pi\)
\(230\) −13.3161 + 23.0641i −0.878037 + 1.52080i
\(231\) 0 0
\(232\) −5.61803 9.73072i −0.368842 0.638853i
\(233\) −20.0810 −1.31555 −0.657775 0.753215i \(-0.728502\pi\)
−0.657775 + 0.753215i \(0.728502\pi\)
\(234\) 0 0
\(235\) −14.7082 −0.959457
\(236\) 3.66222 + 6.34315i 0.238390 + 0.412904i
\(237\) 0 0
\(238\) −25.1246 + 43.5171i −1.62859 + 2.82079i
\(239\) 7.32444 12.6863i 0.473779 0.820609i −0.525771 0.850626i \(-0.676223\pi\)
0.999549 + 0.0300175i \(0.00955630\pi\)
\(240\) 0 0
\(241\) −6.76393 11.7155i −0.435703 0.754660i 0.561650 0.827375i \(-0.310167\pi\)
−0.997353 + 0.0727152i \(0.976834\pi\)
\(242\) −5.72746 −0.368175
\(243\) 0 0
\(244\) 37.0344 2.37089
\(245\) −24.9283 43.1771i −1.59261 2.75849i
\(246\) 0 0
\(247\) 0.381966 0.661585i 0.0243039 0.0420956i
\(248\) −13.8756 + 24.0333i −0.881103 + 1.52611i
\(249\) 0 0
\(250\) −21.3992 37.0645i −1.35340 2.34416i
\(251\) −23.0108 −1.45243 −0.726213 0.687469i \(-0.758722\pi\)
−0.726213 + 0.687469i \(0.758722\pi\)
\(252\) 0 0
\(253\) −8.58359 −0.539646
\(254\) 7.04467 + 12.2017i 0.442022 + 0.765605i
\(255\) 0 0
\(256\) 12.9894 22.4982i 0.811835 1.40614i
\(257\) 13.8756 24.0333i 0.865538 1.49915i −0.000974931 1.00000i \(-0.500310\pi\)
0.866512 0.499155i \(-0.166356\pi\)
\(258\) 0 0
\(259\) 7.23607 + 12.5332i 0.449627 + 0.778777i
\(260\) −13.8756 −0.860530
\(261\) 0 0
\(262\) 47.5967 2.94054
\(263\) −14.2214 24.6322i −0.876931 1.51889i −0.854691 0.519137i \(-0.826253\pi\)
−0.0222401 0.999753i \(-0.507080\pi\)
\(264\) 0 0
\(265\) −11.2361 + 19.4614i −0.690226 + 1.19551i
\(266\) 4.04885 7.01282i 0.248251 0.429983i
\(267\) 0 0
\(268\) 5.00000 + 8.66025i 0.305424 + 0.529009i
\(269\) −5.43210 −0.331201 −0.165601 0.986193i \(-0.552956\pi\)
−0.165601 + 0.986193i \(0.552956\pi\)
\(270\) 0 0
\(271\) −1.23607 −0.0750858 −0.0375429 0.999295i \(-0.511953\pi\)
−0.0375429 + 0.999295i \(0.511953\pi\)
\(272\) 4.39467 + 7.61178i 0.266466 + 0.461532i
\(273\) 0 0
\(274\) 12.5623 21.7586i 0.758917 1.31448i
\(275\) 14.2214 24.6322i 0.857585 1.48538i
\(276\) 0 0
\(277\) −3.50000 6.06218i −0.210295 0.364241i 0.741512 0.670940i \(-0.234109\pi\)
−0.951807 + 0.306699i \(0.900776\pi\)
\(278\) 7.53817 0.452109
\(279\) 0 0
\(280\) −65.7771 −3.93093
\(281\) 9.58782 + 16.6066i 0.571961 + 0.990666i 0.996364 + 0.0851928i \(0.0271506\pi\)
−0.424403 + 0.905473i \(0.639516\pi\)
\(282\) 0 0
\(283\) −2.20820 + 3.82472i −0.131264 + 0.227356i −0.924164 0.381996i \(-0.875237\pi\)
0.792900 + 0.609352i \(0.208570\pi\)
\(284\) 15.5134 26.8700i 0.920552 1.59444i
\(285\) 0 0
\(286\) −3.47214 6.01392i −0.205312 0.355610i
\(287\) 21.2001 1.25140
\(288\) 0 0
\(289\) 5.47214 0.321890
\(290\) −13.3161 23.0641i −0.781947 1.35437i
\(291\) 0 0
\(292\) 18.9443 32.8124i 1.10863 1.92020i
\(293\) −0.559538 + 0.969148i −0.0326885 + 0.0566182i −0.881907 0.471424i \(-0.843740\pi\)
0.849218 + 0.528042i \(0.177074\pi\)
\(294\) 0 0
\(295\) 3.88197 + 6.72376i 0.226017 + 0.391473i
\(296\) 12.4107 0.721359
\(297\) 0 0
\(298\) 11.7426 0.680233
\(299\) 1.46489 + 2.53726i 0.0847167 + 0.146734i
\(300\) 0 0
\(301\) 0.527864 0.914287i 0.0304256 0.0526986i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.708204 1.22665i −0.0406183 0.0703529i
\(305\) 39.2566 2.24783
\(306\) 0 0
\(307\) −22.9443 −1.30950 −0.654749 0.755846i \(-0.727226\pi\)
−0.654749 + 0.755846i \(0.727226\pi\)
\(308\) −23.7024 41.0537i −1.35057 2.33925i
\(309\) 0 0
\(310\) −32.8885 + 56.9646i −1.86794 + 3.23537i
\(311\) 7.67026 13.2853i 0.434940 0.753339i −0.562350 0.826899i \(-0.690103\pi\)
0.997291 + 0.0735603i \(0.0234361\pi\)
\(312\) 0 0
\(313\) −15.3541 26.5941i −0.867865 1.50319i −0.864174 0.503193i \(-0.832158\pi\)
−0.00369130 0.999993i \(-0.501175\pi\)
\(314\) 57.8727 3.26595
\(315\) 0 0
\(316\) −32.3607 −1.82043
\(317\) 7.11072 + 12.3161i 0.399378 + 0.691742i 0.993649 0.112522i \(-0.0358929\pi\)
−0.594272 + 0.804264i \(0.702560\pi\)
\(318\) 0 0
\(319\) 4.29180 7.43361i 0.240294 0.416202i
\(320\) 21.9986 38.1026i 1.22976 2.13000i
\(321\) 0 0
\(322\) 15.5279 + 26.8950i 0.865334 + 1.49880i
\(323\) −3.62140 −0.201500
\(324\) 0 0
\(325\) −9.70820 −0.538514
\(326\) −1.11908 1.93830i −0.0619798 0.107352i
\(327\) 0 0
\(328\) 9.09017 15.7446i 0.501921 0.869352i
\(329\) −8.57561 + 14.8534i −0.472788 + 0.818894i
\(330\) 0 0
\(331\) 13.4721 + 23.3344i 0.740496 + 1.28258i 0.952270 + 0.305257i \(0.0987425\pi\)
−0.211774 + 0.977319i \(0.567924\pi\)
\(332\) 3.27559 0.179771
\(333\) 0 0
\(334\) 10.7295 0.587092
\(335\) 5.30002 + 9.17990i 0.289571 + 0.501551i
\(336\) 0 0
\(337\) −3.82624 + 6.62724i −0.208428 + 0.361009i −0.951220 0.308514i \(-0.900168\pi\)
0.742791 + 0.669523i \(0.233502\pi\)
\(338\) −1.18512 + 2.05269i −0.0644620 + 0.111651i
\(339\) 0 0
\(340\) 32.8885 + 56.9646i 1.78363 + 3.08934i
\(341\) −21.2001 −1.14805
\(342\) 0 0
\(343\) −26.8328 −1.44884
\(344\) −0.452675 0.784057i −0.0244066 0.0422735i
\(345\) 0 0
\(346\) 18.1803 31.4893i 0.977381 1.69287i
\(347\) −13.8756 + 24.0333i −0.744882 + 1.29017i 0.205367 + 0.978685i \(0.434161\pi\)
−0.950250 + 0.311489i \(0.899172\pi\)
\(348\) 0 0
\(349\) −0.0901699 0.156179i −0.00482669 0.00836007i 0.863602 0.504174i \(-0.168203\pi\)
−0.868429 + 0.495814i \(0.834870\pi\)
\(350\) −102.907 −5.50063
\(351\) 0 0
\(352\) 9.59675 0.511508
\(353\) 14.3283 + 24.8173i 0.762618 + 1.32089i 0.941497 + 0.337022i \(0.109420\pi\)
−0.178878 + 0.983871i \(0.557247\pi\)
\(354\) 0 0
\(355\) 16.4443 28.4823i 0.872771 1.51168i
\(356\) −18.7890 + 32.5435i −0.995815 + 1.72480i
\(357\) 0 0
\(358\) −24.6180 42.6397i −1.30110 2.25358i
\(359\) 25.7268 1.35781 0.678905 0.734226i \(-0.262455\pi\)
0.678905 + 0.734226i \(0.262455\pi\)
\(360\) 0 0
\(361\) −18.4164 −0.969285
\(362\) 8.29584 + 14.3688i 0.436020 + 0.755208i
\(363\) 0 0
\(364\) −8.09017 + 14.0126i −0.424040 + 0.734459i
\(365\) 20.0810 34.7813i 1.05109 1.82054i
\(366\) 0 0
\(367\) −3.70820 6.42280i −0.193567 0.335267i 0.752863 0.658177i \(-0.228672\pi\)
−0.946430 + 0.322910i \(0.895339\pi\)
\(368\) 5.43210 0.283168
\(369\) 0 0
\(370\) 29.4164 1.52929
\(371\) 13.1024 + 22.6940i 0.680241 + 1.17821i
\(372\) 0 0
\(373\) 4.35410 7.54153i 0.225447 0.390485i −0.731007 0.682370i \(-0.760949\pi\)
0.956453 + 0.291885i \(0.0942825\pi\)
\(374\) −16.4596 + 28.5088i −0.851105 + 1.47416i
\(375\) 0 0
\(376\) 7.35410 + 12.7377i 0.379259 + 0.656896i
\(377\) −2.92978 −0.150891
\(378\) 0 0
\(379\) 10.0000 0.513665 0.256833 0.966456i \(-0.417321\pi\)
0.256833 + 0.966456i \(0.417321\pi\)
\(380\) −5.30002 9.17990i −0.271885 0.470919i
\(381\) 0 0
\(382\) 28.0902 48.6536i 1.43722 2.48933i
\(383\) 12.7565 22.0950i 0.651829 1.12900i −0.330850 0.943684i \(-0.607335\pi\)
0.982679 0.185318i \(-0.0593314\pi\)
\(384\) 0 0
\(385\) −25.1246 43.5171i −1.28047 2.21784i
\(386\) −33.6108 −1.71074
\(387\) 0 0
\(388\) 65.7771 3.33933
\(389\) 5.64583 + 9.77886i 0.286255 + 0.495808i 0.972913 0.231173i \(-0.0742562\pi\)
−0.686658 + 0.726981i \(0.740923\pi\)
\(390\) 0 0
\(391\) 6.94427 12.0278i 0.351187 0.608274i
\(392\) −24.9283 + 43.1771i −1.25907 + 2.18077i
\(393\) 0 0
\(394\) 17.1074 + 29.6309i 0.861858 + 1.49278i
\(395\) −34.3024 −1.72594
\(396\) 0 0
\(397\) −0.291796 −0.0146448 −0.00732241 0.999973i \(-0.502331\pi\)
−0.00732241 + 0.999973i \(0.502331\pi\)
\(398\) −29.4959 51.0884i −1.47850 2.56083i
\(399\) 0 0
\(400\) −9.00000 + 15.5885i −0.450000 + 0.779423i
\(401\) −6.31223 + 10.9331i −0.315218 + 0.545973i −0.979484 0.201523i \(-0.935411\pi\)
0.664266 + 0.747496i \(0.268744\pi\)
\(402\) 0 0
\(403\) 3.61803 + 6.26662i 0.180227 + 0.312163i
\(404\) −17.1512 −0.853305
\(405\) 0 0
\(406\) −31.0557 −1.54127
\(407\) 4.74048 + 8.21075i 0.234977 + 0.406992i
\(408\) 0 0
\(409\) −10.8541 + 18.7999i −0.536701 + 0.929593i 0.462378 + 0.886683i \(0.346996\pi\)
−0.999079 + 0.0429102i \(0.986337\pi\)
\(410\) 21.5459 37.3186i 1.06408 1.84303i
\(411\) 0 0
\(412\) 3.19098 + 5.52694i 0.157208 + 0.272293i
\(413\) 9.05351 0.445494
\(414\) 0 0
\(415\) 3.47214 0.170440
\(416\) −1.63780 2.83674i −0.0802995 0.139083i
\(417\) 0 0
\(418\) 2.65248 4.59422i 0.129737 0.224711i
\(419\) −8.92142 + 15.4524i −0.435840 + 0.754897i −0.997364 0.0725637i \(-0.976882\pi\)
0.561524 + 0.827461i \(0.310215\pi\)
\(420\) 0 0
\(421\) 19.5066 + 33.7864i 0.950692 + 1.64665i 0.743931 + 0.668256i \(0.232959\pi\)
0.206761 + 0.978391i \(0.433708\pi\)
\(422\) 38.9108 1.89415
\(423\) 0 0
\(424\) 22.4721 1.09134
\(425\) 23.0108 + 39.8558i 1.11619 + 1.93329i
\(426\) 0 0
\(427\) 22.8885 39.6441i 1.10765 1.91851i
\(428\) 13.8756 24.0333i 0.670704 1.16169i
\(429\) 0 0
\(430\) −1.07295 1.85840i −0.0517422 0.0896201i
\(431\) 13.3161 0.641413 0.320707 0.947179i \(-0.396080\pi\)
0.320707 + 0.947179i \(0.396080\pi\)
\(432\) 0 0
\(433\) 24.4721 1.17606 0.588028 0.808841i \(-0.299905\pi\)
0.588028 + 0.808841i \(0.299905\pi\)
\(434\) 38.3513 + 66.4264i 1.84092 + 3.18857i
\(435\) 0 0
\(436\) −16.1803 + 28.0252i −0.774898 + 1.34216i
\(437\) −1.11908 + 1.93830i −0.0535326 + 0.0927212i
\(438\) 0 0
\(439\) −12.3541 21.3979i −0.589629 1.02127i −0.994281 0.106797i \(-0.965941\pi\)
0.404652 0.914471i \(-0.367393\pi\)
\(440\) −43.0918 −2.05432
\(441\) 0 0
\(442\) 11.2361 0.534445
\(443\) −1.46489 2.53726i −0.0695989 0.120549i 0.829126 0.559062i \(-0.188839\pi\)
−0.898725 + 0.438513i \(0.855505\pi\)
\(444\) 0 0
\(445\) −19.9164 + 34.4962i −0.944128 + 1.63528i
\(446\) 17.9245 31.0461i 0.848748 1.47008i
\(447\) 0 0
\(448\) −25.6525 44.4314i −1.21197 2.09919i
\(449\) 3.83513 0.180991 0.0904954 0.995897i \(-0.471155\pi\)
0.0904954 + 0.995897i \(0.471155\pi\)
\(450\) 0 0
\(451\) 13.8885 0.653986
\(452\) 13.8756 + 24.0333i 0.652654 + 1.13043i
\(453\) 0 0
\(454\) −21.3992 + 37.0645i −1.00431 + 1.73952i
\(455\) −8.57561 + 14.8534i −0.402031 + 0.696337i
\(456\) 0 0
\(457\) 3.67376 + 6.36314i 0.171851 + 0.297655i 0.939067 0.343734i \(-0.111692\pi\)
−0.767216 + 0.641389i \(0.778358\pi\)
\(458\) 11.2917 0.527625
\(459\) 0 0
\(460\) 40.6525 1.89543
\(461\) −17.6039 30.4908i −0.819895 1.42010i −0.905759 0.423793i \(-0.860699\pi\)
0.0858645 0.996307i \(-0.472635\pi\)
\(462\) 0 0
\(463\) 0.145898 0.252703i 0.00678046 0.0117441i −0.862615 0.505861i \(-0.831175\pi\)
0.869396 + 0.494116i \(0.164508\pi\)
\(464\) −2.71605 + 4.70434i −0.126090 + 0.218394i
\(465\) 0 0
\(466\) 23.7984 + 41.2200i 1.10244 + 1.90948i
\(467\) 37.6596 1.74268 0.871340 0.490679i \(-0.163251\pi\)
0.871340 + 0.490679i \(0.163251\pi\)
\(468\) 0 0
\(469\) 12.3607 0.570763
\(470\) 17.4310 + 30.1913i 0.804031 + 1.39262i
\(471\) 0 0
\(472\) 3.88197 6.72376i 0.178682 0.309486i
\(473\) 0.345813 0.598966i 0.0159005 0.0275405i
\(474\) 0 0
\(475\) −3.70820 6.42280i −0.170144 0.294698i
\(476\) 76.7026 3.51566
\(477\) 0 0
\(478\) −34.7214 −1.58812
\(479\) 16.3527 + 28.3237i 0.747175 + 1.29415i 0.949172 + 0.314759i \(0.101924\pi\)
−0.201997 + 0.979386i \(0.564743\pi\)
\(480\) 0 0
\(481\) 1.61803 2.80252i 0.0737760 0.127784i
\(482\) −16.0321 + 27.7685i −0.730244 + 1.26482i
\(483\) 0 0
\(484\) 4.37132 + 7.57135i 0.198696 + 0.344152i
\(485\) 69.7239 3.16600
\(486\) 0 0
\(487\) 16.4721 0.746424 0.373212 0.927746i \(-0.378256\pi\)
0.373212 + 0.927746i \(0.378256\pi\)
\(488\) −19.6283 33.9972i −0.888532 1.53898i
\(489\) 0 0
\(490\) −59.0861 + 102.340i −2.66924 + 4.62326i
\(491\) −20.6405 + 35.7504i −0.931494 + 1.61339i −0.150724 + 0.988576i \(0.548161\pi\)
−0.780770 + 0.624819i \(0.785173\pi\)
\(492\) 0 0
\(493\) 6.94427 + 12.0278i 0.312754 + 0.541706i
\(494\) −1.81070 −0.0814673
\(495\) 0 0
\(496\) 13.4164 0.602414
\(497\) −19.1756 33.2132i −0.860145 1.48981i
\(498\) 0 0
\(499\) 2.18034 3.77646i 0.0976054 0.169058i −0.813088 0.582141i \(-0.802215\pi\)
0.910693 + 0.413084i \(0.135548\pi\)
\(500\) −32.6646 + 56.5768i −1.46081 + 2.53019i
\(501\) 0 0
\(502\) 27.2705 + 47.2339i 1.21714 + 2.10815i
\(503\) −10.6000 −0.472632 −0.236316 0.971676i \(-0.575940\pi\)
−0.236316 + 0.971676i \(0.575940\pi\)
\(504\) 0 0
\(505\) −18.1803 −0.809015
\(506\) 10.1726 + 17.6194i 0.452226 + 0.783279i
\(507\) 0 0
\(508\) 10.7533 18.6252i 0.477100 0.826362i
\(509\) 6.09850 10.5629i 0.270311 0.468193i −0.698630 0.715483i \(-0.746207\pi\)
0.968942 + 0.247290i \(0.0795400\pi\)
\(510\) 0 0
\(511\) −23.4164 40.5584i −1.03588 1.79420i
\(512\) −20.2947 −0.896908
\(513\) 0 0
\(514\) −65.7771 −2.90130
\(515\) 3.38245 + 5.85858i 0.149049 + 0.258160i
\(516\) 0 0
\(517\) −5.61803 + 9.73072i −0.247081 + 0.427957i
\(518\) 17.1512 29.7068i 0.753581 1.30524i
\(519\) 0 0
\(520\) 7.35410 + 12.7377i 0.322499 + 0.558584i
\(521\) −6.97863 −0.305739 −0.152870 0.988246i \(-0.548851\pi\)
−0.152870 + 0.988246i \(0.548851\pi\)
\(522\) 0 0
\(523\) −7.65248 −0.334619 −0.167310 0.985904i \(-0.553508\pi\)
−0.167310 + 0.985904i \(0.553508\pi\)
\(524\) −36.3269 62.9200i −1.58695 2.74867i
\(525\) 0 0
\(526\) −33.7082 + 58.3843i −1.46975 + 2.54568i
\(527\) 17.1512 29.7068i 0.747119 1.29405i
\(528\) 0 0
\(529\) 7.20820 + 12.4850i 0.313400 + 0.542825i
\(530\) 53.2643 2.31366
\(531\) 0 0
\(532\) −12.3607 −0.535903
\(533\) −2.37024 4.10537i −0.102666 0.177824i
\(534\) 0 0
\(535\) 14.7082 25.4754i 0.635891 1.10140i
\(536\) 5.30002 9.17990i 0.228926 0.396511i
\(537\) 0 0
\(538\) 6.43769 + 11.1504i 0.277549 + 0.480728i
\(539\) −38.0871 −1.64053
\(540\) 0 0
\(541\) −23.7082 −1.01930 −0.509648 0.860383i \(-0.670224\pi\)
−0.509648 + 0.860383i \(0.670224\pi\)
\(542\) 1.46489 + 2.53726i 0.0629223 + 0.108985i
\(543\) 0 0
\(544\) −7.76393 + 13.4475i −0.332876 + 0.576558i
\(545\) −17.1512 + 29.7068i −0.734677 + 1.27250i
\(546\) 0 0
\(547\) 12.6525 + 21.9147i 0.540981 + 0.937006i 0.998848 + 0.0479856i \(0.0152802\pi\)
−0.457867 + 0.889021i \(0.651386\pi\)
\(548\) −38.3513 −1.63829
\(549\) 0 0
\(550\) −67.4164 −2.87465
\(551\) −1.11908 1.93830i −0.0476742 0.0825741i
\(552\) 0 0
\(553\) −20.0000 + 34.6410i −0.850487 + 1.47309i
\(554\) −8.29584 + 14.3688i −0.352456 + 0.610472i
\(555\) 0 0
\(556\) −5.75329 9.96499i −0.243994 0.422610i
\(557\) −16.4596 −0.697415 −0.348708 0.937232i \(-0.613379\pi\)
−0.348708 + 0.937232i \(0.613379\pi\)
\(558\) 0 0
\(559\) −0.236068 −0.00998461
\(560\) 15.9000 + 27.5397i 0.671900 + 1.16376i
\(561\) 0 0
\(562\) 22.7254 39.3616i 0.958614 1.66037i
\(563\) −1.25116 + 2.16708i −0.0527303 + 0.0913315i −0.891186 0.453639i \(-0.850126\pi\)
0.838455 + 0.544970i \(0.183459\pi\)
\(564\) 0 0
\(565\) 14.7082 + 25.4754i 0.618779 + 1.07176i
\(566\) 10.4679 0.440000
\(567\) 0 0
\(568\) −32.8885 −1.37997
\(569\) −2.92978 5.07452i −0.122823 0.212735i 0.798057 0.602582i \(-0.205861\pi\)
−0.920880 + 0.389847i \(0.872528\pi\)
\(570\) 0 0
\(571\) −3.50000 + 6.06218i −0.146470 + 0.253694i −0.929921 0.367760i \(-0.880125\pi\)
0.783450 + 0.621455i \(0.213458\pi\)
\(572\) −5.30002 + 9.17990i −0.221605 + 0.383831i
\(573\) 0 0
\(574\) −25.1246 43.5171i −1.04868 1.81637i
\(575\) 28.4429 1.18615
\(576\) 0 0
\(577\) 21.4164 0.891577 0.445788 0.895138i \(-0.352923\pi\)
0.445788 + 0.895138i \(0.352923\pi\)
\(578\) −6.48514 11.2326i −0.269746 0.467214i
\(579\) 0 0
\(580\) −20.3262 + 35.2061i −0.844001 + 1.46185i
\(581\) 2.02443 3.50641i 0.0839873 0.145470i
\(582\) 0 0
\(583\) 8.58359 + 14.8672i 0.355496 + 0.615737i
\(584\) −40.1620 −1.66191
\(585\) 0 0
\(586\) 2.65248 0.109573
\(587\) 4.39467 + 7.61178i 0.181387 + 0.314172i 0.942353 0.334620i \(-0.108608\pi\)
−0.760966 + 0.648792i \(0.775275\pi\)
\(588\) 0 0
\(589\) −2.76393 + 4.78727i −0.113886 + 0.197256i
\(590\) 9.20119 15.9369i 0.378807 0.656113i
\(591\) 0 0
\(592\) −3.00000 5.19615i −0.123299 0.213561i
\(593\) 14.2214 0.584004 0.292002 0.956418i \(-0.405679\pi\)
0.292002 + 0.956418i \(0.405679\pi\)
\(594\) 0 0
\(595\) 81.3050 3.33318
\(596\) −8.96224 15.5230i −0.367108 0.635849i
\(597\) 0 0
\(598\) 3.47214 6.01392i 0.141986 0.245927i
\(599\) −0.559538 + 0.969148i −0.0228621 + 0.0395983i −0.877230 0.480070i \(-0.840611\pi\)
0.854368 + 0.519668i \(0.173945\pi\)
\(600\) 0 0
\(601\) 1.29837 + 2.24885i 0.0529618 + 0.0917325i 0.891291 0.453432i \(-0.149801\pi\)
−0.838329 + 0.545165i \(0.816467\pi\)
\(602\) −2.50233 −0.101987
\(603\) 0 0
\(604\) 0 0
\(605\) 4.63362 + 8.02566i 0.188383 + 0.326289i
\(606\) 0 0
\(607\) −4.00000 + 6.92820i −0.162355 + 0.281207i −0.935713 0.352763i \(-0.885242\pi\)
0.773358 + 0.633970i \(0.218576\pi\)
\(608\) 1.25116 2.16708i 0.0507414 0.0878867i
\(609\) 0 0
\(610\) −46.5238 80.5816i −1.88369 3.26265i
\(611\) 3.83513 0.155153
\(612\) 0 0
\(613\) −3.05573 −0.123420 −0.0617098 0.998094i \(-0.519655\pi\)
−0.0617098 + 0.998094i \(0.519655\pi\)
\(614\) 27.1917 + 47.0974i 1.09737 + 1.90070i
\(615\) 0 0
\(616\) −25.1246 + 43.5171i −1.01230 + 1.75335i
\(617\) 15.4474 26.7556i 0.621888 1.07714i −0.367246 0.930124i \(-0.619699\pi\)
0.989134 0.147017i \(-0.0469674\pi\)
\(618\) 0 0
\(619\) 22.6525 + 39.2352i 0.910480 + 1.57700i 0.813388 + 0.581722i \(0.197621\pi\)
0.0970922 + 0.995275i \(0.469046\pi\)
\(620\) 100.405 4.03236
\(621\) 0 0
\(622\) −36.3607 −1.45793
\(623\) 23.2245 + 40.2260i 0.930470 + 1.61162i
\(624\) 0 0
\(625\) −10.3541 + 17.9338i −0.414164 + 0.717353i
\(626\) −36.3929 + 63.0343i −1.45455 + 2.51936i
\(627\) 0 0
\(628\) −44.1697 76.5042i −1.76256 3.05285i
\(629\) −15.3405 −0.611666
\(630\) 0 0
\(631\) 19.3050 0.768518 0.384259 0.923225i \(-0.374457\pi\)
0.384259 + 0.923225i \(0.374457\pi\)
\(632\) 17.1512 + 29.7068i 0.682239 + 1.18167i
\(633\) 0 0
\(634\) 16.8541 29.1922i 0.669362 1.15937i
\(635\) 11.3985 19.7428i 0.452336 0.783470i
\(636\) 0 0
\(637\) 6.50000 + 11.2583i 0.257539 + 0.446071i
\(638\) −20.3452 −0.805473
\(639\) 0 0
\(640\) −79.1591 −3.12904
\(641\) −16.8054 29.1078i −0.663773 1.14969i −0.979616 0.200878i \(-0.935621\pi\)
0.315843 0.948811i \(-0.397713\pi\)
\(642\) 0 0
\(643\) −8.90983 + 15.4323i −0.351369 + 0.608590i −0.986490 0.163824i \(-0.947617\pi\)
0.635120 + 0.772413i \(0.280951\pi\)
\(644\) 23.7024 41.0537i 0.934005 1.61774i
\(645\) 0 0
\(646\) 4.29180 + 7.43361i 0.168858 + 0.292471i
\(647\) 25.2489 0.992637 0.496319 0.868140i \(-0.334685\pi\)
0.496319 + 0.868140i \(0.334685\pi\)
\(648\) 0 0
\(649\) 5.93112 0.232817
\(650\) 11.5054 + 19.9279i 0.451278 + 0.781637i
\(651\) 0 0
\(652\) −1.70820 + 2.95870i −0.0668984 + 0.115871i
\(653\) 12.4107 21.4960i 0.485670 0.841204i −0.514195 0.857673i \(-0.671909\pi\)
0.999864 + 0.0164691i \(0.00524251\pi\)
\(654\) 0 0
\(655\) −38.5066 66.6953i −1.50458 2.60600i
\(656\) −8.78933 −0.343166
\(657\) 0 0
\(658\) 40.6525 1.58480
\(659\) −4.95420 8.58093i −0.192988 0.334266i 0.753251 0.657733i \(-0.228485\pi\)
−0.946239 + 0.323468i \(0.895151\pi\)
\(660\) 0 0
\(661\) −1.85410 + 3.21140i −0.0721162 + 0.124909i −0.899829 0.436244i \(-0.856309\pi\)
0.827712 + 0.561153i \(0.189642\pi\)
\(662\) 31.9322 55.3082i 1.24108 2.14961i
\(663\) 0 0
\(664\) −1.73607 3.00696i −0.0673725 0.116693i
\(665\) −13.1024 −0.508088
\(666\) 0 0
\(667\) 8.58359 0.332358
\(668\) −8.18898 14.1837i −0.316841 0.548785i
\(669\) 0 0
\(670\) 12.5623 21.7586i 0.485324 0.840606i
\(671\) 14.9947 25.9716i 0.578864 1.00262i
\(672\) 0 0
\(673\) 2.97214 + 5.14789i 0.114567 + 0.198437i 0.917607 0.397489i \(-0.130118\pi\)
−0.803039 + 0.595926i \(0.796785\pi\)
\(674\) 18.1382 0.698657
\(675\) 0 0
\(676\) 3.61803 0.139155
\(677\) −11.8512 20.5269i −0.455478 0.788912i 0.543237 0.839579i \(-0.317198\pi\)
−0.998716 + 0.0506675i \(0.983865\pi\)
\(678\) 0 0
\(679\) 40.6525 70.4122i 1.56010 2.70217i
\(680\) 34.8620 60.3827i 1.33690 2.31557i
\(681\) 0 0
\(682\) 25.1246 + 43.5171i 0.962071 + 1.66636i
\(683\) 19.8673 0.760200 0.380100 0.924945i \(-0.375890\pi\)
0.380100 + 0.924945i \(0.375890\pi\)
\(684\) 0 0
\(685\) −40.6525 −1.55325
\(686\) 31.8001 + 55.0794i 1.21413 + 2.10294i
\(687\) 0 0
\(688\) −0.218847 + 0.379054i −0.00834347 + 0.0144513i
\(689\) 2.92978 5.07452i 0.111616 0.193324i
\(690\) 0 0
\(691\) 5.90983 + 10.2361i 0.224821 + 0.389401i 0.956266 0.292500i \(-0.0944871\pi\)
−0.731445 + 0.681900i \(0.761154\pi\)
\(692\) −55.5025 −2.10989
\(693\) 0 0
\(694\) 65.7771 2.49686
\(695\) −6.09850 10.5629i −0.231329 0.400674i
\(696\) 0 0
\(697\) −11.2361 + 19.4614i −0.425596 + 0.737155i
\(698\) −0.213724 + 0.370181i −0.00808959 + 0.0140116i
\(699\) 0 0
\(700\) 78.5410 + 136.037i 2.96857 + 5.14172i
\(701\) −8.36188 −0.315824 −0.157912 0.987453i \(-0.550476\pi\)
−0.157912 + 0.987453i \(0.550476\pi\)
\(702\) 0 0
\(703\) 2.47214 0.0932384
\(704\) −16.8054 29.1078i −0.633377 1.09704i
\(705\) 0 0
\(706\) 33.9615 58.8230i 1.27816 2.21383i
\(707\) −10.6000 + 18.3598i −0.398655 + 0.690491i
\(708\) 0 0
\(709\) 25.7984 + 44.6841i 0.968878 + 1.67815i 0.698813 + 0.715304i \(0.253712\pi\)
0.270065 + 0.962842i \(0.412955\pi\)
\(710\) −77.9537 −2.92555
\(711\) 0 0
\(712\) 39.8328 1.49280
\(713\) −10.6000 18.3598i −0.396974 0.687580i
\(714\) 0 0
\(715\) −5.61803 + 9.73072i −0.210103 + 0.363908i
\(716\) −37.5780 + 65.0870i −1.40436 + 2.43242i
\(717\) 0 0
\(718\) −30.4894 52.8091i −1.13785 1.97082i
\(719\) −8.36188 −0.311846 −0.155923 0.987769i \(-0.549835\pi\)
−0.155923 + 0.987769i \(0.549835\pi\)
\(720\) 0 0
\(721\) 7.88854 0.293785
\(722\) 21.8256 + 37.8031i 0.812266 + 1.40689i
\(723\) 0 0
\(724\) 12.6631 21.9332i 0.470621 0.815140i
\(725\) −14.2214 + 24.6322i −0.528171 + 0.914819i
\(726\) 0 0
\(727\) 0.472136 + 0.817763i 0.0175106 + 0.0303292i 0.874648 0.484759i \(-0.161093\pi\)
−0.857137 + 0.515088i \(0.827759\pi\)
\(728\) 17.1512 0.635666
\(729\) 0 0
\(730\) −95.1935 −3.52327
\(731\) 0.559538 + 0.969148i 0.0206952 + 0.0358452i
\(732\) 0 0
\(733\) 7.38197 12.7859i 0.272659 0.472259i −0.696883 0.717185i \(-0.745430\pi\)
0.969542 + 0.244926i \(0.0787635\pi\)
\(734\) −8.78933 + 15.2236i −0.324420 + 0.561912i
\(735\) 0 0
\(736\) 4.79837 + 8.31103i 0.176870 + 0.306349i
\(737\) 8.09770 0.298283
\(738\) 0 0
\(739\) 8.11146 0.298385 0.149192 0.988808i \(-0.452333\pi\)
0.149192 + 0.988808i \(0.452333\pi\)
\(740\) −22.4512 38.8867i −0.825324 1.42950i
\(741\) 0 0
\(742\) 31.0557 53.7901i 1.14009 1.97470i
\(743\) 18.5092 32.0589i 0.679038 1.17613i −0.296233 0.955116i \(-0.595730\pi\)
0.975271 0.221013i \(-0.0709362\pi\)
\(744\) 0 0
\(745\) −9.50000 16.4545i −0.348053 0.602846i
\(746\) −20.6405 −0.755703
\(747\) 0 0
\(748\) 50.2492 1.83729
\(749\) −17.1512 29.7068i −0.626692 1.08546i
\(750\) 0 0
\(751\) −21.4164 + 37.0943i −0.781496 + 1.35359i 0.149574 + 0.988750i \(0.452210\pi\)
−0.931070 + 0.364840i \(0.881124\pi\)
\(752\) 3.55536 6.15806i 0.129651 0.224561i
\(753\) 0 0
\(754\) 3.47214 + 6.01392i 0.126448 + 0.219014i
\(755\) 0 0
\(756\) 0 0
\(757\) 1.41641 0.0514802 0.0257401 0.999669i \(-0.491806\pi\)
0.0257401 + 0.999669i \(0.491806\pi\)
\(758\) −11.8512 20.5269i −0.430455 0.745570i
\(759\) 0 0
\(760\) −5.61803 + 9.73072i −0.203788 + 0.352970i
\(761\) −19.9741 + 34.5962i −0.724062 + 1.25411i 0.235298 + 0.971923i \(0.424394\pi\)
−0.959359 + 0.282188i \(0.908940\pi\)
\(762\) 0 0
\(763\) 20.0000 + 34.6410i 0.724049 + 1.25409i
\(764\) −85.7561 −3.10255
\(765\) 0 0
\(766\) −60.4721 −2.18495
\(767\) −1.01221 1.75320i −0.0365489 0.0633045i
\(768\) 0 0
\(769\) −18.7082 + 32.4036i −0.674635 + 1.16850i 0.301940 + 0.953327i \(0.402366\pi\)
−0.976575 + 0.215175i \(0.930968\pi\)
\(770\) −59.5513 + 103.146i −2.14608 + 3.71712i
\(771\) 0 0
\(772\) 25.6525 + 44.4314i 0.923253 + 1.59912i
\(773\) −44.6887 −1.60734 −0.803671 0.595074i \(-0.797123\pi\)
−0.803671 + 0.595074i \(0.797123\pi\)
\(774\) 0 0
\(775\) 70.2492 2.52343
\(776\) −34.8620 60.3827i −1.25147 2.16761i
\(777\) 0 0
\(778\) 13.3820 23.1782i 0.479767 0.830980i
\(779\) 1.81070 3.13623i 0.0648751 0.112367i
\(780\) 0 0
\(781\) −12.5623 21.7586i −0.449515 0.778582i
\(782\) −32.9192 −1.17719
\(783\) 0 0
\(784\) 24.1033 0.860833
\(785\) −46.8200 81.0947i −1.67108 2.89439i
\(786\) 0 0
\(787\) −0.944272 + 1.63553i −0.0336597 + 0.0583002i −0.882365 0.470567i \(-0.844050\pi\)
0.848705 + 0.528867i \(0.177383\pi\)
\(788\) 26.1134 45.2298i 0.930253 1.61125i
\(789\) 0 0
\(790\) 40.6525 + 70.4122i 1.44635 + 2.50515i
\(791\) 34.3024 1.21965
\(792\) 0 0
\(793\) −10.2361 −0.363493
\(794\) 0.345813 + 0.598966i 0.0122725 + 0.0212565i
\(795\) 0 0
\(796\) −45.0238 + 77.9835i −1.59583 + 2.76405i
\(797\) −18.0566 + 31.2749i −0.639596 + 1.10781i 0.345925 + 0.938262i \(0.387565\pi\)
−0.985521 + 0.169551i \(0.945768\pi\)
\(798\) 0 0
\(799\) −9.09017 15.7446i −0.321587 0.557005i
\(800\) −31.8001 −1.12430
\(801\) 0 0
\(802\) 29.9230 1.05662
\(803\) −15.3405 26.5705i −0.541355 0.937654i
\(804\) 0 0
\(805\) 25.1246 43.5171i 0.885526 1.53378i
\(806\) 8.57561 14.8534i 0.302063 0.523188i
\(807\) 0 0
\(808\) 9.09017 + 15.7446i 0.319791 + 0.553894i
\(809\) 43.7834 1.53934 0.769671 0.638441i \(-0.220420\pi\)
0.769671 + 0.638441i \(0.220420\pi\)
\(810\) 0 0
\(811\) 33.5279 1.17732 0.588661 0.808380i \(-0.299655\pi\)
0.588661 + 0.808380i \(0.299655\pi\)
\(812\) 23.7024 + 41.0537i 0.831791 + 1.44070i
\(813\) 0 0
\(814\) 11.2361 19.4614i 0.393824 0.682123i
\(815\) −1.81070 + 3.13623i −0.0634261 + 0.109857i
\(816\) 0 0
\(817\) −0.0901699 0.156179i −0.00315465 0.00546401i
\(818\) 51.4536 1.79903
\(819\) 0 0
\(820\) −65.7771 −2.29704
\(821\) 11.1596 + 19.3289i 0.389472 + 0.674585i 0.992379 0.123227i \(-0.0393243\pi\)
−0.602907 + 0.797812i \(0.705991\pi\)
\(822\) 0 0
\(823\) 3.93769 6.82029i 0.137259 0.237740i −0.789199 0.614138i \(-0.789504\pi\)
0.926458 + 0.376397i \(0.122837\pi\)
\(824\) 3.38245 5.85858i 0.117833 0.204093i
\(825\) 0 0
\(826\) −10.7295 18.5840i −0.373327 0.646621i
\(827\) −31.3726 −1.09093 −0.545467 0.838132i \(-0.683648\pi\)
−0.545467 + 0.838132i \(0.683648\pi\)
\(828\) 0 0
\(829\) 11.1803 0.388309 0.194155 0.980971i \(-0.437804\pi\)
0.194155 + 0.980971i \(0.437804\pi\)
\(830\) −4.11490 7.12721i −0.142830 0.247389i
\(831\) 0 0
\(832\) −5.73607 + 9.93516i −0.198862 + 0.344440i
\(833\) 30.8131 53.3699i 1.06761 1.84916i
\(834\) 0 0
\(835\) −8.68034 15.0348i −0.300396 0.520300i
\(836\) −8.09770 −0.280065
\(837\) 0 0
\(838\) 42.2918 1.46095
\(839\) −10.8390 18.7737i −0.374203 0.648139i 0.616004 0.787743i \(-0.288750\pi\)
−0.990207 + 0.139604i \(0.955417\pi\)
\(840\) 0 0
\(841\) 10.2082 17.6811i 0.352007 0.609694i
\(842\) 46.2353 80.0818i 1.59337 2.75980i
\(843\) 0 0
\(844\) −29.6976 51.4377i −1.02223 1.77056i
\(845\) 3.83513 0.131932
\(846\) 0 0
\(847\) 10.8065 0.371316
\(848\) −5.43210 9.40868i −0.186539 0.323095i
\(849\) 0 0
\(850\) 54.5410 94.4678i 1.87074 3.24022i
\(851\) −4.74048 + 8.21075i −0.162502 + 0.281461i
\(852\) 0 0
\(853\) 4.05573 + 7.02473i 0.138865 + 0.240522i 0.927067 0.374895i \(-0.122321\pi\)
−0.788202 + 0.615417i \(0.788988\pi\)
\(854\) −108.503 −3.71288
\(855\) 0 0
\(856\) −29.4164 −1.00543
\(857\) 6.20537 + 10.7480i 0.211971 + 0.367145i 0.952331 0.305065i \(-0.0986783\pi\)
−0.740360 + 0.672210i \(0.765345\pi\)
\(858\) 0 0
\(859\) −2.18034 + 3.77646i −0.0743922 + 0.128851i −0.900822 0.434189i \(-0.857035\pi\)
0.826430 + 0.563040i \(0.190368\pi\)
\(860\) −1.63780 + 2.83674i −0.0558483 + 0.0967322i
\(861\) 0 0
\(862\) −15.7812 27.3338i −0.537508 0.930992i
\(863\) −16.2459 −0.553016 −0.276508 0.961012i \(-0.589177\pi\)
−0.276508 + 0.961012i \(0.589177\pi\)
\(864\) 0 0
\(865\) −58.8328 −2.00038
\(866\) −29.0024 50.2336i −0.985542 1.70701i
\(867\) 0 0
\(868\) 58.5410 101.396i 1.98701 3.44161i
\(869\) −13.1024 + 22.6940i −0.444467 + 0.769840i
\(870\) 0 0
\(871\) −1.38197 2.39364i −0.0468261 0.0811052i
\(872\) 34.3024 1.16163
\(873\) 0 0
\(874\) 5.30495 0.179443
\(875\) 40.3757 + 69.9328i 1.36495 + 2.36416i
\(876\) 0 0
\(877\) −0.180340 + 0.312358i −0.00608965 + 0.0105476i −0.869054 0.494717i \(-0.835272\pi\)
0.862965 + 0.505265i \(0.168605\pi\)
\(878\) −29.2822 + 50.7182i −0.988226 + 1.71166i
\(879\) 0 0
\(880\) 10.4164 + 18.0417i 0.351137 + 0.608187i
\(881\) −32.0643 −1.08027 −0.540136 0.841577i \(-0.681627\pi\)
−0.540136 + 0.841577i \(0.681627\pi\)
\(882\) 0 0
\(883\) 41.8885 1.40966 0.704831 0.709375i \(-0.251023\pi\)
0.704831 + 0.709375i \(0.251023\pi\)
\(884\) −8.57561 14.8534i −0.288429 0.499573i
\(885\) 0 0
\(886\) −3.47214 + 6.01392i −0.116649 + 0.202041i
\(887\) −11.7191 + 20.2981i −0.393489 + 0.681543i −0.992907 0.118893i \(-0.962065\pi\)
0.599418 + 0.800436i \(0.295399\pi\)
\(888\) 0 0
\(889\) −13.2918 23.0221i −0.445793 0.772135i
\(890\) 94.4133 3.16474
\(891\) 0 0
\(892\) −54.7214 −1.83221
\(893\) 1.46489 + 2.53726i 0.0490206 + 0.0849062i
\(894\) 0 0
\(895\) −39.8328 + 68.9925i −1.33146 + 2.30616i
\(896\) −46.1536 + 79.9404i −1.54188 + 2.67062i
\(897\) 0 0
\(898\) −4.54508 7.87232i −0.151671 0.262703i
\(899\) 21.2001 0.707062
\(900\) 0 0
\(901\) −27.7771 −0.925389
\(902\) −16.4596 28.5088i −0.548044 0.949240i
\(903\) 0 0
\(904\) 14.7082 25.4754i 0.489188 0.847298i
\(905\) 13.4229 23.2492i 0.446194 0.772830i
\(906\) 0 0
\(907\) −19.9164 34.4962i −0.661313 1.14543i −0.980271 0.197659i \(-0.936666\pi\)
0.318957 0.947769i \(-0.396667\pi\)
\(908\) 65.3293 2.16803
\(909\) 0 0
\(910\) 40.6525 1.34762
\(911\) −4.18094 7.24160i −0.138521 0.239925i 0.788416 0.615142i \(-0.210901\pi\)
−0.926937 + 0.375217i \(0.877568\pi\)
\(912\) 0 0
\(913\) 1.32624 2.29711i 0.0438921 0.0760233i
\(914\) 8.70769 15.0822i 0.288025 0.498874i
\(915\) 0 0
\(916\) −8.61803 14.9269i −0.284748 0.493198i
\(917\) −89.8049 −2.96562
\(918\) 0 0
\(919\) 41.3607 1.36436 0.682181 0.731183i \(-0.261031\pi\)
0.682181 + 0.731183i \(0.261031\pi\)
\(920\) −21.5459 37.3186i −0.710347 1.23036i
\(921\) 0 0
\(922\) −41.7254 + 72.2706i −1.37415 + 2.38010i
\(923\) −4.28780 + 7.42669i −0.141135 + 0.244453i
\(924\) 0 0
\(925\) −15.7082 27.2074i −0.516483 0.894574i
\(926\) −0.691626 −0.0227283
\(927\) 0 0
\(928\) −9.59675 −0.315029
\(929\) −11.1596 19.3289i −0.366134 0.634162i 0.622824 0.782362i \(-0.285985\pi\)
−0.988957 + 0.148200i \(0.952652\pi\)
\(930\) 0 0
\(931\) −4.96556 + 8.60060i −0.162740 + 0.281873i
\(932\) 36.3269 62.9200i 1.18993 2.06101i
\(933\) 0 0
\(934\) −44.6312 77.3035i −1.46038 2.52945i
\(935\) 53.2643 1.74193
\(936\) 0 0
\(937\) −46.4853 −1.51861 −0.759304 0.650736i \(-0.774461\pi\)
−0.759304 + 0.650736i \(0.774461\pi\)
\(938\) −14.6489 25.3726i −0.478303 0.828445i
\(939\) 0 0
\(940\) 26.6074 46.0854i 0.867837 1.50314i
\(941\) 11.1596 19.3289i 0.363792 0.630105i −0.624790 0.780793i \(-0.714815\pi\)
0.988581 + 0.150687i \(0.0481487\pi\)
\(942\) 0 0
\(943\) 6.94427 + 12.0278i 0.226137 + 0.391680i
\(944\) −3.75349 −0.122166
\(945\) 0 0
\(946\) −1.63932 −0.0532989
\(947\) −2.60919 4.51925i −0.0847873 0.146856i 0.820513 0.571627i \(-0.193688\pi\)
−0.905301 + 0.424772i \(0.860354\pi\)
\(948\) 0 0
\(949\) −5.23607 + 9.06914i −0.169970 + 0.294397i
\(950\) −8.78933 + 15.2236i −0.285164 + 0.493918i
\(951\) 0 0
\(952\) −40.6525 70.4122i −1.31755 2.28207i
\(953\) −0.691626 −0.0224040 −0.0112020 0.999937i \(-0.503566\pi\)
−0.0112020 + 0.999937i \(0.503566\pi\)
\(954\) 0 0
\(955\) −90.9017 −2.94151
\(956\) 26.5001 + 45.8995i 0.857074 + 1.48450i
\(957\) 0 0
\(958\) 38.7599 67.1341i 1.25227 2.16900i
\(959\) −23.7024 + 41.0537i −0.765390 + 1.32569i
\(960\) 0 0
\(961\) −10.6803 18.4989i −0.344527 0.596738i
\(962\) −7.67026 −0.247299
\(963\) 0 0
\(964\) 48.9443 1.57639
\(965\) 27.1917 + 47.0974i 0.875332 + 1.51612i
\(966\) 0 0
\(967\) −5.38197 + 9.32184i −0.173072 + 0.299770i −0.939492 0.342569i \(-0.888703\pi\)
0.766420 + 0.642340i \(0.222036\pi\)
\(968\) 4.63362 8.02566i 0.148930 0.257954i
\(969\) 0 0
\(970\) −82.6312 143.121i −2.65313 4.59535i
\(971\) −45.3299 −1.45471 −0.727353 0.686264i \(-0.759250\pi\)
−0.727353 + 0.686264i \(0.759250\pi\)
\(972\) 0 0
\(973\) −14.2229 −0.455966
\(974\) −19.5215 33.8121i −0.625508 1.08341i
\(975\) 0 0
\(976\) −9.48936 + 16.4360i −0.303747 + 0.526105i
\(977\) 18.1634 31.4600i 0.581099 1.00649i −0.414250 0.910163i \(-0.635956\pi\)
0.995349 0.0963306i \(-0.0307106\pi\)
\(978\) 0 0
\(979\) 15.2148 + 26.3528i 0.486267 + 0.842238i
\(980\) 180.383 5.76213
\(981\) 0 0
\(982\) 97.8460 3.12239
\(983\) 20.4268 + 35.3803i 0.651514 + 1.12846i 0.982756 + 0.184909i \(0.0591991\pi\)
−0.331242 + 0.943546i \(0.607468\pi\)
\(984\) 0 0
\(985\) 27.6803 47.9438i 0.881969 1.52762i
\(986\) 16.4596 28.5088i 0.524180 0.907906i
\(987\) 0 0
\(988\) 1.38197 + 2.39364i 0.0439662 + 0.0761517i
\(989\) 0.691626 0.0219924
\(990\) 0 0
\(991\) 12.3475 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(992\) 11.8512 + 20.5269i 0.376276 + 0.651729i
\(993\) 0 0
\(994\) −45.4508 + 78.7232i −1.44161 + 2.49695i
\(995\) −47.7254 + 82.6628i −1.51300 + 2.62059i
\(996\) 0 0
\(997\) 7.55573 + 13.0869i 0.239292 + 0.414466i 0.960511 0.278241i \(-0.0897512\pi\)
−0.721219 + 0.692707i \(0.756418\pi\)
\(998\) −10.3359 −0.327176
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.p.352.1 8
3.2 odd 2 inner 1053.2.e.p.352.4 8
9.2 odd 6 inner 1053.2.e.p.703.4 8
9.4 even 3 351.2.a.f.1.4 yes 4
9.5 odd 6 351.2.a.f.1.1 4
9.7 even 3 inner 1053.2.e.p.703.1 8
36.23 even 6 5616.2.a.ch.1.1 4
36.31 odd 6 5616.2.a.ch.1.4 4
45.4 even 6 8775.2.a.bo.1.1 4
45.14 odd 6 8775.2.a.bo.1.4 4
117.77 odd 6 4563.2.a.ba.1.4 4
117.103 even 6 4563.2.a.ba.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.a.f.1.1 4 9.5 odd 6
351.2.a.f.1.4 yes 4 9.4 even 3
1053.2.e.p.352.1 8 1.1 even 1 trivial
1053.2.e.p.352.4 8 3.2 odd 2 inner
1053.2.e.p.703.1 8 9.7 even 3 inner
1053.2.e.p.703.4 8 9.2 odd 6 inner
4563.2.a.ba.1.1 4 117.103 even 6
4563.2.a.ba.1.4 4 117.77 odd 6
5616.2.a.ch.1.1 4 36.23 even 6
5616.2.a.ch.1.4 4 36.31 odd 6
8775.2.a.bo.1.1 4 45.4 even 6
8775.2.a.bo.1.4 4 45.14 odd 6