Defining parameters
Level: | \( N \) | = | \( 1053 = 3^{4} \cdot 13 \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 33 \) | ||
Sturm bound: | \(163296\) | ||
Trace bound: | \(24\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1053))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 42120 | 32488 | 9632 |
Cusp forms | 39529 | 31256 | 8273 |
Eisenstein series | 2591 | 1232 | 1359 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1053))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1053))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(1053)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(81))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(351))\)\(^{\oplus 2}\)