Properties

Label 4563.2
Level 4563
Weight 2
Dimension 595277
Nonzero newspaces 48
Sturm bound 3066336

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4563 = 3^{3} \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(3066336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(4563))\).

Total New Old
Modular forms 773424 601821 171603
Cusp forms 759745 595277 164468
Eisenstein series 13679 6544 7135

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(4563))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4563.2.a \(\chi_{4563}(1, \cdot)\) 4563.2.a.a 1 1
4563.2.a.b 1
4563.2.a.c 1
4563.2.a.d 1
4563.2.a.e 1
4563.2.a.f 1
4563.2.a.g 1
4563.2.a.h 2
4563.2.a.i 2
4563.2.a.j 2
4563.2.a.k 2
4563.2.a.l 2
4563.2.a.m 2
4563.2.a.n 2
4563.2.a.o 2
4563.2.a.p 2
4563.2.a.q 2
4563.2.a.r 3
4563.2.a.s 3
4563.2.a.t 3
4563.2.a.u 3
4563.2.a.v 4
4563.2.a.w 4
4563.2.a.x 4
4563.2.a.y 4
4563.2.a.z 4
4563.2.a.ba 4
4563.2.a.bb 4
4563.2.a.bc 5
4563.2.a.bd 5
4563.2.a.be 5
4563.2.a.bf 5
4563.2.a.bg 6
4563.2.a.bh 6
4563.2.a.bi 6
4563.2.a.bj 6
4563.2.a.bk 8
4563.2.a.bl 8
4563.2.a.bm 8
4563.2.a.bn 12
4563.2.a.bo 12
4563.2.a.bp 12
4563.2.a.bq 12
4563.2.a.br 12
4563.2.a.bs 12
4563.2.b \(\chi_{4563}(1351, \cdot)\) n/a 206 1
4563.2.e \(\chi_{4563}(1522, \cdot)\) n/a 288 2
4563.2.f \(\chi_{4563}(2557, \cdot)\) n/a 288 2
4563.2.g \(\chi_{4563}(2512, \cdot)\) n/a 410 2
4563.2.h \(\chi_{4563}(991, \cdot)\) n/a 288 2
4563.2.i \(\chi_{4563}(944, \cdot)\) n/a 412 2
4563.2.l \(\chi_{4563}(1882, \cdot)\) n/a 288 2
4563.2.q \(\chi_{4563}(1837, \cdot)\) n/a 410 2
4563.2.r \(\chi_{4563}(316, \cdot)\) n/a 288 2
4563.2.t \(\chi_{4563}(2872, \cdot)\) n/a 288 2
4563.2.w \(\chi_{4563}(508, \cdot)\) n/a 2724 6
4563.2.x \(\chi_{4563}(22, \cdot)\) n/a 2712 6
4563.2.y \(\chi_{4563}(529, \cdot)\) n/a 2712 6
4563.2.ba \(\chi_{4563}(89, \cdot)\) n/a 576 4
4563.2.bc \(\chi_{4563}(746, \cdot)\) n/a 576 4
4563.2.bd \(\chi_{4563}(80, \cdot)\) n/a 820 4
4563.2.bf \(\chi_{4563}(1610, \cdot)\) n/a 576 4
4563.2.bh \(\chi_{4563}(352, \cdot)\) n/a 2904 12
4563.2.bm \(\chi_{4563}(337, \cdot)\) n/a 2712 6
4563.2.bo \(\chi_{4563}(823, \cdot)\) n/a 2712 6
4563.2.bp \(\chi_{4563}(868, \cdot)\) n/a 2712 6
4563.2.bt \(\chi_{4563}(298, \cdot)\) n/a 2904 12
4563.2.bu \(\chi_{4563}(488, \cdot)\) n/a 5424 12
4563.2.bx \(\chi_{4563}(239, \cdot)\) n/a 5424 12
4563.2.bz \(\chi_{4563}(587, \cdot)\) n/a 5424 12
4563.2.ca \(\chi_{4563}(289, \cdot)\) n/a 4320 24
4563.2.cb \(\chi_{4563}(55, \cdot)\) n/a 5832 24
4563.2.cc \(\chi_{4563}(100, \cdot)\) n/a 4320 24
4563.2.cd \(\chi_{4563}(118, \cdot)\) n/a 4320 24
4563.2.cf \(\chi_{4563}(161, \cdot)\) n/a 5808 24
4563.2.ci \(\chi_{4563}(64, \cdot)\) n/a 4320 24
4563.2.ck \(\chi_{4563}(10, \cdot)\) n/a 4320 24
4563.2.cl \(\chi_{4563}(82, \cdot)\) n/a 5832 24
4563.2.cq \(\chi_{4563}(127, \cdot)\) n/a 4320 24
4563.2.cs \(\chi_{4563}(61, \cdot)\) n/a 39168 72
4563.2.ct \(\chi_{4563}(16, \cdot)\) n/a 39168 72
4563.2.cu \(\chi_{4563}(40, \cdot)\) n/a 39168 72
4563.2.cw \(\chi_{4563}(206, \cdot)\) n/a 8640 48
4563.2.cy \(\chi_{4563}(215, \cdot)\) n/a 11664 48
4563.2.cz \(\chi_{4563}(8, \cdot)\) n/a 8640 48
4563.2.db \(\chi_{4563}(71, \cdot)\) n/a 8640 48
4563.2.de \(\chi_{4563}(43, \cdot)\) n/a 39168 72
4563.2.df \(\chi_{4563}(4, \cdot)\) n/a 39168 72
4563.2.dh \(\chi_{4563}(25, \cdot)\) n/a 39168 72
4563.2.dm \(\chi_{4563}(2, \cdot)\) n/a 78336 144
4563.2.do \(\chi_{4563}(5, \cdot)\) n/a 78336 144
4563.2.dr \(\chi_{4563}(20, \cdot)\) n/a 78336 144

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(4563))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(4563)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(117))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(351))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1521))\)\(^{\oplus 2}\)