Properties

Label 4563.dm
Modulus $4563$
Conductor $4563$
Order $468$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(468)) M = H._module chi = DirichletCharacter(H, M([26,3])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2,4563)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4563\)
Conductor: \(4563\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(468\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{468})$
Fixed field: Number field defined by a degree 468 polynomial (not computed)

First 31 of 144 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{4563}(2,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{468}\right)\) \(e\left(\frac{29}{234}\right)\) \(e\left(\frac{157}{468}\right)\) \(e\left(\frac{269}{468}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{179}{468}\right)\) \(e\left(\frac{149}{234}\right)\) \(e\left(\frac{29}{117}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{4563}(11,\cdot)\) \(1\) \(1\) \(e\left(\frac{179}{468}\right)\) \(e\left(\frac{179}{234}\right)\) \(e\left(\frac{259}{468}\right)\) \(e\left(\frac{95}{468}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{185}{468}\right)\) \(e\left(\frac{137}{234}\right)\) \(e\left(\frac{62}{117}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{4563}(32,\cdot)\) \(1\) \(1\) \(e\left(\frac{145}{468}\right)\) \(e\left(\frac{145}{234}\right)\) \(e\left(\frac{317}{468}\right)\) \(e\left(\frac{409}{468}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{427}{468}\right)\) \(e\left(\frac{43}{234}\right)\) \(e\left(\frac{28}{117}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(59,\cdot)\) \(1\) \(1\) \(e\left(\frac{235}{468}\right)\) \(e\left(\frac{1}{234}\right)\) \(e\left(\frac{191}{468}\right)\) \(e\left(\frac{211}{468}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{337}{468}\right)\) \(e\left(\frac{223}{234}\right)\) \(e\left(\frac{1}{117}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{4563}(119,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{468}\right)\) \(e\left(\frac{161}{234}\right)\) \(e\left(\frac{97}{468}\right)\) \(e\left(\frac{41}{468}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{203}{468}\right)\) \(e\left(\frac{101}{234}\right)\) \(e\left(\frac{44}{117}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{4563}(128,\cdot)\) \(1\) \(1\) \(e\left(\frac{203}{468}\right)\) \(e\left(\frac{203}{234}\right)\) \(e\left(\frac{163}{468}\right)\) \(e\left(\frac{11}{468}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{317}{468}\right)\) \(e\left(\frac{107}{234}\right)\) \(e\left(\frac{86}{117}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{4563}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{241}{468}\right)\) \(e\left(\frac{7}{234}\right)\) \(e\left(\frac{401}{468}\right)\) \(e\left(\frac{73}{468}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{19}{468}\right)\) \(e\left(\frac{157}{234}\right)\) \(e\left(\frac{7}{117}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{4563}(176,\cdot)\) \(1\) \(1\) \(e\left(\frac{295}{468}\right)\) \(e\left(\frac{61}{234}\right)\) \(e\left(\frac{419}{468}\right)\) \(e\left(\frac{235}{468}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{433}{468}\right)\) \(e\left(\frac{31}{234}\right)\) \(e\left(\frac{61}{117}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{4563}(236,\cdot)\) \(1\) \(1\) \(e\left(\frac{293}{468}\right)\) \(e\left(\frac{59}{234}\right)\) \(e\left(\frac{37}{468}\right)\) \(e\left(\frac{281}{468}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{55}{78}\right)\) \(e\left(\frac{227}{468}\right)\) \(e\left(\frac{53}{234}\right)\) \(e\left(\frac{59}{117}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{4563}(245,\cdot)\) \(1\) \(1\) \(e\left(\frac{227}{468}\right)\) \(e\left(\frac{227}{234}\right)\) \(e\left(\frac{67}{468}\right)\) \(e\left(\frac{395}{468}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{449}{468}\right)\) \(e\left(\frac{77}{234}\right)\) \(e\left(\frac{110}{117}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{4563}(266,\cdot)\) \(1\) \(1\) \(e\left(\frac{337}{468}\right)\) \(e\left(\frac{103}{234}\right)\) \(e\left(\frac{17}{468}\right)\) \(e\left(\frac{205}{468}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{79}{468}\right)\) \(e\left(\frac{37}{234}\right)\) \(e\left(\frac{103}{117}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{4563}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{355}{468}\right)\) \(e\left(\frac{121}{234}\right)\) \(e\left(\frac{179}{468}\right)\) \(e\left(\frac{259}{468}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{61}{468}\right)\) \(e\left(\frac{73}{234}\right)\) \(e\left(\frac{4}{117}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(353,\cdot)\) \(1\) \(1\) \(e\left(\frac{425}{468}\right)\) \(e\left(\frac{191}{234}\right)\) \(e\left(\frac{445}{468}\right)\) \(e\left(\frac{53}{468}\right)\) \(e\left(\frac{113}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{251}{468}\right)\) \(e\left(\frac{5}{234}\right)\) \(e\left(\frac{74}{117}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{4563}(362,\cdot)\) \(1\) \(1\) \(e\left(\frac{251}{468}\right)\) \(e\left(\frac{17}{234}\right)\) \(e\left(\frac{439}{468}\right)\) \(e\left(\frac{311}{468}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{113}{468}\right)\) \(e\left(\frac{47}{234}\right)\) \(e\left(\frac{17}{117}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(383,\cdot)\) \(1\) \(1\) \(e\left(\frac{433}{468}\right)\) \(e\left(\frac{199}{234}\right)\) \(e\left(\frac{101}{468}\right)\) \(e\left(\frac{337}{468}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{139}{468}\right)\) \(e\left(\frac{151}{234}\right)\) \(e\left(\frac{82}{117}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(410,\cdot)\) \(1\) \(1\) \(e\left(\frac{415}{468}\right)\) \(e\left(\frac{181}{234}\right)\) \(e\left(\frac{407}{468}\right)\) \(e\left(\frac{283}{468}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{157}{468}\right)\) \(e\left(\frac{115}{234}\right)\) \(e\left(\frac{64}{117}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{4563}(470,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{468}\right)\) \(e\left(\frac{89}{234}\right)\) \(e\left(\frac{385}{468}\right)\) \(e\left(\frac{293}{468}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{275}{468}\right)\) \(e\left(\frac{191}{234}\right)\) \(e\left(\frac{89}{117}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{4563}(479,\cdot)\) \(1\) \(1\) \(e\left(\frac{275}{468}\right)\) \(e\left(\frac{41}{234}\right)\) \(e\left(\frac{343}{468}\right)\) \(e\left(\frac{227}{468}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{245}{468}\right)\) \(e\left(\frac{17}{234}\right)\) \(e\left(\frac{41}{117}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(500,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{468}\right)\) \(e\left(\frac{61}{234}\right)\) \(e\left(\frac{185}{468}\right)\) \(e\left(\frac{1}{468}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{199}{468}\right)\) \(e\left(\frac{31}{234}\right)\) \(e\left(\frac{61}{117}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{4563}(527,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{468}\right)\) \(e\left(\frac{7}{234}\right)\) \(e\left(\frac{167}{468}\right)\) \(e\left(\frac{307}{468}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{253}{468}\right)\) \(e\left(\frac{157}{234}\right)\) \(e\left(\frac{7}{117}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{4563}(617,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{468}\right)\) \(e\left(\frac{157}{234}\right)\) \(e\left(\frac{269}{468}\right)\) \(e\left(\frac{133}{468}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{259}{468}\right)\) \(e\left(\frac{145}{234}\right)\) \(e\left(\frac{40}{117}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{4563}(644,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{468}\right)\) \(e\left(\frac{67}{234}\right)\) \(e\left(\frac{395}{468}\right)\) \(e\left(\frac{331}{468}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{349}{468}\right)\) \(e\left(\frac{199}{234}\right)\) \(e\left(\frac{67}{117}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(704,\cdot)\) \(1\) \(1\) \(e\left(\frac{353}{468}\right)\) \(e\left(\frac{119}{234}\right)\) \(e\left(\frac{265}{468}\right)\) \(e\left(\frac{305}{468}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{323}{468}\right)\) \(e\left(\frac{95}{234}\right)\) \(e\left(\frac{2}{117}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(713,\cdot)\) \(1\) \(1\) \(e\left(\frac{323}{468}\right)\) \(e\left(\frac{89}{234}\right)\) \(e\left(\frac{151}{468}\right)\) \(e\left(\frac{59}{468}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{41}{468}\right)\) \(e\left(\frac{191}{234}\right)\) \(e\left(\frac{89}{117}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{4563}(734,\cdot)\) \(1\) \(1\) \(e\left(\frac{253}{468}\right)\) \(e\left(\frac{19}{234}\right)\) \(e\left(\frac{353}{468}\right)\) \(e\left(\frac{265}{468}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{319}{468}\right)\) \(e\left(\frac{25}{234}\right)\) \(e\left(\frac{19}{117}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{4563}(761,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{468}\right)\) \(e\left(\frac{127}{234}\right)\) \(e\left(\frac{155}{468}\right)\) \(e\left(\frac{355}{468}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{445}{468}\right)\) \(e\left(\frac{7}{234}\right)\) \(e\left(\frac{10}{117}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{4563}(821,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{468}\right)\) \(e\left(\frac{17}{234}\right)\) \(e\left(\frac{205}{468}\right)\) \(e\left(\frac{77}{468}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{347}{468}\right)\) \(e\left(\frac{47}{234}\right)\) \(e\left(\frac{17}{117}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(830,\cdot)\) \(1\) \(1\) \(e\left(\frac{347}{468}\right)\) \(e\left(\frac{113}{234}\right)\) \(e\left(\frac{55}{468}\right)\) \(e\left(\frac{443}{468}\right)\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{173}{468}\right)\) \(e\left(\frac{161}{234}\right)\) \(e\left(\frac{113}{117}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{4563}(851,\cdot)\) \(1\) \(1\) \(e\left(\frac{349}{468}\right)\) \(e\left(\frac{115}{234}\right)\) \(e\left(\frac{437}{468}\right)\) \(e\left(\frac{397}{468}\right)\) \(e\left(\frac{37}{156}\right)\) \(e\left(\frac{53}{78}\right)\) \(e\left(\frac{379}{468}\right)\) \(e\left(\frac{139}{234}\right)\) \(e\left(\frac{115}{117}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{4563}(878,\cdot)\) \(1\) \(1\) \(e\left(\frac{187}{468}\right)\) \(e\left(\frac{187}{234}\right)\) \(e\left(\frac{383}{468}\right)\) \(e\left(\frac{379}{468}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{73}{468}\right)\) \(e\left(\frac{49}{234}\right)\) \(e\left(\frac{70}{117}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{4563}(938,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{468}\right)\) \(e\left(\frac{149}{234}\right)\) \(e\left(\frac{145}{468}\right)\) \(e\left(\frac{317}{468}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{371}{468}\right)\) \(e\left(\frac{233}{234}\right)\) \(e\left(\frac{32}{117}\right)\) \(e\left(\frac{7}{13}\right)\)