Properties

Label 4563.cd
Modulus $4563$
Conductor $1521$
Order $39$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4563, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([26,18])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(118,4563)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4563\)
Conductor: \(1521\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(39\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1521.bl
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 39 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{4563}(118,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(235,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{4563}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{4563}(586,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{4563}(820,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(937,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{4563}(1171,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{4563}(1288,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{4563}(1639,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{4563}(1873,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{4563}(1990,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{4563}(2224,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{4563}(2341,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{4563}(2575,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{4563}(2692,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{4563}(2926,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{4563}(3277,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{4563}(3394,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{4563}(3628,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{4563}(3745,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{4563}(3979,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{4563}(4096,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{4563}(4330,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{4563}(4447,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{4}{13}\right)\)