Defining parameters
| Level: | \( N \) | \(=\) | \( 4563 = 3^{3} \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4563.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 45 \) | ||
| Sturm bound: | \(1092\) | ||
| Trace bound: | \(43\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\), \(7\), \(17\), \(19\), \(23\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4563))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 588 | 207 | 381 |
| Cusp forms | 505 | 207 | 298 |
| Eisenstein series | 83 | 0 | 83 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(140\) | \(48\) | \(92\) | \(120\) | \(48\) | \(72\) | \(20\) | \(0\) | \(20\) | |||
| \(+\) | \(-\) | \(-\) | \(152\) | \(56\) | \(96\) | \(131\) | \(56\) | \(75\) | \(21\) | \(0\) | \(21\) | |||
| \(-\) | \(+\) | \(-\) | \(154\) | \(55\) | \(99\) | \(133\) | \(55\) | \(78\) | \(21\) | \(0\) | \(21\) | |||
| \(-\) | \(-\) | \(+\) | \(142\) | \(48\) | \(94\) | \(121\) | \(48\) | \(73\) | \(21\) | \(0\) | \(21\) | |||
| Plus space | \(+\) | \(282\) | \(96\) | \(186\) | \(241\) | \(96\) | \(145\) | \(41\) | \(0\) | \(41\) | ||||
| Minus space | \(-\) | \(306\) | \(111\) | \(195\) | \(264\) | \(111\) | \(153\) | \(42\) | \(0\) | \(42\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4563))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4563))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4563)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(351))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1521))\)\(^{\oplus 2}\)