Defining parameters
| Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 441.h (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 63 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(112\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 128 | 88 | 40 |
| Cusp forms | 96 | 72 | 24 |
| Eisenstein series | 32 | 16 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)