Properties

Label 441.2.h
Level $441$
Weight $2$
Character orbit 441.h
Rep. character $\chi_{441}(214,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $72$
Newform subspaces $8$
Sturm bound $112$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.h (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 8 \)
Sturm bound: \(112\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(441, [\chi])\).

Total New Old
Modular forms 128 88 40
Cusp forms 96 72 24
Eisenstein series 32 16 16

Trace form

\( 72 q + 2 q^{2} + q^{3} + 66 q^{4} - 5 q^{5} + 2 q^{6} - 12 q^{8} - 7 q^{9} + 6 q^{10} + 3 q^{11} + 20 q^{12} + 3 q^{13} + 10 q^{15} + 54 q^{16} - 9 q^{17} - 26 q^{18} - 4 q^{20} + 4 q^{23} - 6 q^{24} - 21 q^{25}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(441, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
441.2.h.a 441.h 63.h $2$ $3.521$ \(\Q(\sqrt{-3}) \) None 63.2.g.a \(2\) \(0\) \(-1\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+q^{2}+(1-2\zeta_{6})q^{3}-q^{4}+(-1+\zeta_{6})q^{5}+\cdots\)
441.2.h.b 441.h 63.h $6$ $3.521$ 6.0.309123.1 None 63.2.f.b \(-2\) \(-2\) \(-5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{3})q^{2}+(-\beta _{1}-\beta _{2}+\beta _{5})q^{3}+\cdots\)
441.2.h.c 441.h 63.h $6$ $3.521$ 6.0.309123.1 None 63.2.f.b \(-2\) \(2\) \(5\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{2}+\beta _{3})q^{2}+(\beta _{1}+\beta _{2}-\beta _{5})q^{3}+\cdots\)
441.2.h.d 441.h 63.h $6$ $3.521$ \(\Q(\zeta_{18})\) None 63.2.f.a \(6\) \(0\) \(-3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{4}-\beta_{3}+1)q^{2}+(\beta_{5}+\beta_{2})q^{3}+\cdots\)
441.2.h.e 441.h 63.h $6$ $3.521$ \(\Q(\zeta_{18})\) None 63.2.f.a \(6\) \(0\) \(3\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_{4}-\beta_{3}+1)q^{2}+(-\beta_{5}-\beta_{2})q^{3}+\cdots\)
441.2.h.f 441.h 63.h $10$ $3.521$ 10.0.\(\cdots\).1 None 63.2.g.b \(-4\) \(1\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{1}+\beta _{5})q^{2}+\beta _{8}q^{3}+(1-\beta _{4}+\cdots)q^{4}+\cdots\)
441.2.h.g 441.h 63.h $12$ $3.521$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 441.2.f.g \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+\beta _{2}q^{2}+\beta _{10}q^{3}+(1+\beta _{2}+\beta _{4})q^{4}+\cdots\)
441.2.h.h 441.h 63.h $24$ $3.521$ None 441.2.f.h \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{2}^{\mathrm{old}}(441, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(441, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 2}\)