Properties

Label 63.2.f.b
Level $63$
Weight $2$
Character orbit 63.f
Analytic conductor $0.503$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,2,Mod(22,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 63.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.503057532734\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{5} - \beta_{3} - \beta_{2} - \beta_1) q^{2} + ( - \beta_{5} + \beta_{3} + \beta_{2}) q^{3} + (\beta_{3} - 2 \beta_1 + 1) q^{4} + (\beta_{5} - \beta_{4} - \beta_{3} + \beta_1 - 1) q^{5} + ( - 2 \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 - 1) q^{6} + (\beta_{4} + 1) q^{7} + ( - \beta_{4} + 2 \beta_{3} - \beta_1 - 1) q^{8} + (2 \beta_{4} - 2 \beta_{3} - \beta_{2} + \beta_1 - 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{5} - \beta_{3} - \beta_{2} - \beta_1) q^{2} + ( - \beta_{5} + \beta_{3} + \beta_{2}) q^{3} + (\beta_{3} - 2 \beta_1 + 1) q^{4} + (\beta_{5} - \beta_{4} - \beta_{3} + \beta_1 - 1) q^{5} + ( - 2 \beta_{4} + \beta_{3} + \beta_{2} + \beta_1 - 1) q^{6} + (\beta_{4} + 1) q^{7} + ( - \beta_{4} + 2 \beta_{3} - \beta_1 - 1) q^{8} + (2 \beta_{4} - 2 \beta_{3} - \beta_{2} + \beta_1 - 1) q^{9} + ( - 3 \beta_{3} - 3 \beta_{2} - 1) q^{10} + ( - \beta_{5} + \beta_{4} + 2 \beta_{3} + \beta_{2} + 2 \beta_1 + 1) q^{11} + ( - \beta_{5} - \beta_{4} - 2 \beta_{3} + 3 \beta_1 - 3) q^{12} + \beta_{4} q^{13} + (\beta_{5} - \beta_1) q^{14} + (2 \beta_{4} + 2 \beta_{3} + 2 \beta_{2} - \beta_1 + 4) q^{15} + ( - 3 \beta_{5} + 2 \beta_{3} + 3 \beta_{2} + 2 \beta_1) q^{16} + (\beta_{4} - 2 \beta_{3} + \beta_1 - 5) q^{17} + (4 \beta_{4} - \beta_{3} + \beta_{2} - \beta_1 + 4) q^{18} + ( - \beta_{4} + 2 \beta_{3} - \beta_1) q^{19} + (\beta_{5} + 5 \beta_{4} - 2 \beta_{3} - \beta_{2} - 2 \beta_1 + 5) q^{20} + ( - \beta_{5} - \beta_{4} + \beta_{3}) q^{21} + ( - 3 \beta_{4} - 2 \beta_{3} + 4 \beta_1 - 2) q^{22} + ( - 3 \beta_{5} - \beta_{4} + 2 \beta_{3} - \beta_1 + 2) q^{23} + (\beta_{5} - \beta_{4} - 4 \beta_{3} - 2 \beta_{2}) q^{24} + (3 \beta_{5} - 3 \beta_{4} - \beta_{3} - 3 \beta_{2} - \beta_1 - 3) q^{25} + (\beta_{3} + \beta_{2}) q^{26} + (2 \beta_{5} - 3 \beta_{4} + 2 \beta_{3} - 2 \beta_{2} - 2 \beta_1 - 1) q^{27} + ( - \beta_{4} + 2 \beta_{3} - \beta_1) q^{28} + ( - \beta_{5} + \beta_{3} + \beta_{2} + \beta_1) q^{29} + (4 \beta_{5} - 6 \beta_{4} + 2 \beta_{3} - \beta_{2} - 3 \beta_1 - 6) q^{30} + (3 \beta_{5} - \beta_{4} - \beta_{3} - \beta_1 - 1) q^{31} + (\beta_{5} - 3 \beta_{4} - \beta_1) q^{32} + ( - \beta_{5} - 2 \beta_{2} - 4 \beta_1 + 4) q^{33} + ( - 3 \beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 3 \beta_{2} + 2 \beta_1 + 2) q^{34} + (\beta_{4} - \beta_{3} + \beta_{2} + \beta_1 + 1) q^{35} + (4 \beta_{5} + 3 \beta_{4} + \beta_{3} - \beta_{2} - 4 \beta_1 + 1) q^{36} + (3 \beta_{4} - 3 \beta_{3} + 3 \beta_{2} + 3 \beta_1 - 3) q^{37} + ( - 2 \beta_{5} - 2 \beta_{4} + 3 \beta_{3} + 2 \beta_{2} + 3 \beta_1 - 2) q^{38} + ( - \beta_{4} - \beta_{2}) q^{39} + (5 \beta_{4} + 2 \beta_{3} - 4 \beta_1 + 2) q^{40} + ( - \beta_{5} - 8 \beta_{4} + \beta_{3} - \beta_1 + 1) q^{41} + ( - \beta_{5} + \beta_{2} + 2 \beta_1 + 1) q^{42} + (3 \beta_{5} - 4 \beta_{3} - 3 \beta_{2} - 4 \beta_1) q^{43} + ( - 5 \beta_{3} - 5 \beta_{2} + 6) q^{44} + ( - 6 \beta_{5} + 2 \beta_{4} + \beta_{3} + 2 \beta_{2} + 4 \beta_1 + 2) q^{45} + (\beta_{4} + \beta_{3} + 3 \beta_{2} + \beta_1 + 4) q^{46} + (3 \beta_{4} - 3 \beta_{3} - 3 \beta_1 + 3) q^{47} + (7 \beta_{4} - 3 \beta_{3} - 2 \beta_{2}) q^{48} + \beta_{4} q^{49} + ( - 5 \beta_{5} + 4 \beta_{4} + \beta_{3} + 3 \beta_1 + 1) q^{50} + (5 \beta_{5} + \beta_{4} - 2 \beta_{3} - 4 \beta_{2}) q^{51} + ( - \beta_{4} + \beta_{3} + \beta_1 - 1) q^{52} + (2 \beta_{4} - \beta_{3} + 3 \beta_{2} + 2 \beta_1 - 7) q^{53} + ( - 5 \beta_{5} + 4 \beta_{3} + 2 \beta_{2} + 5 \beta_1 - 2) q^{54} + (\beta_{4} + 4 \beta_{3} + 6 \beta_{2} + \beta_1 - 1) q^{55} + ( - 2 \beta_{4} + \beta_{3} + \beta_1 - 2) q^{56} + ( - \beta_{4} - 3 \beta_{3} - \beta_{2}) q^{57} + ( - 2 \beta_{4} - \beta_{3} + 2 \beta_1 - 1) q^{58} + (3 \beta_{5} - 2 \beta_{4} - 2 \beta_{3} + \beta_1 - 2) q^{59} + ( - 5 \beta_{5} - 6 \beta_{4} + 6 \beta_{3} + 2 \beta_{2} + 4 \beta_1 - 4) q^{60} + (3 \beta_{5} + \beta_{4} - \beta_{3} - 3 \beta_{2} - \beta_1 + 1) q^{61} + ( - 2 \beta_{4} + \beta_{3} - 3 \beta_{2} - 2 \beta_1 - 5) q^{62} + (\beta_{5} - 2 \beta_{3} - \beta_{2} - \beta_1 - 2) q^{63} + (\beta_{4} + \beta_{3} + 3 \beta_{2} + \beta_1 - 4) q^{64} + ( - \beta_{5} + 2 \beta_{4} + \beta_{2} + 2) q^{65} + (2 \beta_{5} + 5 \beta_{4} + 4 \beta_{3} + 3 \beta_{2} - 6 \beta_1 + 6) q^{66} + ( - 6 \beta_{5} + 3 \beta_{4} - \beta_{3} + 8 \beta_1 - 1) q^{67} + (3 \beta_{5} + 5 \beta_{4} - 4 \beta_{3} + 5 \beta_1 - 4) q^{68} + (\beta_{5} - \beta_{4} - 4 \beta_{3} - 2 \beta_{2} - 9) q^{69} + (3 \beta_{5} - \beta_{4} - 3 \beta_{3} - 3 \beta_{2} - 3 \beta_1 - 1) q^{70} + ( - 2 \beta_{4} + \beta_{3} - 3 \beta_{2} - 2 \beta_1 + 4) q^{71} + (\beta_{5} - \beta_{4} + 5 \beta_{3} + 4 \beta_{2} - 3) q^{72} + ( - 5 \beta_{4} + 4 \beta_{3} - 6 \beta_{2} - 5 \beta_1 + 4) q^{73} + (3 \beta_{5} - 3 \beta_{4} - 3 \beta_{3} - 3 \beta_{2} - 3 \beta_1 - 3) q^{74} + (3 \beta_{5} - 5 \beta_{4} + \beta_{2} - 3 \beta_1 + 3) q^{75} + ( - 3 \beta_{5} - 5 \beta_{4} - \beta_{3} + 5 \beta_1 - 1) q^{76} + ( - \beta_{5} + 2 \beta_{4} - \beta_{3} + 3 \beta_1 - 1) q^{77} + ( - \beta_{5} + 2 \beta_{4} - \beta_{3} + \beta_1 + 2) q^{78} + ( - 6 \beta_{5} - 3 \beta_{4} + 5 \beta_{3} + 6 \beta_{2} + 5 \beta_1 - 3) q^{79} + (7 \beta_{3} + 7 \beta_{2} + 6) q^{80} + (\beta_{5} - 5 \beta_{4} - 3 \beta_{3} - 2 \beta_1 + 2) q^{81} + ( - 6 \beta_{3} - 6 \beta_{2} + 1) q^{82} + (4 \beta_{4} + \beta_{3} + \beta_1 + 4) q^{83} + ( - \beta_{4} - 3 \beta_{3} - \beta_{2}) q^{84} + ( - 6 \beta_{5} + \beta_{4} + 4 \beta_{3} - 2 \beta_1 + 4) q^{85} + (\beta_{5} + 7 \beta_{4} + 4 \beta_{3} - 9 \beta_1 + 4) q^{86} + (2 \beta_{4} - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{87} + (6 \beta_{5} + 5 \beta_{4} - 7 \beta_{3} - 6 \beta_{2} - 7 \beta_1 + 5) q^{88} + ( - \beta_{4} + 7 \beta_{3} + 5 \beta_{2} - \beta_1 + 2) q^{89} + (3 \beta_{5} + \beta_{4} - 7 \beta_{3} + \beta_{2} + 2 \beta_1 + 7) q^{90} - q^{91} + ( - 5 \beta_{4} - 2 \beta_{3} - 2 \beta_1 - 5) q^{92} + ( - 2 \beta_{5} + 2 \beta_{4} + 2 \beta_{3} + 4 \beta_{2} + 3 \beta_1 + 6) q^{93} + (6 \beta_{5} + 3 \beta_{4} + 3 \beta_{3} - 12 \beta_1 + 3) q^{94} + (\beta_{5} + 4 \beta_{4} + \beta_{3} - 3 \beta_1 + 1) q^{95} + ( - \beta_{5} + 3 \beta_{4} + 4 \beta_{2} + 2 \beta_1 + 1) q^{96} + (3 \beta_{5} - 2 \beta_{4} - 5 \beta_{3} - 3 \beta_{2} - 5 \beta_1 - 2) q^{97} + (\beta_{3} + \beta_{2}) q^{98} + ( - \beta_{5} - 6 \beta_{4} - \beta_{3} + \beta_{2} + 4 \beta_1 - 13) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} - 4 q^{3} - 3 q^{4} + 5 q^{5} + q^{6} + 3 q^{7} - 12 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{2} - 4 q^{3} - 3 q^{4} + 5 q^{5} + q^{6} + 3 q^{7} - 12 q^{8} - 4 q^{9} + 2 q^{11} - 2 q^{12} - 3 q^{13} - q^{14} + 11 q^{15} - 3 q^{16} - 24 q^{17} + 13 q^{18} - 6 q^{19} + 16 q^{20} - 2 q^{21} + 15 q^{22} + 15 q^{24} - 6 q^{25} - 2 q^{26} - 7 q^{27} - 6 q^{28} - q^{29} - 26 q^{30} + 3 q^{31} + 8 q^{32} + 8 q^{33} + 3 q^{34} + 10 q^{35} - 11 q^{36} - 6 q^{37} - 8 q^{38} + 2 q^{39} - 21 q^{40} + 22 q^{41} + 11 q^{42} + 3 q^{43} + 46 q^{44} + 5 q^{45} + 24 q^{46} + 9 q^{47} - 14 q^{48} - 3 q^{49} - 10 q^{50} + 9 q^{51} - 3 q^{52} - 36 q^{53} - 17 q^{54} - 12 q^{55} - 6 q^{56} + 11 q^{57} + 9 q^{58} + 9 q^{59} - 20 q^{60} + 6 q^{61} - 36 q^{62} - 8 q^{63} - 24 q^{64} + 5 q^{65} - 2 q^{66} - 6 q^{68} - 39 q^{69} + 18 q^{71} - 24 q^{72} + 6 q^{73} - 6 q^{74} + 31 q^{75} + 21 q^{76} - 2 q^{77} + 10 q^{78} - 15 q^{79} + 22 q^{80} + 32 q^{81} + 18 q^{82} + 12 q^{83} + 11 q^{84} - 9 q^{85} - 34 q^{86} - q^{87} + 21 q^{88} - 4 q^{89} + 73 q^{90} - 6 q^{91} - 15 q^{92} + 33 q^{93} - 24 q^{94} - 16 q^{95} + 5 q^{96} - 3 q^{97} - 2 q^{98} - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{5} - \nu^{4} + 5\nu^{3} + \nu^{2} + 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + \nu^{4} - 5\nu^{3} + 2\nu^{2} - 3\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{5} + 5\nu^{4} - 16\nu^{3} + 19\nu^{2} - 21\nu + 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} + 19\nu^{3} - 22\nu^{2} + 33\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta _1 - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} + \beta_{3} + \beta_{2} - 3\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} + 3\beta_{4} - 5\beta_{3} - 3\beta_{2} - 6\beta _1 + 6 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -3\beta_{5} - 2\beta_{4} - 11\beta_{3} - 6\beta_{2} + 8\beta _1 + 7 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(1\) \(\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
22.1
0.500000 0.224437i
0.500000 + 1.41036i
0.500000 2.05195i
0.500000 + 0.224437i
0.500000 1.41036i
0.500000 + 2.05195i
−0.849814 1.47192i 0.349814 + 1.69636i −0.444368 + 0.769668i 1.79418 3.10761i 2.19963 1.95649i 0.500000 + 0.866025i −1.88874 −2.75526 + 1.18682i −6.09888
22.2 0.119562 + 0.207087i −0.619562 1.61745i 0.971410 1.68253i −0.590972 + 1.02359i 0.260877 0.321688i 0.500000 + 0.866025i 0.942820 −2.23229 + 2.00422i −0.282630
22.3 1.23025 + 2.13086i −1.73025 0.0789082i −2.02704 + 3.51094i 1.29679 2.24611i −1.96050 3.78400i 0.500000 + 0.866025i −5.05408 2.98755 + 0.273062i 6.38151
43.1 −0.849814 + 1.47192i 0.349814 1.69636i −0.444368 0.769668i 1.79418 + 3.10761i 2.19963 + 1.95649i 0.500000 0.866025i −1.88874 −2.75526 1.18682i −6.09888
43.2 0.119562 0.207087i −0.619562 + 1.61745i 0.971410 + 1.68253i −0.590972 1.02359i 0.260877 + 0.321688i 0.500000 0.866025i 0.942820 −2.23229 2.00422i −0.282630
43.3 1.23025 2.13086i −1.73025 + 0.0789082i −2.02704 3.51094i 1.29679 + 2.24611i −1.96050 + 3.78400i 0.500000 0.866025i −5.05408 2.98755 0.273062i 6.38151
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 22.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.2.f.b 6
3.b odd 2 1 189.2.f.a 6
4.b odd 2 1 1008.2.r.k 6
7.b odd 2 1 441.2.f.d 6
7.c even 3 1 441.2.g.e 6
7.c even 3 1 441.2.h.c 6
7.d odd 6 1 441.2.g.d 6
7.d odd 6 1 441.2.h.b 6
9.c even 3 1 inner 63.2.f.b 6
9.c even 3 1 567.2.a.d 3
9.d odd 6 1 189.2.f.a 6
9.d odd 6 1 567.2.a.g 3
12.b even 2 1 3024.2.r.g 6
21.c even 2 1 1323.2.f.c 6
21.g even 6 1 1323.2.g.b 6
21.g even 6 1 1323.2.h.e 6
21.h odd 6 1 1323.2.g.c 6
21.h odd 6 1 1323.2.h.d 6
36.f odd 6 1 1008.2.r.k 6
36.f odd 6 1 9072.2.a.bq 3
36.h even 6 1 3024.2.r.g 6
36.h even 6 1 9072.2.a.cd 3
63.g even 3 1 441.2.h.c 6
63.h even 3 1 441.2.g.e 6
63.i even 6 1 1323.2.g.b 6
63.j odd 6 1 1323.2.g.c 6
63.k odd 6 1 441.2.h.b 6
63.l odd 6 1 441.2.f.d 6
63.l odd 6 1 3969.2.a.m 3
63.n odd 6 1 1323.2.h.d 6
63.o even 6 1 1323.2.f.c 6
63.o even 6 1 3969.2.a.p 3
63.s even 6 1 1323.2.h.e 6
63.t odd 6 1 441.2.g.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.b 6 1.a even 1 1 trivial
63.2.f.b 6 9.c even 3 1 inner
189.2.f.a 6 3.b odd 2 1
189.2.f.a 6 9.d odd 6 1
441.2.f.d 6 7.b odd 2 1
441.2.f.d 6 63.l odd 6 1
441.2.g.d 6 7.d odd 6 1
441.2.g.d 6 63.t odd 6 1
441.2.g.e 6 7.c even 3 1
441.2.g.e 6 63.h even 3 1
441.2.h.b 6 7.d odd 6 1
441.2.h.b 6 63.k odd 6 1
441.2.h.c 6 7.c even 3 1
441.2.h.c 6 63.g even 3 1
567.2.a.d 3 9.c even 3 1
567.2.a.g 3 9.d odd 6 1
1008.2.r.k 6 4.b odd 2 1
1008.2.r.k 6 36.f odd 6 1
1323.2.f.c 6 21.c even 2 1
1323.2.f.c 6 63.o even 6 1
1323.2.g.b 6 21.g even 6 1
1323.2.g.b 6 63.i even 6 1
1323.2.g.c 6 21.h odd 6 1
1323.2.g.c 6 63.j odd 6 1
1323.2.h.d 6 21.h odd 6 1
1323.2.h.d 6 63.n odd 6 1
1323.2.h.e 6 21.g even 6 1
1323.2.h.e 6 63.s even 6 1
3024.2.r.g 6 12.b even 2 1
3024.2.r.g 6 36.h even 6 1
3969.2.a.m 3 63.l odd 6 1
3969.2.a.p 3 63.o even 6 1
9072.2.a.bq 3 36.f odd 6 1
9072.2.a.cd 3 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} - T_{2}^{5} + 5T_{2}^{4} + 2T_{2}^{3} + 17T_{2}^{2} - 4T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(63, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{5} + 5 T^{4} + 2 T^{3} + 17 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + 4 T^{5} + 10 T^{4} + 21 T^{3} + \cdots + 27 \) Copy content Toggle raw display
$5$ \( T^{6} - 5 T^{5} + 23 T^{4} - 32 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$7$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} - 2 T^{5} + 23 T^{4} + \cdots + 2209 \) Copy content Toggle raw display
$13$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$17$ \( (T^{3} + 12 T^{2} + 39 T + 27)^{2} \) Copy content Toggle raw display
$19$ \( (T^{3} + 3 T^{2} - 6 T - 7)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 33 T^{4} - 18 T^{3} + 1089 T^{2} + \cdots + 81 \) Copy content Toggle raw display
$29$ \( T^{6} + T^{5} + 5 T^{4} - 2 T^{3} + 17 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{5} + 33 T^{4} + 126 T^{3} + \cdots + 729 \) Copy content Toggle raw display
$37$ \( (T^{3} + 3 T^{2} - 54 T + 81)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} - 22 T^{5} + 329 T^{4} + \cdots + 124609 \) Copy content Toggle raw display
$43$ \( T^{6} - 3 T^{5} + 75 T^{4} + \cdots + 14641 \) Copy content Toggle raw display
$47$ \( T^{6} - 9 T^{5} + 135 T^{4} + \cdots + 35721 \) Copy content Toggle raw display
$53$ \( (T^{3} + 18 T^{2} + 75 T + 9)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} - 9 T^{5} + 87 T^{4} + \cdots + 3969 \) Copy content Toggle raw display
$61$ \( T^{6} - 6 T^{5} + 57 T^{4} + \cdots + 4489 \) Copy content Toggle raw display
$67$ \( T^{6} + 207 T^{4} + 1366 T^{3} + \cdots + 466489 \) Copy content Toggle raw display
$71$ \( (T^{3} - 9 T^{2} - 6 T + 81)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 3 T^{2} - 168 T - 243)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + 15 T^{5} + 273 T^{4} + \cdots + 591361 \) Copy content Toggle raw display
$83$ \( T^{6} - 12 T^{5} + 105 T^{4} + \cdots + 729 \) Copy content Toggle raw display
$89$ \( (T^{3} + 2 T^{2} - 151 T + 379)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 3 T^{5} + 123 T^{4} + \cdots + 363609 \) Copy content Toggle raw display
show more
show less