Properties

Label 441.2.h.g
Level $441$
Weight $2$
Character orbit 441.h
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \(x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + \beta_{10} q^{3} + ( 1 + \beta_{2} + \beta_{4} ) q^{4} + ( -\beta_{1} + \beta_{8} ) q^{5} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{6} + ( 2 + \beta_{2} + \beta_{4} ) q^{8} + ( \beta_{3} - \beta_{4} + \beta_{5} ) q^{9} +O(q^{10})\) \( q + \beta_{2} q^{2} + \beta_{10} q^{3} + ( 1 + \beta_{2} + \beta_{4} ) q^{4} + ( -\beta_{1} + \beta_{8} ) q^{5} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - \beta_{9} - \beta_{10} + \beta_{11} ) q^{6} + ( 2 + \beta_{2} + \beta_{4} ) q^{8} + ( \beta_{3} - \beta_{4} + \beta_{5} ) q^{9} + ( -3 \beta_{1} + \beta_{6} + 2 \beta_{8} + \beta_{9} - \beta_{11} ) q^{10} + ( \beta_{3} + \beta_{4} + \beta_{7} ) q^{11} + ( 2 \beta_{1} - 2 \beta_{8} - \beta_{9} ) q^{12} + ( -\beta_{1} + \beta_{6} + 2 \beta_{8} + 2 \beta_{10} - \beta_{11} ) q^{13} + ( 1 + \beta_{2} - \beta_{3} + \beta_{4} - 2 \beta_{5} + 2 \beta_{7} ) q^{15} + ( 2 \beta_{2} - \beta_{4} ) q^{16} + ( 3 \beta_{1} - 2 \beta_{6} - 2 \beta_{8} - \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{17} + ( 4 - 2 \beta_{2} + 3 \beta_{3} + 2 \beta_{5} - \beta_{7} ) q^{18} + ( -\beta_{1} + \beta_{8} + 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{19} + ( -4 \beta_{1} + \beta_{6} + 2 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{20} + \beta_{3} q^{22} + ( -1 - \beta_{3} - \beta_{5} + 2 \beta_{7} ) q^{23} + ( 2 \beta_{1} - 2 \beta_{8} - \beta_{9} + \beta_{10} ) q^{24} + ( -3 \beta_{2} + \beta_{3} + 3 \beta_{5} ) q^{25} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - \beta_{9} - 3 \beta_{10} + 2 \beta_{11} ) q^{26} + ( \beta_{1} - \beta_{6} + \beta_{8} + 2 \beta_{11} ) q^{27} + ( -4 - 4 \beta_{3} - \beta_{5} + 2 \beta_{7} ) q^{29} + ( -2 + 4 \beta_{2} - 4 \beta_{3} + \beta_{4} - 5 \beta_{5} + 2 \beta_{7} ) q^{30} + ( -\beta_{1} + 2 \beta_{6} + 2 \beta_{8} + \beta_{9} - \beta_{10} ) q^{31} + ( 3 - \beta_{2} ) q^{32} + ( \beta_{6} + \beta_{8} - \beta_{9} ) q^{33} + ( \beta_{1} + 2 \beta_{6} - \beta_{8} + 4 \beta_{10} ) q^{34} + ( -1 - \beta_{2} + 3 \beta_{3} + 4 \beta_{5} - 2 \beta_{7} ) q^{36} + ( -2 \beta_{2} - 2 \beta_{3} + \beta_{4} + 2 \beta_{5} + \beta_{7} ) q^{37} + ( 2 \beta_{1} - \beta_{6} - \beta_{8} - 2 \beta_{10} + 2 \beta_{11} ) q^{38} + ( -5 + \beta_{2} - \beta_{3} + \beta_{4} + \beta_{5} + 2 \beta_{7} ) q^{39} + ( -5 \beta_{1} + \beta_{6} + 3 \beta_{8} + 2 \beta_{9} - 2 \beta_{10} - 2 \beta_{11} ) q^{40} + ( -\beta_{1} - \beta_{6} - 3 \beta_{8} + \beta_{9} - \beta_{10} - \beta_{11} ) q^{41} + ( -2 - 2 \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{43} + ( -\beta_{2} - 2 \beta_{3} - 2 \beta_{4} + \beta_{5} - 2 \beta_{7} ) q^{44} + ( -3 \beta_{8} - 3 \beta_{9} ) q^{45} + ( -1 - \beta_{3} - 4 \beta_{5} + \beta_{7} ) q^{46} + ( \beta_{1} - \beta_{6} - 4 \beta_{8} - \beta_{9} + 2 \beta_{11} ) q^{47} + ( 4 \beta_{1} - 3 \beta_{6} - 4 \beta_{8} - 2 \beta_{9} - 2 \beta_{10} + 3 \beta_{11} ) q^{48} + ( -4 \beta_{2} + 9 \beta_{3} - 3 \beta_{4} + 4 \beta_{5} - 3 \beta_{7} ) q^{50} + ( 4 - 5 \beta_{2} - \beta_{3} + \beta_{4} + 4 \beta_{5} - \beta_{7} ) q^{51} + ( -\beta_{1} + \beta_{8} + 2 \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{52} + ( -5 - 5 \beta_{3} + 3 \beta_{5} - 2 \beta_{7} ) q^{53} + ( -2 \beta_{1} + 2 \beta_{6} + 7 \beta_{8} + 3 \beta_{9} + 6 \beta_{10} - \beta_{11} ) q^{54} + ( \beta_{1} + \beta_{6} - \beta_{8} - \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{55} + ( -4 - \beta_{2} - 5 \beta_{3} - 4 \beta_{4} + 2 \beta_{5} - 2 \beta_{7} ) q^{57} + ( -1 - \beta_{3} - 7 \beta_{5} + \beta_{7} ) q^{58} + ( -2 \beta_{1} - \beta_{6} + 5 \beta_{8} + 2 \beta_{9} + 3 \beta_{10} - \beta_{11} ) q^{59} + ( -4 + 5 \beta_{2} - 11 \beta_{3} + 2 \beta_{4} - 7 \beta_{5} + \beta_{7} ) q^{60} + ( 2 \beta_{1} - \beta_{6} - 2 \beta_{8} - 2 \beta_{9} - \beta_{10} - 2 \beta_{11} ) q^{61} + ( -4 \beta_{1} + \beta_{6} + 10 \beta_{8} + 4 \beta_{9} + 3 \beta_{10} - 2 \beta_{11} ) q^{62} + ( -3 - 2 \beta_{2} + \beta_{4} ) q^{64} + 3 \beta_{4} q^{65} + \beta_{8} q^{66} + ( -2 + 3 \beta_{2} - 3 \beta_{4} ) q^{67} + ( 7 \beta_{1} - 3 \beta_{6} - 4 \beta_{8} - 3 \beta_{9} + 3 \beta_{11} ) q^{68} + ( -\beta_{1} - \beta_{8} - 2 \beta_{9} - \beta_{10} + \beta_{11} ) q^{69} + ( 6 + \beta_{2} ) q^{71} + ( -1 - \beta_{2} + 4 \beta_{3} - \beta_{4} + 5 \beta_{5} - 2 \beta_{7} ) q^{72} + ( \beta_{6} - \beta_{8} + \beta_{9} - \beta_{11} ) q^{73} + ( \beta_{2} + 7 \beta_{3} - 2 \beta_{4} - \beta_{5} - 2 \beta_{7} ) q^{74} + ( -3 \beta_{1} + 3 \beta_{6} + 7 \beta_{8} + 3 \beta_{9} + 3 \beta_{10} ) q^{75} + ( 2 \beta_{6} + 5 \beta_{8} - \beta_{9} + 3 \beta_{10} ) q^{76} + ( 7 - 2 \beta_{2} + 5 \beta_{3} + \beta_{4} - 2 \beta_{5} - \beta_{7} ) q^{78} + ( -1 + 3 \beta_{2} + 3 \beta_{4} ) q^{79} + ( -6 \beta_{1} + 2 \beta_{6} + 5 \beta_{8} + \beta_{9} + 2 \beta_{10} - \beta_{11} ) q^{80} + ( 5 - 4 \beta_{2} + 4 \beta_{3} - \beta_{4} - \beta_{5} + \beta_{7} ) q^{81} + ( -\beta_{1} - \beta_{6} - 6 \beta_{8} - 2 \beta_{9} - 4 \beta_{10} - \beta_{11} ) q^{82} + ( 5 \beta_{1} - 2 \beta_{6} - 4 \beta_{8} - \beta_{9} - 2 \beta_{10} + \beta_{11} ) q^{83} + ( 6 \beta_{2} - 3 \beta_{3} - 6 \beta_{5} ) q^{85} + ( 7 + 7 \beta_{3} - \beta_{5} - 2 \beta_{7} ) q^{86} + ( -\beta_{1} - 4 \beta_{8} - 2 \beta_{9} - 4 \beta_{10} + \beta_{11} ) q^{87} + ( -\beta_{2} - \beta_{3} - \beta_{4} + \beta_{5} - \beta_{7} ) q^{88} + ( -\beta_{1} - \beta_{6} - 5 \beta_{8} - \beta_{9} - 3 \beta_{10} - \beta_{11} ) q^{89} + ( 3 \beta_{1} - 3 \beta_{6} - 12 \beta_{8} - 6 \beta_{9} - 6 \beta_{10} ) q^{90} + ( -9 - 9 \beta_{3} - 4 \beta_{5} ) q^{92} + ( -5 + \beta_{2} + 2 \beta_{3} + \beta_{4} - 5 \beta_{5} - \beta_{7} ) q^{93} + ( 3 \beta_{1} - 3 \beta_{6} - 5 \beta_{8} - 3 \beta_{9} - \beta_{11} ) q^{94} + ( 9 - 3 \beta_{4} ) q^{95} + ( -2 \beta_{1} + \beta_{6} + 2 \beta_{8} + \beta_{9} + 4 \beta_{10} - \beta_{11} ) q^{96} + ( -2 \beta_{1} + \beta_{8} + \beta_{9} - 2 \beta_{10} - \beta_{11} ) q^{97} + ( -2 + \beta_{2} + 3 \beta_{3} + 3 \beta_{4} - \beta_{5} + 2 \beta_{7} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q + 4q^{2} + 12q^{4} + 24q^{8} + O(q^{10}) \) \( 12q + 4q^{2} + 12q^{4} + 24q^{8} - 8q^{11} + 18q^{15} + 12q^{16} + 24q^{18} - 6q^{22} - 4q^{23} - 12q^{25} - 22q^{29} + 6q^{30} + 32q^{32} - 30q^{36} + 6q^{37} - 48q^{39} - 6q^{43} + 14q^{44} - 12q^{46} - 56q^{50} + 36q^{51} - 28q^{53} - 6q^{57} - 18q^{58} + 18q^{60} - 48q^{64} - 12q^{65} + 76q^{71} - 30q^{72} - 36q^{74} + 36q^{78} - 12q^{79} + 24q^{81} + 30q^{85} + 36q^{86} + 6q^{88} - 62q^{92} - 84q^{93} + 120q^{95} - 48q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{12} - 7 x^{10} + 37 x^{8} - 78 x^{6} + 123 x^{4} - 36 x^{2} + 9\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\((\)\( 11 \nu^{11} + 556 \nu^{9} - 3553 \nu^{7} + 18231 \nu^{5} - 32493 \nu^{3} + 26811 \nu \)\()/12897\)
\(\beta_{2}\)\(=\)\((\)\( -49 \nu^{10} + 259 \nu^{8} - 1369 \nu^{6} + 861 \nu^{4} - 252 \nu^{2} - 7266 \)\()/4299\)
\(\beta_{3}\)\(=\)\((\)\( 148 \nu^{10} - 987 \nu^{8} + 5217 \nu^{6} - 10175 \nu^{4} + 17343 \nu^{2} - 5076 \)\()/4299\)
\(\beta_{4}\)\(=\)\((\)\( 161 \nu^{10} - 851 \nu^{8} + 3884 \nu^{6} - 2829 \nu^{4} + 828 \nu^{2} + 6678 \)\()/4299\)
\(\beta_{5}\)\(=\)\((\)\( -296 \nu^{10} + 1974 \nu^{8} - 10434 \nu^{6} + 20350 \nu^{4} - 30387 \nu^{2} + 1554 \)\()/4299\)
\(\beta_{6}\)\(=\)\((\)\( -322 \nu^{11} + 1702 \nu^{9} - 7768 \nu^{7} + 1359 \nu^{5} + 15540 \nu^{3} - 90738 \nu \)\()/12897\)
\(\beta_{7}\)\(=\)\((\)\( -120 \nu^{10} + 839 \nu^{8} - 4230 \nu^{6} + 8250 \nu^{4} - 10034 \nu^{2} + 630 \)\()/1433\)
\(\beta_{8}\)\(=\)\((\)\( 455 \nu^{11} - 2405 \nu^{9} + 12098 \nu^{7} - 12294 \nu^{5} + 19536 \nu^{3} + 37377 \nu \)\()/12897\)
\(\beta_{9}\)\(=\)\((\)\( 461 \nu^{11} - 3665 \nu^{9} + 18758 \nu^{7} - 44949 \nu^{5} + 54573 \nu^{3} - 33588 \nu \)\()/12897\)
\(\beta_{10}\)\(=\)\((\)\( -1804 \nu^{11} + 11992 \nu^{9} - 62158 \nu^{7} + 118293 \nu^{5} - 178167 \nu^{3} + 13770 \nu \)\()/12897\)
\(\beta_{11}\)\(=\)\((\)\( 2051 \nu^{11} - 15140 \nu^{9} + 81254 \nu^{7} - 186504 \nu^{5} + 298581 \nu^{3} - 112869 \nu \)\()/12897\)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{10} + \beta_{9} + 3 \beta_{8} - 2 \beta_{1}\)\()/3\)
\(\nu^{2}\)\(=\)\(\beta_{5} + 2 \beta_{3} + 2\)
\(\nu^{3}\)\(=\)\((\)\(-2 \beta_{11} - 3 \beta_{10} - 2 \beta_{9} + \beta_{6} - 6 \beta_{1}\)\()/3\)
\(\nu^{4}\)\(=\)\(-\beta_{7} + 5 \beta_{5} - \beta_{4} + 7 \beta_{3} - 5 \beta_{2}\)
\(\nu^{5}\)\(=\)\((\)\(-4 \beta_{11} - 24 \beta_{10} - 28 \beta_{9} - 54 \beta_{8} - 7 \beta_{6} + 12 \beta_{1}\)\()/3\)
\(\nu^{6}\)\(=\)\(-7 \beta_{4} - 23 \beta_{2} - 28\)
\(\nu^{7}\)\(=\)\((\)\(37 \beta_{11} - 30 \beta_{10} - 104 \beta_{9} - 222 \beta_{8} - 53 \beta_{6} + 171 \beta_{1}\)\()/3\)
\(\nu^{8}\)\(=\)\(37 \beta_{7} - 104 \beta_{5} - 118 \beta_{3} - 118\)
\(\nu^{9}\)\(=\)\((\)\(245 \beta_{11} + 333 \beta_{10} + 44 \beta_{9} + 111 \beta_{8} - 67 \beta_{6} + 534 \beta_{1}\)\()/3\)
\(\nu^{10}\)\(=\)\(178 \beta_{7} - 467 \beta_{5} + 178 \beta_{4} - 511 \beta_{3} + 467 \beta_{2}\)
\(\nu^{11}\)\(=\)\((\)\(289 \beta_{11} + 1956 \beta_{10} + 2245 \beta_{9} + 4869 \beta_{8} + 823 \beta_{6} - 978 \beta_{1}\)\()/3\)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(\beta_{3}\) \(\beta_{3}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
214.1
−0.474636 + 0.274031i
0.474636 0.274031i
−1.29589 + 0.748185i
1.29589 0.748185i
1.82904 1.05600i
−1.82904 + 1.05600i
−0.474636 0.274031i
0.474636 + 0.274031i
−1.29589 0.748185i
1.29589 + 0.748185i
1.82904 + 1.05600i
−1.82904 1.05600i
−1.69963 −0.175815 1.72310i 0.888736 −0.474636 + 0.822093i 0.298820 + 2.92864i 0 1.88874 −2.93818 + 0.605896i 0.806704 1.39725i
214.2 −1.69963 0.175815 + 1.72310i 0.888736 0.474636 0.822093i −0.298820 2.92864i 0 1.88874 −2.93818 + 0.605896i −0.806704 + 1.39725i
214.3 0.239123 −1.70316 + 0.315036i −1.94282 −1.29589 + 2.24456i −0.407265 + 0.0753324i 0 −0.942820 2.80150 1.07311i −0.309879 + 0.536725i
214.4 0.239123 1.70316 0.315036i −1.94282 1.29589 2.24456i 0.407265 0.0753324i 0 −0.942820 2.80150 1.07311i 0.309879 0.536725i
214.5 2.46050 −1.25233 + 1.19652i 4.05408 1.82904 3.16799i −3.08137 + 2.94405i 0 5.05408 0.136673 2.99689i 4.50036 7.79485i
214.6 2.46050 1.25233 1.19652i 4.05408 −1.82904 + 3.16799i 3.08137 2.94405i 0 5.05408 0.136673 2.99689i −4.50036 + 7.79485i
373.1 −1.69963 −0.175815 + 1.72310i 0.888736 −0.474636 0.822093i 0.298820 2.92864i 0 1.88874 −2.93818 0.605896i 0.806704 + 1.39725i
373.2 −1.69963 0.175815 1.72310i 0.888736 0.474636 + 0.822093i −0.298820 + 2.92864i 0 1.88874 −2.93818 0.605896i −0.806704 1.39725i
373.3 0.239123 −1.70316 0.315036i −1.94282 −1.29589 2.24456i −0.407265 0.0753324i 0 −0.942820 2.80150 + 1.07311i −0.309879 0.536725i
373.4 0.239123 1.70316 + 0.315036i −1.94282 1.29589 + 2.24456i 0.407265 + 0.0753324i 0 −0.942820 2.80150 + 1.07311i 0.309879 + 0.536725i
373.5 2.46050 −1.25233 1.19652i 4.05408 1.82904 + 3.16799i −3.08137 2.94405i 0 5.05408 0.136673 + 2.99689i 4.50036 + 7.79485i
373.6 2.46050 1.25233 + 1.19652i 4.05408 −1.82904 3.16799i 3.08137 + 2.94405i 0 5.05408 0.136673 + 2.99689i −4.50036 7.79485i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 373.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
63.h even 3 1 inner
63.t odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 441.2.h.g 12
3.b odd 2 1 1323.2.h.g 12
7.b odd 2 1 inner 441.2.h.g 12
7.c even 3 1 441.2.f.g 12
7.c even 3 1 441.2.g.g 12
7.d odd 6 1 441.2.f.g 12
7.d odd 6 1 441.2.g.g 12
9.c even 3 1 441.2.g.g 12
9.d odd 6 1 1323.2.g.g 12
21.c even 2 1 1323.2.h.g 12
21.g even 6 1 1323.2.f.g 12
21.g even 6 1 1323.2.g.g 12
21.h odd 6 1 1323.2.f.g 12
21.h odd 6 1 1323.2.g.g 12
63.g even 3 1 441.2.f.g 12
63.h even 3 1 inner 441.2.h.g 12
63.h even 3 1 3969.2.a.be 6
63.i even 6 1 1323.2.h.g 12
63.i even 6 1 3969.2.a.bd 6
63.j odd 6 1 1323.2.h.g 12
63.j odd 6 1 3969.2.a.bd 6
63.k odd 6 1 441.2.f.g 12
63.l odd 6 1 441.2.g.g 12
63.n odd 6 1 1323.2.f.g 12
63.o even 6 1 1323.2.g.g 12
63.s even 6 1 1323.2.f.g 12
63.t odd 6 1 inner 441.2.h.g 12
63.t odd 6 1 3969.2.a.be 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
441.2.f.g 12 7.c even 3 1
441.2.f.g 12 7.d odd 6 1
441.2.f.g 12 63.g even 3 1
441.2.f.g 12 63.k odd 6 1
441.2.g.g 12 7.c even 3 1
441.2.g.g 12 7.d odd 6 1
441.2.g.g 12 9.c even 3 1
441.2.g.g 12 63.l odd 6 1
441.2.h.g 12 1.a even 1 1 trivial
441.2.h.g 12 7.b odd 2 1 inner
441.2.h.g 12 63.h even 3 1 inner
441.2.h.g 12 63.t odd 6 1 inner
1323.2.f.g 12 21.g even 6 1
1323.2.f.g 12 21.h odd 6 1
1323.2.f.g 12 63.n odd 6 1
1323.2.f.g 12 63.s even 6 1
1323.2.g.g 12 9.d odd 6 1
1323.2.g.g 12 21.g even 6 1
1323.2.g.g 12 21.h odd 6 1
1323.2.g.g 12 63.o even 6 1
1323.2.h.g 12 3.b odd 2 1
1323.2.h.g 12 21.c even 2 1
1323.2.h.g 12 63.i even 6 1
1323.2.h.g 12 63.j odd 6 1
3969.2.a.bd 6 63.i even 6 1
3969.2.a.bd 6 63.j odd 6 1
3969.2.a.be 6 63.h even 3 1
3969.2.a.be 6 63.t odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\):

\( T_{2}^{3} - T_{2}^{2} - 4 T_{2} + 1 \)
\( T_{5}^{12} + 21 T_{5}^{10} + 333 T_{5}^{8} + 2106 T_{5}^{6} + 9963 T_{5}^{4} + 8748 T_{5}^{2} + 6561 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 - 4 T - T^{2} + T^{3} )^{4} \)
$3$ \( 729 - 54 T^{4} + 9 T^{6} - 6 T^{8} + T^{12} \)
$5$ \( 6561 + 8748 T^{2} + 9963 T^{4} + 2106 T^{6} + 333 T^{8} + 21 T^{10} + T^{12} \)
$7$ \( T^{12} \)
$11$ \( ( 1 + T + 5 T^{2} - 2 T^{3} + 17 T^{4} + 4 T^{5} + T^{6} )^{2} \)
$13$ \( 6561 + 28431 T^{2} + 120042 T^{4} + 13527 T^{6} + 1170 T^{8} + 39 T^{10} + T^{12} \)
$17$ \( 15752961 + 6322617 T^{2} + 2204253 T^{4} + 125874 T^{6} + 5463 T^{8} + 84 T^{10} + T^{12} \)
$19$ \( 15752961 + 5143824 T^{2} + 1381941 T^{4} + 89262 T^{6} + 4329 T^{8} + 75 T^{10} + T^{12} \)
$23$ \( ( 3481 + 1475 T + 743 T^{2} + 68 T^{3} + 29 T^{4} + 2 T^{5} + T^{6} )^{2} \)
$29$ \( ( 7921 - 1246 T + 1175 T^{2} + 332 T^{3} + 107 T^{4} + 11 T^{5} + T^{6} )^{2} \)
$31$ \( ( -77841 + 5508 T^{2} - 129 T^{4} + T^{6} )^{2} \)
$37$ \( ( 729 + 648 T + 495 T^{2} + 126 T^{3} + 33 T^{4} - 3 T^{5} + T^{6} )^{2} \)
$41$ \( 43046721 + 39858075 T^{2} + 35842743 T^{4} + 971028 T^{6} + 20169 T^{8} + 162 T^{10} + T^{12} \)
$43$ \( ( 729 - 648 T + 495 T^{2} - 126 T^{3} + 33 T^{4} + 3 T^{5} + T^{6} )^{2} \)
$47$ \( ( -194481 + 10584 T^{2} - 183 T^{4} + T^{6} )^{2} \)
$53$ \( ( 69169 - 2893 T + 3803 T^{2} + 680 T^{3} + 185 T^{4} + 14 T^{5} + T^{6} )^{2} \)
$59$ \( ( -149769 + 9450 T^{2} - 183 T^{4} + T^{6} )^{2} \)
$61$ \( ( -558009 + 21519 T^{2} - 264 T^{4} + T^{6} )^{2} \)
$67$ \( ( 353 - 111 T + T^{3} )^{4} \)
$71$ \( ( -227 + 116 T - 19 T^{2} + T^{3} )^{4} \)
$73$ \( 15752961 + 5143824 T^{2} + 1381941 T^{4} + 89262 T^{6} + 4329 T^{8} + 75 T^{10} + T^{12} \)
$79$ \( ( -107 - 78 T + 3 T^{2} + T^{3} )^{4} \)
$83$ \( 51769445841 + 3040925085 T^{2} + 126746613 T^{4} + 2592162 T^{6} + 38619 T^{8} + 228 T^{10} + T^{12} \)
$89$ \( 15752961 + 22825719 T^{2} + 32097627 T^{4} + 1406808 T^{6} + 54765 T^{8} + 246 T^{10} + T^{12} \)
$97$ \( 96059601 + 19582398 T^{2} + 2904093 T^{4} + 202176 T^{6} + 10323 T^{8} + 111 T^{10} + T^{12} \)
show more
show less