Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,2,Mod(148,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.148");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.f (of order \(3\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.52140272914\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
148.1 | −1.08816 | − | 1.88474i | −1.68791 | − | 0.388551i | −1.36816 | + | 2.36973i | 0.634145 | − | 1.09837i | 1.10439 | + | 3.60407i | 0 | 1.60248 | 2.69806 | + | 1.31167i | −2.76019 | ||||||
148.2 | −1.08816 | − | 1.88474i | 1.68791 | + | 0.388551i | −1.36816 | + | 2.36973i | −0.634145 | + | 1.09837i | −1.10439 | − | 3.60407i | 0 | 1.60248 | 2.69806 | + | 1.31167i | 2.76019 | ||||||
148.3 | −0.649936 | − | 1.12572i | −0.0514049 | − | 1.73129i | 0.155166 | − | 0.268756i | 1.76292 | − | 3.05347i | −1.91554 | + | 1.18309i | 0 | −3.00314 | −2.99472 | + | 0.177994i | −4.58314 | ||||||
148.4 | −0.649936 | − | 1.12572i | 0.0514049 | + | 1.73129i | 0.155166 | − | 0.268756i | −1.76292 | + | 3.05347i | 1.91554 | − | 1.18309i | 0 | −3.00314 | −2.99472 | + | 0.177994i | 4.58314 | ||||||
148.5 | −0.0341870 | − | 0.0592136i | −1.69514 | − | 0.355671i | 0.997662 | − | 1.72800i | −1.33190 | + | 2.30691i | 0.0368912 | + | 0.112535i | 0 | −0.273176 | 2.74700 | + | 1.20582i | 0.182134 | ||||||
148.6 | −0.0341870 | − | 0.0592136i | 1.69514 | + | 0.355671i | 0.997662 | − | 1.72800i | 1.33190 | − | 2.30691i | −0.0368912 | − | 0.112535i | 0 | −0.273176 | 2.74700 | + | 1.20582i | −0.182134 | ||||||
148.7 | 0.551407 | + | 0.955065i | −1.67475 | + | 0.441824i | 0.391901 | − | 0.678793i | 0.0527330 | − | 0.0913363i | −1.34544 | − | 1.35587i | 0 | 3.07001 | 2.60958 | − | 1.47989i | 0.116309 | ||||||
148.8 | 0.551407 | + | 0.955065i | 1.67475 | − | 0.441824i | 0.391901 | − | 0.678793i | −0.0527330 | + | 0.0913363i | 1.34544 | + | 1.35587i | 0 | 3.07001 | 2.60958 | − | 1.47989i | −0.116309 | ||||||
148.9 | 0.863305 | + | 1.49529i | −1.09452 | + | 1.34239i | −0.490592 | + | 0.849731i | 1.75616 | − | 3.04175i | −2.95217 | − | 0.477737i | 0 | 1.75910 | −0.604030 | − | 2.93856i | 6.06439 | ||||||
148.10 | 0.863305 | + | 1.49529i | 1.09452 | − | 1.34239i | −0.490592 | + | 0.849731i | −1.75616 | + | 3.04175i | 2.95217 | + | 0.477737i | 0 | 1.75910 | −0.604030 | − | 2.93856i | −6.06439 | ||||||
148.11 | 1.35757 | + | 2.35137i | −0.521588 | − | 1.65165i | −2.68597 | + | 4.65224i | −0.793197 | + | 1.37386i | 3.17555 | − | 3.46867i | 0 | −9.15528 | −2.45589 | + | 1.72296i | −4.30727 | ||||||
148.12 | 1.35757 | + | 2.35137i | 0.521588 | + | 1.65165i | −2.68597 | + | 4.65224i | 0.793197 | − | 1.37386i | −3.17555 | + | 3.46867i | 0 | −9.15528 | −2.45589 | + | 1.72296i | 4.30727 | ||||||
295.1 | −1.08816 | + | 1.88474i | −1.68791 | + | 0.388551i | −1.36816 | − | 2.36973i | 0.634145 | + | 1.09837i | 1.10439 | − | 3.60407i | 0 | 1.60248 | 2.69806 | − | 1.31167i | −2.76019 | ||||||
295.2 | −1.08816 | + | 1.88474i | 1.68791 | − | 0.388551i | −1.36816 | − | 2.36973i | −0.634145 | − | 1.09837i | −1.10439 | + | 3.60407i | 0 | 1.60248 | 2.69806 | − | 1.31167i | 2.76019 | ||||||
295.3 | −0.649936 | + | 1.12572i | −0.0514049 | + | 1.73129i | 0.155166 | + | 0.268756i | 1.76292 | + | 3.05347i | −1.91554 | − | 1.18309i | 0 | −3.00314 | −2.99472 | − | 0.177994i | −4.58314 | ||||||
295.4 | −0.649936 | + | 1.12572i | 0.0514049 | − | 1.73129i | 0.155166 | + | 0.268756i | −1.76292 | − | 3.05347i | 1.91554 | + | 1.18309i | 0 | −3.00314 | −2.99472 | − | 0.177994i | 4.58314 | ||||||
295.5 | −0.0341870 | + | 0.0592136i | −1.69514 | + | 0.355671i | 0.997662 | + | 1.72800i | −1.33190 | − | 2.30691i | 0.0368912 | − | 0.112535i | 0 | −0.273176 | 2.74700 | − | 1.20582i | 0.182134 | ||||||
295.6 | −0.0341870 | + | 0.0592136i | 1.69514 | − | 0.355671i | 0.997662 | + | 1.72800i | 1.33190 | + | 2.30691i | −0.0368912 | + | 0.112535i | 0 | −0.273176 | 2.74700 | − | 1.20582i | −0.182134 | ||||||
295.7 | 0.551407 | − | 0.955065i | −1.67475 | − | 0.441824i | 0.391901 | + | 0.678793i | 0.0527330 | + | 0.0913363i | −1.34544 | + | 1.35587i | 0 | 3.07001 | 2.60958 | + | 1.47989i | 0.116309 | ||||||
295.8 | 0.551407 | − | 0.955065i | 1.67475 | + | 0.441824i | 0.391901 | + | 0.678793i | −0.0527330 | − | 0.0913363i | 1.34544 | − | 1.35587i | 0 | 3.07001 | 2.60958 | + | 1.47989i | −0.116309 | ||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
63.l | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.2.f.h | ✓ | 24 |
3.b | odd | 2 | 1 | 1323.2.f.h | 24 | ||
7.b | odd | 2 | 1 | inner | 441.2.f.h | ✓ | 24 |
7.c | even | 3 | 1 | 441.2.g.h | 24 | ||
7.c | even | 3 | 1 | 441.2.h.h | 24 | ||
7.d | odd | 6 | 1 | 441.2.g.h | 24 | ||
7.d | odd | 6 | 1 | 441.2.h.h | 24 | ||
9.c | even | 3 | 1 | inner | 441.2.f.h | ✓ | 24 |
9.c | even | 3 | 1 | 3969.2.a.bh | 12 | ||
9.d | odd | 6 | 1 | 1323.2.f.h | 24 | ||
9.d | odd | 6 | 1 | 3969.2.a.bi | 12 | ||
21.c | even | 2 | 1 | 1323.2.f.h | 24 | ||
21.g | even | 6 | 1 | 1323.2.g.h | 24 | ||
21.g | even | 6 | 1 | 1323.2.h.h | 24 | ||
21.h | odd | 6 | 1 | 1323.2.g.h | 24 | ||
21.h | odd | 6 | 1 | 1323.2.h.h | 24 | ||
63.g | even | 3 | 1 | 441.2.h.h | 24 | ||
63.h | even | 3 | 1 | 441.2.g.h | 24 | ||
63.i | even | 6 | 1 | 1323.2.g.h | 24 | ||
63.j | odd | 6 | 1 | 1323.2.g.h | 24 | ||
63.k | odd | 6 | 1 | 441.2.h.h | 24 | ||
63.l | odd | 6 | 1 | inner | 441.2.f.h | ✓ | 24 |
63.l | odd | 6 | 1 | 3969.2.a.bh | 12 | ||
63.n | odd | 6 | 1 | 1323.2.h.h | 24 | ||
63.o | even | 6 | 1 | 1323.2.f.h | 24 | ||
63.o | even | 6 | 1 | 3969.2.a.bi | 12 | ||
63.s | even | 6 | 1 | 1323.2.h.h | 24 | ||
63.t | odd | 6 | 1 | 441.2.g.h | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
441.2.f.h | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
441.2.f.h | ✓ | 24 | 7.b | odd | 2 | 1 | inner |
441.2.f.h | ✓ | 24 | 9.c | even | 3 | 1 | inner |
441.2.f.h | ✓ | 24 | 63.l | odd | 6 | 1 | inner |
441.2.g.h | 24 | 7.c | even | 3 | 1 | ||
441.2.g.h | 24 | 7.d | odd | 6 | 1 | ||
441.2.g.h | 24 | 63.h | even | 3 | 1 | ||
441.2.g.h | 24 | 63.t | odd | 6 | 1 | ||
441.2.h.h | 24 | 7.c | even | 3 | 1 | ||
441.2.h.h | 24 | 7.d | odd | 6 | 1 | ||
441.2.h.h | 24 | 63.g | even | 3 | 1 | ||
441.2.h.h | 24 | 63.k | odd | 6 | 1 | ||
1323.2.f.h | 24 | 3.b | odd | 2 | 1 | ||
1323.2.f.h | 24 | 9.d | odd | 6 | 1 | ||
1323.2.f.h | 24 | 21.c | even | 2 | 1 | ||
1323.2.f.h | 24 | 63.o | even | 6 | 1 | ||
1323.2.g.h | 24 | 21.g | even | 6 | 1 | ||
1323.2.g.h | 24 | 21.h | odd | 6 | 1 | ||
1323.2.g.h | 24 | 63.i | even | 6 | 1 | ||
1323.2.g.h | 24 | 63.j | odd | 6 | 1 | ||
1323.2.h.h | 24 | 21.g | even | 6 | 1 | ||
1323.2.h.h | 24 | 21.h | odd | 6 | 1 | ||
1323.2.h.h | 24 | 63.n | odd | 6 | 1 | ||
1323.2.h.h | 24 | 63.s | even | 6 | 1 | ||
3969.2.a.bh | 12 | 9.c | even | 3 | 1 | ||
3969.2.a.bh | 12 | 63.l | odd | 6 | 1 | ||
3969.2.a.bi | 12 | 9.d | odd | 6 | 1 | ||
3969.2.a.bi | 12 | 63.o | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{12} - 2 T_{2}^{11} + 11 T_{2}^{10} - 10 T_{2}^{9} + 63 T_{2}^{8} - 58 T_{2}^{7} + 184 T_{2}^{6} - 74 T_{2}^{5} + 261 T_{2}^{4} - 116 T_{2}^{3} + 206 T_{2}^{2} + 14 T_{2} + 1 \)
|
\( T_{5}^{24} + 36 T_{5}^{22} + 831 T_{5}^{20} + 11580 T_{5}^{18} + 117495 T_{5}^{16} + 782970 T_{5}^{14} + 3775328 T_{5}^{12} + 10937664 T_{5}^{10} + 22667115 T_{5}^{8} + 25896660 T_{5}^{6} + 19694250 T_{5}^{4} + \cdots + 2401 \)
|