# Properties

 Label 63.2.f.a Level $63$ Weight $2$ Character orbit 63.f Analytic conductor $0.503$ Analytic rank $0$ Dimension $6$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [63,2,Mod(22,63)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(63, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([2, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("63.22");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$63 = 3^{2} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 63.f (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$0.503057532734$$ Analytic rank: $$0$$ Dimension: $$6$$ Relative dimension: $$3$$ over $$\Q(\zeta_{3})$$ Coefficient field: $$\Q(\zeta_{18})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{6} - x^{3} + 1$$ x^6 - x^3 + 1 Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$3$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{5}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (\beta_{5} + \beta_1 - 1) q^{2} + (\beta_{5} - \beta_{3}) q^{3} + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots - \beta_1) q^{4}+ \cdots + ( - 2 \beta_{5} + \beta_{4} - \beta_{2}) q^{9}+O(q^{10})$$ q + (b5 + b1 - 1) * q^2 + (b5 - b3) * q^3 + (-2*b5 + 2*b4 + 2*b3 - b2 - b1) * q^4 + (b5 - b4 - b3 + b2 - b1) * q^5 + (-2*b5 + b4 + 2*b3 - 2*b2 - b1 - 1) * q^6 + (b1 - 1) * q^7 + (-2*b4 + b3 + 2) * q^8 + (-2*b5 + b4 - b2) * q^9 $$q + (\beta_{5} + \beta_1 - 1) q^{2} + (\beta_{5} - \beta_{3}) q^{3} + ( - 2 \beta_{5} + 2 \beta_{4} + \cdots - \beta_1) q^{4}+ \cdots + (3 \beta_{5} - 6 \beta_{4} - 3 \beta_{3} + 3) q^{99}+O(q^{100})$$ q + (b5 + b1 - 1) * q^2 + (b5 - b3) * q^3 + (-2*b5 + 2*b4 + 2*b3 - b2 - b1) * q^4 + (b5 - b4 - b3 + b2 - b1) * q^5 + (-2*b5 + b4 + 2*b3 - 2*b2 - b1 - 1) * q^6 + (b1 - 1) * q^7 + (-2*b4 + b3 + 2) * q^8 + (-2*b5 + b4 - b2) * q^9 + (b4 - b3) * q^10 + (b5 - b3 + b2 + 2*b1 - 2) * q^11 + (b5 - 3*b4 - b3 + 3) * q^12 + (2*b5 - 2*b4 - 2*b3 + 4*b2 + b1) * q^13 + (-b5 + b4 + b3 - b1) * q^14 + (-b3 + 2*b2 - b1 - 1) * q^15 + (3*b5 - 3*b3 + 3*b2 + b1 - 1) * q^16 + (-b3 + 2) * q^17 + (-3*b4 + 3*b1) * q^18 + (-2*b4 - b3 - 1) * q^19 + (-b5 + b3 - b2 - 2*b1 + 2) * q^20 + (-b5 + b4 + 2*b3 - b2) * q^21 + (-4*b5 + 4*b4 + 4*b3 - 2*b2 - 3*b1) * q^22 + (b5 - b4 - b3 - 2*b2 - 4*b1) * q^23 + (5*b5 - b4 - 2*b3 + 2*b2 + b1 - 5) * q^24 + (-b5 + 2*b3 - 2*b2 - 2*b1 + 2) * q^25 + (7*b4 + b3 - 1) * q^26 + (3*b1 + 3) * q^27 + (-2*b4 - b3 + 1) * q^28 + (-5*b5 + 4*b3 - 4*b2 + 3*b1 - 3) * q^29 + (-2*b5 + b4 - b2 + 3) * q^30 + (3*b5 - 3*b4 - 3*b3 - 3*b2 + b1) * q^31 + (-3*b5 + 3*b4 + 3*b3) * q^32 + (-3*b5 + 3*b4 + 4*b3 - 2*b2 - 2*b1 + 1) * q^33 + (b5 + b3 - b2 + 3*b1 - 3) * q^34 + (b4 + 1) * q^35 + (4*b5 + b4 - 3*b3 + 2*b2 + 3*b1 - 6) * q^36 + (3*b4 + 6*b3 - 1) * q^37 + (2*b5 - 3*b3 + 3*b2 + 2*b1 - 2) * q^38 + (2*b5 + 3*b4 + b3 + 3*b2 - 6*b1) * q^39 + (2*b5 - 2*b4 - 2*b3 - 2*b2 + 3*b1) * q^40 + (b5 - b4 - b3 - b2) * q^41 + (b5 - 2*b4 - b3 + b2 - b1 + 2) * q^42 + (b5 + b3 - b2 - b1 + 1) * q^43 + (-7*b4 - 3*b3 + 5) * q^44 + (3*b2 - 3*b1 + 3) * q^45 + (-5*b4 - 4*b3) * q^46 + (-2*b5 - 3*b3 + 3*b2 + b1 - 1) * q^47 + (-4*b5 + 4*b4 + 2*b3 - b2 - 6*b1 + 3) * q^48 - b1 * q^49 + (5*b5 - 5*b4 - 5*b3 + 3*b2 + 2*b1) * q^50 + (b5 + b4 - 2*b3 + b1 + 1) * q^51 + (-10*b5 + 5*b3 - 5*b2 - 7*b1 + 7) * q^52 + (-3*b4 - b3 + 2) * q^53 + (3*b5 + 3*b4 + 3*b3 + 3*b1 - 6) * q^54 + (2*b4 + b3) * q^55 + (2*b5 - 3*b3 + 3*b2 + 2*b1 - 2) * q^56 + (b4 + b3 + 2*b2 + 3*b1 - 3) * q^57 + (6*b5 - 6*b4 - 6*b3 + 9*b2 + 3*b1) * q^58 + (-5*b5 + 5*b4 + 5*b3 + b1) * q^59 + (3*b5 - 3*b4 - 4*b3 + 2*b2 + 2*b1 - 1) * q^60 + (-3*b5 + 2*b1 - 2) * q^61 + (b4 + b3 - 10) * q^62 + (b5 - 2*b4 - b2) * q^63 + (3*b4 + 4) * q^64 + (b5 + 5*b3 - 5*b2 + 5*b1 - 5) * q^65 + (2*b5 - 7*b4 - 3*b3 + b2 + 6) * q^66 + (-3*b2 + 4*b1) * q^67 + (-3*b5 + 3*b4 + 3*b3 - 2*b2 - 2*b1) * q^68 + (-3*b5 - 3*b4 - 4*b3 + 2*b2 + 5*b1 - 4) * q^69 + (-b5 + 2*b3 - 2*b2) * q^70 + (3*b4 - 3*b3 + 3) * q^71 + (-9*b5 + 3*b4 + 6*b3 - 3*b2 - 6*b1 - 3) * q^72 + (4*b4 + 5*b3 - 7) * q^73 + (-b5 - 10*b1 + 10) * q^74 + (3*b5 - 4*b4 - 4*b3 + b2 + 3*b1 - 3) * q^75 + (-3*b5 + 3*b4 + 3*b3 - 3*b2 - 5*b1) * q^76 + (-b5 + b4 + b3 - b2 - 2*b1) * q^77 + (-7*b5 - b4 + b3 - 7*b2 - 8*b1 + 13) * q^78 + (-3*b3 + 3*b2 - 7*b1 + 7) * q^79 + (b4 + 3*b3 - 5) * q^80 + (3*b5 + 3*b4 - 3*b2) * q^81 - 3 * q^82 + (4*b5 + b3 - b2 - 6*b1 + 6) * q^83 + (2*b5 + b4 - b3 + 2*b2 + 3*b1 - 3) * q^84 + (2*b5 - 2*b4 - 2*b3 + 4*b2 - 3*b1) * q^85 + (b5 - b4 - b3 - 2*b1) * q^86 + (2*b5 - b4 + 6*b3 - 2*b2 + 9*b1 - 3) * q^87 + (8*b5 - 7*b3 + 7*b2 + 9*b1 - 9) * q^88 + (-3*b4 + 4*b3 + 4) * q^89 + (3*b5 - 3*b3 + 3*b1 + 3) * q^90 + (2*b4 - 2*b3 - 1) * q^91 + (8*b5 - 2*b3 + 2*b2 + b1 - 1) * q^92 + (-6*b5 + 4*b4 + b3 - 4*b2 + 9*b1 - 9) * q^93 + (-2*b5 + 2*b4 + 2*b3 - b2 + 6*b1) * q^94 + (-b5 + b4 + b3 - b2 + 4*b1) * q^95 + (3*b5 - 3*b4 - 3*b1 + 6) * q^96 + (7*b5 - 8*b3 + 8*b2 - b1 + 1) * q^97 + (-b4 - b3 + 1) * q^98 + (3*b5 - 6*b4 - 3*b3 + 3) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$6 q - 3 q^{2} - 3 q^{4} - 3 q^{5} - 9 q^{6} - 3 q^{7} + 12 q^{8}+O(q^{10})$$ 6 * q - 3 * q^2 - 3 * q^4 - 3 * q^5 - 9 * q^6 - 3 * q^7 + 12 * q^8 $$6 q - 3 q^{2} - 3 q^{4} - 3 q^{5} - 9 q^{6} - 3 q^{7} + 12 q^{8} - 6 q^{11} + 18 q^{12} + 3 q^{13} - 3 q^{14} - 9 q^{15} - 3 q^{16} + 12 q^{17} + 9 q^{18} - 6 q^{19} + 6 q^{20} - 9 q^{22} - 12 q^{23} - 27 q^{24} + 6 q^{25} - 6 q^{26} + 27 q^{27} + 6 q^{28} - 9 q^{29} + 18 q^{30} + 3 q^{31} - 9 q^{34} + 6 q^{35} - 27 q^{36} - 6 q^{37} - 6 q^{38} - 18 q^{39} + 9 q^{40} + 9 q^{42} + 3 q^{43} + 30 q^{44} + 9 q^{45} - 3 q^{47} - 3 q^{49} + 6 q^{50} + 9 q^{51} + 21 q^{52} + 12 q^{53} - 27 q^{54} - 6 q^{56} - 9 q^{57} + 9 q^{58} + 3 q^{59} - 6 q^{61} - 60 q^{62} + 24 q^{64} - 15 q^{65} + 36 q^{66} + 12 q^{67} - 6 q^{68} - 9 q^{69} + 18 q^{71} - 36 q^{72} - 42 q^{73} + 30 q^{74} - 9 q^{75} - 15 q^{76} - 6 q^{77} + 54 q^{78} + 21 q^{79} - 30 q^{80} - 18 q^{82} + 18 q^{83} - 9 q^{84} - 9 q^{85} - 6 q^{86} + 9 q^{87} - 27 q^{88} + 24 q^{89} + 27 q^{90} - 6 q^{91} - 3 q^{92} - 27 q^{93} + 18 q^{94} + 12 q^{95} + 27 q^{96} + 3 q^{97} + 6 q^{98} + 18 q^{99}+O(q^{100})$$ 6 * q - 3 * q^2 - 3 * q^4 - 3 * q^5 - 9 * q^6 - 3 * q^7 + 12 * q^8 - 6 * q^11 + 18 * q^12 + 3 * q^13 - 3 * q^14 - 9 * q^15 - 3 * q^16 + 12 * q^17 + 9 * q^18 - 6 * q^19 + 6 * q^20 - 9 * q^22 - 12 * q^23 - 27 * q^24 + 6 * q^25 - 6 * q^26 + 27 * q^27 + 6 * q^28 - 9 * q^29 + 18 * q^30 + 3 * q^31 - 9 * q^34 + 6 * q^35 - 27 * q^36 - 6 * q^37 - 6 * q^38 - 18 * q^39 + 9 * q^40 + 9 * q^42 + 3 * q^43 + 30 * q^44 + 9 * q^45 - 3 * q^47 - 3 * q^49 + 6 * q^50 + 9 * q^51 + 21 * q^52 + 12 * q^53 - 27 * q^54 - 6 * q^56 - 9 * q^57 + 9 * q^58 + 3 * q^59 - 6 * q^61 - 60 * q^62 + 24 * q^64 - 15 * q^65 + 36 * q^66 + 12 * q^67 - 6 * q^68 - 9 * q^69 + 18 * q^71 - 36 * q^72 - 42 * q^73 + 30 * q^74 - 9 * q^75 - 15 * q^76 - 6 * q^77 + 54 * q^78 + 21 * q^79 - 30 * q^80 - 18 * q^82 + 18 * q^83 - 9 * q^84 - 9 * q^85 - 6 * q^86 + 9 * q^87 - 27 * q^88 + 24 * q^89 + 27 * q^90 - 6 * q^91 - 3 * q^92 - 27 * q^93 + 18 * q^94 + 12 * q^95 + 27 * q^96 + 3 * q^97 + 6 * q^98 + 18 * q^99

Basis of coefficient ring

 $$\beta_{1}$$ $$=$$ $$\zeta_{18}^{3}$$ v^3 $$\beta_{2}$$ $$=$$ $$\zeta_{18}^{5} + \zeta_{18}$$ v^5 + v $$\beta_{3}$$ $$=$$ $$-\zeta_{18}^{4} + \zeta_{18}^{2} + \zeta_{18}$$ -v^4 + v^2 + v $$\beta_{4}$$ $$=$$ $$-\zeta_{18}^{5} + \zeta_{18}^{4}$$ -v^5 + v^4 $$\beta_{5}$$ $$=$$ $$-\zeta_{18}^{5} - \zeta_{18}^{4} + \zeta_{18}$$ -v^5 - v^4 + v
 $$\zeta_{18}$$ $$=$$ $$( \beta_{5} + \beta_{4} + 2\beta_{2} ) / 3$$ (b5 + b4 + 2*b2) / 3 $$\zeta_{18}^{2}$$ $$=$$ $$( -2\beta_{5} + \beta_{4} + 3\beta_{3} - \beta_{2} ) / 3$$ (-2*b5 + b4 + 3*b3 - b2) / 3 $$\zeta_{18}^{3}$$ $$=$$ $$\beta_1$$ b1 $$\zeta_{18}^{4}$$ $$=$$ $$( -\beta_{5} + 2\beta_{4} + \beta_{2} ) / 3$$ (-b5 + 2*b4 + b2) / 3 $$\zeta_{18}^{5}$$ $$=$$ $$( -\beta_{5} - \beta_{4} + \beta_{2} ) / 3$$ (-b5 - b4 + b2) / 3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/63\mathbb{Z}\right)^\times$$.

 $$n$$ $$10$$ $$29$$ $$\chi(n)$$ $$1$$ $$-\beta_{1}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
22.1
 −0.766044 − 0.642788i −0.173648 + 0.984808i 0.939693 − 0.342020i −0.766044 + 0.642788i −0.173648 − 0.984808i 0.939693 + 0.342020i
−1.26604 2.19285i −1.11334 1.32683i −2.20574 + 3.82045i 0.439693 0.761570i −1.50000 + 4.12122i −0.500000 0.866025i 6.10607 −0.520945 + 2.95442i −2.22668
22.2 −0.673648 1.16679i 1.70574 0.300767i 0.0923963 0.160035i −1.26604 + 2.19285i −1.50000 1.78763i −0.500000 0.866025i −2.94356 2.81908 1.02606i 3.41147
22.3 0.439693 + 0.761570i −0.592396 + 1.62760i 0.613341 1.06234i −0.673648 + 1.16679i −1.50000 + 0.264490i −0.500000 0.866025i 2.83750 −2.29813 1.92836i −1.18479
43.1 −1.26604 + 2.19285i −1.11334 + 1.32683i −2.20574 3.82045i 0.439693 + 0.761570i −1.50000 4.12122i −0.500000 + 0.866025i 6.10607 −0.520945 2.95442i −2.22668
43.2 −0.673648 + 1.16679i 1.70574 + 0.300767i 0.0923963 + 0.160035i −1.26604 2.19285i −1.50000 + 1.78763i −0.500000 + 0.866025i −2.94356 2.81908 + 1.02606i 3.41147
43.3 0.439693 0.761570i −0.592396 1.62760i 0.613341 + 1.06234i −0.673648 1.16679i −1.50000 0.264490i −0.500000 + 0.866025i 2.83750 −2.29813 + 1.92836i −1.18479
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 22.3 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.2.f.a 6
3.b odd 2 1 189.2.f.b 6
4.b odd 2 1 1008.2.r.h 6
7.b odd 2 1 441.2.f.c 6
7.c even 3 1 441.2.g.c 6
7.c even 3 1 441.2.h.d 6
7.d odd 6 1 441.2.g.b 6
7.d odd 6 1 441.2.h.e 6
9.c even 3 1 inner 63.2.f.a 6
9.c even 3 1 567.2.a.h 3
9.d odd 6 1 189.2.f.b 6
9.d odd 6 1 567.2.a.c 3
12.b even 2 1 3024.2.r.k 6
21.c even 2 1 1323.2.f.d 6
21.g even 6 1 1323.2.g.e 6
21.g even 6 1 1323.2.h.b 6
21.h odd 6 1 1323.2.g.d 6
21.h odd 6 1 1323.2.h.c 6
36.f odd 6 1 1008.2.r.h 6
36.f odd 6 1 9072.2.a.ca 3
36.h even 6 1 3024.2.r.k 6
36.h even 6 1 9072.2.a.bs 3
63.g even 3 1 441.2.h.d 6
63.h even 3 1 441.2.g.c 6
63.i even 6 1 1323.2.g.e 6
63.j odd 6 1 1323.2.g.d 6
63.k odd 6 1 441.2.h.e 6
63.l odd 6 1 441.2.f.c 6
63.l odd 6 1 3969.2.a.q 3
63.n odd 6 1 1323.2.h.c 6
63.o even 6 1 1323.2.f.d 6
63.o even 6 1 3969.2.a.l 3
63.s even 6 1 1323.2.h.b 6
63.t odd 6 1 441.2.g.b 6

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.2.f.a 6 1.a even 1 1 trivial
63.2.f.a 6 9.c even 3 1 inner
189.2.f.b 6 3.b odd 2 1
189.2.f.b 6 9.d odd 6 1
441.2.f.c 6 7.b odd 2 1
441.2.f.c 6 63.l odd 6 1
441.2.g.b 6 7.d odd 6 1
441.2.g.b 6 63.t odd 6 1
441.2.g.c 6 7.c even 3 1
441.2.g.c 6 63.h even 3 1
441.2.h.d 6 7.c even 3 1
441.2.h.d 6 63.g even 3 1
441.2.h.e 6 7.d odd 6 1
441.2.h.e 6 63.k odd 6 1
567.2.a.c 3 9.d odd 6 1
567.2.a.h 3 9.c even 3 1
1008.2.r.h 6 4.b odd 2 1
1008.2.r.h 6 36.f odd 6 1
1323.2.f.d 6 21.c even 2 1
1323.2.f.d 6 63.o even 6 1
1323.2.g.d 6 21.h odd 6 1
1323.2.g.d 6 63.j odd 6 1
1323.2.g.e 6 21.g even 6 1
1323.2.g.e 6 63.i even 6 1
1323.2.h.b 6 21.g even 6 1
1323.2.h.b 6 63.s even 6 1
1323.2.h.c 6 21.h odd 6 1
1323.2.h.c 6 63.n odd 6 1
3024.2.r.k 6 12.b even 2 1
3024.2.r.k 6 36.h even 6 1
3969.2.a.l 3 63.o even 6 1
3969.2.a.q 3 63.l odd 6 1
9072.2.a.bs 3 36.h even 6 1
9072.2.a.ca 3 36.f odd 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{6} + 3T_{2}^{5} + 9T_{2}^{4} + 6T_{2}^{3} + 9T_{2}^{2} + 9$$ acting on $$S_{2}^{\mathrm{new}}(63, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{6} + 3 T^{5} + \cdots + 9$$
$3$ $$T^{6} - 9T^{3} + 27$$
$5$ $$T^{6} + 3 T^{5} + \cdots + 9$$
$7$ $$(T^{2} + T + 1)^{3}$$
$11$ $$T^{6} + 6 T^{5} + \cdots + 9$$
$13$ $$T^{6} - 3 T^{5} + \cdots + 11449$$
$17$ $$(T^{3} - 6 T^{2} + 9 T - 3)^{2}$$
$19$ $$(T^{3} + 3 T^{2} - 6 T - 17)^{2}$$
$23$ $$T^{6} + 12 T^{5} + \cdots + 9$$
$29$ $$T^{6} + 9 T^{5} + \cdots + 110889$$
$31$ $$T^{6} - 3 T^{5} + \cdots + 104329$$
$37$ $$(T^{3} + 3 T^{2} + \cdots - 323)^{2}$$
$41$ $$T^{6} + 9 T^{4} + \cdots + 81$$
$43$ $$T^{6} - 3 T^{5} + \cdots + 1$$
$47$ $$T^{6} + 3 T^{5} + \cdots + 2601$$
$53$ $$(T^{3} - 6 T^{2} - 9 T - 3)^{2}$$
$59$ $$T^{6} - 3 T^{5} + \cdots + 2601$$
$61$ $$T^{6} + 6 T^{5} + \cdots + 361$$
$67$ $$T^{6} - 12 T^{5} + \cdots + 289$$
$71$ $$(T^{3} - 9 T^{2} - 54 T - 27)^{2}$$
$73$ $$(T^{3} + 21 T^{2} + \cdots - 269)^{2}$$
$79$ $$T^{6} - 21 T^{5} + \cdots + 32761$$
$83$ $$T^{6} - 18 T^{5} + \cdots + 81$$
$89$ $$(T^{3} - 12 T^{2} + \cdots + 813)^{2}$$
$97$ $$T^{6} - 3 T^{5} + \cdots + 104329$$