Properties

Label 425.3.t.b.74.1
Level $425$
Weight $3$
Character 425.74
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(24,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([8, 11])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.24"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.t (of order \(16\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-8,8,0,0,8,-8,-8,0,40,-32,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 74.1
Root \(0.923880 - 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 425.74
Dual form 425.3.t.b.224.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.675577 + 1.63099i) q^{2} +(0.789499 + 3.96908i) q^{3} +(0.624715 + 0.624715i) q^{4} +(-7.00688 - 1.39376i) q^{6} +(-3.40262 + 2.27356i) q^{7} +(-7.96489 + 3.29916i) q^{8} +(-6.81537 + 2.82302i) q^{9} +(1.35387 - 6.80638i) q^{11} +(-1.98633 + 2.97275i) q^{12} +(2.37416 + 2.37416i) q^{13} +(-1.40941 - 7.08560i) q^{14} -11.6855i q^{16} +(-14.5645 + 8.76791i) q^{17} -13.0229i q^{18} +(-22.7712 - 9.43215i) q^{19} +(-11.7103 - 11.7103i) q^{21} +(10.1865 + 6.80638i) q^{22} +(2.24740 - 11.2984i) q^{23} +(-19.3829 - 29.0086i) q^{24} +(-5.47615 + 2.26829i) q^{26} +(3.64922 + 5.46144i) q^{27} +(-3.54600 - 0.705343i) q^{28} +(-9.98767 - 6.67355i) q^{29} +(7.38055 + 37.1045i) q^{31} +(-12.8006 - 5.30218i) q^{32} +28.0839 q^{33} +(-4.46094 - 29.6778i) q^{34} +(-6.02124 - 2.49408i) q^{36} +(6.29529 + 31.6486i) q^{37} +(30.7674 - 30.7674i) q^{38} +(-7.54883 + 11.2976i) q^{39} +(18.7852 + 28.1140i) q^{41} +(27.0106 - 11.1881i) q^{42} +(1.33189 + 3.21547i) q^{43} +(5.09783 - 3.40626i) q^{44} +(16.9093 + 11.2984i) q^{46} +(-3.16735 - 3.16735i) q^{47} +(46.3809 - 9.22573i) q^{48} +(-12.3427 + 29.7979i) q^{49} +(-46.2992 - 50.8853i) q^{51} +2.96634i q^{52} +(11.7603 - 28.3919i) q^{53} +(-11.3729 + 2.26220i) q^{54} +(19.6007 - 29.3345i) q^{56} +(19.4591 - 97.8275i) q^{57} +(17.6319 - 11.7813i) q^{58} +(4.49481 + 10.8514i) q^{59} +(58.9263 - 39.3733i) q^{61} +(-65.5031 - 13.0294i) q^{62} +(16.7718 - 25.1008i) q^{63} +(50.3473 - 50.3473i) q^{64} +(-18.9728 + 45.8045i) q^{66} +28.5842 q^{67} +(-14.5761 - 3.62119i) q^{68} +46.6187 q^{69} +(-33.7056 + 6.70446i) q^{71} +(44.9700 - 44.9700i) q^{72} +(-77.8880 - 52.0431i) q^{73} +(-55.8713 - 11.1135i) q^{74} +(-8.33312 - 20.1179i) q^{76} +(10.8680 + 26.2377i) q^{77} +(-13.3265 - 19.9444i) q^{78} +(-4.18708 + 21.0499i) q^{79} +(-65.7422 + 65.7422i) q^{81} +(-58.5443 + 11.6452i) q^{82} +(104.903 + 43.4522i) q^{83} -14.6312i q^{84} -6.14419 q^{86} +(18.6026 - 44.9106i) q^{87} +(11.6719 + 58.6787i) q^{88} +(28.3238 + 28.3238i) q^{89} +(-13.4762 - 2.68058i) q^{91} +(8.46229 - 5.65432i) q^{92} +(-141.444 + 58.5880i) q^{93} +(7.30570 - 3.02612i) q^{94} +(10.9387 - 54.9926i) q^{96} +(-92.4136 + 138.307i) q^{97} +(-40.2616 - 40.2616i) q^{98} +(9.98738 + 50.2100i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 8 q^{3} + 8 q^{4} + 8 q^{7} - 8 q^{8} - 8 q^{9} + 40 q^{11} - 32 q^{12} - 16 q^{14} - 64 q^{17} + 32 q^{19} - 64 q^{21} + 8 q^{22} - 32 q^{23} - 24 q^{24} + 112 q^{27} - 8 q^{28} - 24 q^{29}+ \cdots - 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{15}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.675577 + 1.63099i −0.337788 + 0.815493i 0.660139 + 0.751143i \(0.270497\pi\)
−0.997927 + 0.0643498i \(0.979503\pi\)
\(3\) 0.789499 + 3.96908i 0.263166 + 1.32303i 0.855696 + 0.517478i \(0.173129\pi\)
−0.592530 + 0.805548i \(0.701871\pi\)
\(4\) 0.624715 + 0.624715i 0.156179 + 0.156179i
\(5\) 0 0
\(6\) −7.00688 1.39376i −1.16781 0.232293i
\(7\) −3.40262 + 2.27356i −0.486089 + 0.324794i −0.774350 0.632757i \(-0.781923\pi\)
0.288261 + 0.957552i \(0.406923\pi\)
\(8\) −7.96489 + 3.29916i −0.995611 + 0.412396i
\(9\) −6.81537 + 2.82302i −0.757263 + 0.313669i
\(10\) 0 0
\(11\) 1.35387 6.80638i 0.123079 0.618761i −0.869172 0.494511i \(-0.835347\pi\)
0.992251 0.124251i \(-0.0396527\pi\)
\(12\) −1.98633 + 2.97275i −0.165528 + 0.247729i
\(13\) 2.37416 + 2.37416i 0.182628 + 0.182628i 0.792500 0.609872i \(-0.208779\pi\)
−0.609872 + 0.792500i \(0.708779\pi\)
\(14\) −1.40941 7.08560i −0.100672 0.506114i
\(15\) 0 0
\(16\) 11.6855i 0.730347i
\(17\) −14.5645 + 8.76791i −0.856733 + 0.515760i
\(18\) 13.0229i 0.723496i
\(19\) −22.7712 9.43215i −1.19849 0.496429i −0.307977 0.951394i \(-0.599652\pi\)
−0.890509 + 0.454965i \(0.849652\pi\)
\(20\) 0 0
\(21\) −11.7103 11.7103i −0.557634 0.557634i
\(22\) 10.1865 + 6.80638i 0.463021 + 0.309381i
\(23\) 2.24740 11.2984i 0.0977131 0.491237i −0.900676 0.434492i \(-0.856928\pi\)
0.998389 0.0567447i \(-0.0180721\pi\)
\(24\) −19.3829 29.0086i −0.807622 1.20869i
\(25\) 0 0
\(26\) −5.47615 + 2.26829i −0.210621 + 0.0872421i
\(27\) 3.64922 + 5.46144i 0.135156 + 0.202276i
\(28\) −3.54600 0.705343i −0.126643 0.0251908i
\(29\) −9.98767 6.67355i −0.344402 0.230122i 0.371324 0.928504i \(-0.378904\pi\)
−0.715726 + 0.698381i \(0.753904\pi\)
\(30\) 0 0
\(31\) 7.38055 + 37.1045i 0.238082 + 1.19692i 0.896077 + 0.443898i \(0.146405\pi\)
−0.657995 + 0.753022i \(0.728595\pi\)
\(32\) −12.8006 5.30218i −0.400019 0.165693i
\(33\) 28.0839 0.851028
\(34\) −4.46094 29.6778i −0.131204 0.872878i
\(35\) 0 0
\(36\) −6.02124 2.49408i −0.167257 0.0692800i
\(37\) 6.29529 + 31.6486i 0.170143 + 0.855366i 0.967696 + 0.252118i \(0.0811272\pi\)
−0.797554 + 0.603248i \(0.793873\pi\)
\(38\) 30.7674 30.7674i 0.809669 0.809669i
\(39\) −7.54883 + 11.2976i −0.193560 + 0.289683i
\(40\) 0 0
\(41\) 18.7852 + 28.1140i 0.458175 + 0.685707i 0.986579 0.163286i \(-0.0522094\pi\)
−0.528404 + 0.848993i \(0.677209\pi\)
\(42\) 27.0106 11.1881i 0.643109 0.266384i
\(43\) 1.33189 + 3.21547i 0.0309742 + 0.0747784i 0.938610 0.344981i \(-0.112115\pi\)
−0.907636 + 0.419759i \(0.862115\pi\)
\(44\) 5.09783 3.40626i 0.115860 0.0774150i
\(45\) 0 0
\(46\) 16.9093 + 11.2984i 0.367594 + 0.245618i
\(47\) −3.16735 3.16735i −0.0673905 0.0673905i 0.672608 0.739999i \(-0.265174\pi\)
−0.739999 + 0.672608i \(0.765174\pi\)
\(48\) 46.3809 9.22573i 0.966268 0.192203i
\(49\) −12.3427 + 29.7979i −0.251892 + 0.608121i
\(50\) 0 0
\(51\) −46.2992 50.8853i −0.907827 0.997750i
\(52\) 2.96634i 0.0570451i
\(53\) 11.7603 28.3919i 0.221893 0.535697i −0.773254 0.634096i \(-0.781372\pi\)
0.995147 + 0.0983994i \(0.0313723\pi\)
\(54\) −11.3729 + 2.26220i −0.210609 + 0.0418927i
\(55\) 0 0
\(56\) 19.6007 29.3345i 0.350012 0.523830i
\(57\) 19.4591 97.8275i 0.341388 1.71627i
\(58\) 17.6319 11.7813i 0.303998 0.203125i
\(59\) 4.49481 + 10.8514i 0.0761832 + 0.183923i 0.957383 0.288822i \(-0.0932635\pi\)
−0.881200 + 0.472744i \(0.843263\pi\)
\(60\) 0 0
\(61\) 58.9263 39.3733i 0.966006 0.645464i 0.0307835 0.999526i \(-0.490200\pi\)
0.935222 + 0.354062i \(0.115200\pi\)
\(62\) −65.5031 13.0294i −1.05650 0.210151i
\(63\) 16.7718 25.1008i 0.266220 0.398426i
\(64\) 50.3473 50.3473i 0.786676 0.786676i
\(65\) 0 0
\(66\) −18.9728 + 45.8045i −0.287467 + 0.694008i
\(67\) 28.5842 0.426629 0.213315 0.976984i \(-0.431574\pi\)
0.213315 + 0.976984i \(0.431574\pi\)
\(68\) −14.5761 3.62119i −0.214354 0.0532528i
\(69\) 46.6187 0.675634
\(70\) 0 0
\(71\) −33.7056 + 6.70446i −0.474726 + 0.0944290i −0.426654 0.904415i \(-0.640308\pi\)
−0.0480724 + 0.998844i \(0.515308\pi\)
\(72\) 44.9700 44.9700i 0.624584 0.624584i
\(73\) −77.8880 52.0431i −1.06696 0.712919i −0.107340 0.994222i \(-0.534233\pi\)
−0.959619 + 0.281303i \(0.909233\pi\)
\(74\) −55.8713 11.1135i −0.755018 0.150182i
\(75\) 0 0
\(76\) −8.33312 20.1179i −0.109646 0.264710i
\(77\) 10.8680 + 26.2377i 0.141143 + 0.340749i
\(78\) −13.3265 19.9444i −0.170852 0.255698i
\(79\) −4.18708 + 21.0499i −0.0530011 + 0.266454i −0.998195 0.0600549i \(-0.980872\pi\)
0.945194 + 0.326509i \(0.105872\pi\)
\(80\) 0 0
\(81\) −65.7422 + 65.7422i −0.811632 + 0.811632i
\(82\) −58.5443 + 11.6452i −0.713955 + 0.142015i
\(83\) 104.903 + 43.4522i 1.26389 + 0.523521i 0.911102 0.412182i \(-0.135233\pi\)
0.352789 + 0.935703i \(0.385233\pi\)
\(84\) 14.6312i 0.174181i
\(85\) 0 0
\(86\) −6.14419 −0.0714440
\(87\) 18.6026 44.9106i 0.213823 0.516214i
\(88\) 11.6719 + 58.6787i 0.132635 + 0.666803i
\(89\) 28.3238 + 28.3238i 0.318245 + 0.318245i 0.848093 0.529848i \(-0.177751\pi\)
−0.529848 + 0.848093i \(0.677751\pi\)
\(90\) 0 0
\(91\) −13.4762 2.68058i −0.148090 0.0294569i
\(92\) 8.46229 5.65432i 0.0919814 0.0614600i
\(93\) −141.444 + 58.5880i −1.52090 + 0.629978i
\(94\) 7.30570 3.02612i 0.0777202 0.0321928i
\(95\) 0 0
\(96\) 10.9387 54.9926i 0.113945 0.572840i
\(97\) −92.4136 + 138.307i −0.952718 + 1.42584i −0.0484747 + 0.998824i \(0.515436\pi\)
−0.904243 + 0.427018i \(0.859564\pi\)
\(98\) −40.2616 40.2616i −0.410833 0.410833i
\(99\) 9.98738 + 50.2100i 0.100883 + 0.507171i
\(100\) 0 0
\(101\) 124.444i 1.23211i −0.787701 0.616057i \(-0.788729\pi\)
0.787701 0.616057i \(-0.211271\pi\)
\(102\) 114.272 41.1364i 1.12031 0.403298i
\(103\) 175.084i 1.69984i 0.526908 + 0.849922i \(0.323351\pi\)
−0.526908 + 0.849922i \(0.676649\pi\)
\(104\) −26.7427 11.0772i −0.257141 0.106511i
\(105\) 0 0
\(106\) 38.3619 + 38.3619i 0.361904 + 0.361904i
\(107\) −33.1477 22.1486i −0.309791 0.206996i 0.390949 0.920412i \(-0.372147\pi\)
−0.700740 + 0.713416i \(0.747147\pi\)
\(108\) −1.13212 + 5.69157i −0.0104826 + 0.0526997i
\(109\) 25.4604 + 38.1042i 0.233582 + 0.349580i 0.929681 0.368366i \(-0.120083\pi\)
−0.696099 + 0.717946i \(0.745083\pi\)
\(110\) 0 0
\(111\) −120.645 + 49.9730i −1.08690 + 0.450207i
\(112\) 26.5678 + 39.7615i 0.237213 + 0.355014i
\(113\) −183.644 36.5291i −1.62517 0.323267i −0.703338 0.710855i \(-0.748308\pi\)
−0.921832 + 0.387589i \(0.873308\pi\)
\(114\) 146.409 + 97.8275i 1.28429 + 0.858136i
\(115\) 0 0
\(116\) −2.07038 10.4085i −0.0178481 0.0897285i
\(117\) −22.8831 9.47847i −0.195582 0.0810126i
\(118\) −20.7351 −0.175721
\(119\) 29.6230 62.9471i 0.248933 0.528967i
\(120\) 0 0
\(121\) 67.2956 + 27.8748i 0.556162 + 0.230370i
\(122\) 24.4081 + 122.708i 0.200066 + 1.00580i
\(123\) −96.7557 + 96.7557i −0.786632 + 0.786632i
\(124\) −18.5690 + 27.7905i −0.149750 + 0.224117i
\(125\) 0 0
\(126\) 29.6084 + 44.3122i 0.234988 + 0.351684i
\(127\) −37.9454 + 15.7175i −0.298783 + 0.123760i −0.527039 0.849841i \(-0.676698\pi\)
0.228256 + 0.973601i \(0.426698\pi\)
\(128\) 26.8936 + 64.9268i 0.210106 + 0.507241i
\(129\) −11.7109 + 7.82500i −0.0907825 + 0.0606589i
\(130\) 0 0
\(131\) 160.044 + 106.938i 1.22171 + 0.816323i 0.987769 0.155927i \(-0.0498366\pi\)
0.233944 + 0.972250i \(0.424837\pi\)
\(132\) 17.5444 + 17.5444i 0.132912 + 0.132912i
\(133\) 98.9266 19.6777i 0.743809 0.147953i
\(134\) −19.3108 + 46.6204i −0.144110 + 0.347913i
\(135\) 0 0
\(136\) 87.0776 117.886i 0.640276 0.866809i
\(137\) 52.8361i 0.385665i −0.981232 0.192832i \(-0.938233\pi\)
0.981232 0.192832i \(-0.0617674\pi\)
\(138\) −31.4945 + 76.0345i −0.228221 + 0.550975i
\(139\) 51.4676 10.2376i 0.370271 0.0736514i −0.00644773 0.999979i \(-0.502052\pi\)
0.376719 + 0.926328i \(0.377052\pi\)
\(140\) 0 0
\(141\) 10.0709 15.0721i 0.0714245 0.106894i
\(142\) 11.8358 59.5027i 0.0833509 0.419033i
\(143\) 19.3737 12.9451i 0.135481 0.0905253i
\(144\) 32.9885 + 79.6413i 0.229087 + 0.553064i
\(145\) 0 0
\(146\) 137.501 91.8752i 0.941787 0.629282i
\(147\) −128.015 25.4638i −0.870850 0.173223i
\(148\) −15.8386 + 23.7041i −0.107017 + 0.160163i
\(149\) −36.5973 + 36.5973i −0.245620 + 0.245620i −0.819170 0.573551i \(-0.805566\pi\)
0.573551 + 0.819170i \(0.305566\pi\)
\(150\) 0 0
\(151\) −91.9670 + 222.028i −0.609053 + 1.47038i 0.254979 + 0.966947i \(0.417931\pi\)
−0.864032 + 0.503437i \(0.832069\pi\)
\(152\) 212.489 1.39795
\(153\) 74.5102 100.872i 0.486995 0.659296i
\(154\) −50.1354 −0.325555
\(155\) 0 0
\(156\) −11.7737 + 2.34193i −0.0754721 + 0.0150123i
\(157\) −190.153 + 190.153i −1.21117 + 1.21117i −0.240522 + 0.970644i \(0.577319\pi\)
−0.970644 + 0.240522i \(0.922681\pi\)
\(158\) −31.5034 21.0499i −0.199389 0.133227i
\(159\) 121.975 + 24.2623i 0.767136 + 0.152593i
\(160\) 0 0
\(161\) 18.0406 + 43.5540i 0.112054 + 0.270522i
\(162\) −62.8107 151.638i −0.387720 0.936040i
\(163\) 21.5571 + 32.2626i 0.132252 + 0.197930i 0.891685 0.452656i \(-0.149523\pi\)
−0.759433 + 0.650586i \(0.774523\pi\)
\(164\) −5.82785 + 29.2986i −0.0355357 + 0.178650i
\(165\) 0 0
\(166\) −141.740 + 141.740i −0.853855 + 0.853855i
\(167\) 35.3355 7.02867i 0.211590 0.0420878i −0.0881571 0.996107i \(-0.528098\pi\)
0.299747 + 0.954019i \(0.403098\pi\)
\(168\) 131.906 + 54.6371i 0.785152 + 0.325221i
\(169\) 157.727i 0.933294i
\(170\) 0 0
\(171\) 181.821 1.06328
\(172\) −1.17670 + 2.84081i −0.00684128 + 0.0165163i
\(173\) −37.6555 189.307i −0.217662 1.09426i −0.922827 0.385215i \(-0.874127\pi\)
0.705165 0.709043i \(-0.250873\pi\)
\(174\) 60.6811 + 60.6811i 0.348742 + 0.348742i
\(175\) 0 0
\(176\) −79.5362 15.8207i −0.451910 0.0898905i
\(177\) −39.5216 + 26.4075i −0.223286 + 0.149195i
\(178\) −65.3307 + 27.0608i −0.367026 + 0.152027i
\(179\) −223.947 + 92.7619i −1.25110 + 0.518223i −0.907167 0.420771i \(-0.861759\pi\)
−0.343933 + 0.938994i \(0.611759\pi\)
\(180\) 0 0
\(181\) −26.6333 + 133.895i −0.147146 + 0.739750i 0.834795 + 0.550561i \(0.185586\pi\)
−0.981941 + 0.189190i \(0.939414\pi\)
\(182\) 13.4762 20.1685i 0.0740449 0.110816i
\(183\) 202.798 + 202.798i 1.10819 + 1.10819i
\(184\) 19.3751 + 97.4054i 0.105300 + 0.529377i
\(185\) 0 0
\(186\) 270.274i 1.45308i
\(187\) 39.9593 + 111.002i 0.213686 + 0.593593i
\(188\) 3.95738i 0.0210499i
\(189\) −24.8339 10.2865i −0.131396 0.0544260i
\(190\) 0 0
\(191\) 123.244 + 123.244i 0.645254 + 0.645254i 0.951842 0.306588i \(-0.0991874\pi\)
−0.306588 + 0.951842i \(0.599187\pi\)
\(192\) 239.581 + 160.083i 1.24782 + 0.833767i
\(193\) 36.6126 184.064i 0.189703 0.953700i −0.762210 0.647330i \(-0.775886\pi\)
0.951913 0.306370i \(-0.0991144\pi\)
\(194\) −163.144 244.162i −0.840948 1.25857i
\(195\) 0 0
\(196\) −26.3259 + 10.9045i −0.134316 + 0.0556354i
\(197\) −159.522 238.742i −0.809759 1.21189i −0.974241 0.225509i \(-0.927595\pi\)
0.164482 0.986380i \(-0.447405\pi\)
\(198\) −88.6390 17.6314i −0.447672 0.0890474i
\(199\) 76.1598 + 50.8883i 0.382712 + 0.255720i 0.732013 0.681290i \(-0.238581\pi\)
−0.349301 + 0.937011i \(0.613581\pi\)
\(200\) 0 0
\(201\) 22.5672 + 113.453i 0.112274 + 0.564442i
\(202\) 202.966 + 84.0712i 1.00478 + 0.416194i
\(203\) 49.1570 0.242153
\(204\) 2.86499 60.7125i 0.0140441 0.297610i
\(205\) 0 0
\(206\) −285.560 118.283i −1.38621 0.574188i
\(207\) 16.5788 + 83.3475i 0.0800911 + 0.402645i
\(208\) 27.7433 27.7433i 0.133381 0.133381i
\(209\) −95.0281 + 142.220i −0.454680 + 0.680477i
\(210\) 0 0
\(211\) 20.0890 + 30.0653i 0.0952086 + 0.142490i 0.876016 0.482282i \(-0.160192\pi\)
−0.780807 + 0.624772i \(0.785192\pi\)
\(212\) 25.0837 10.3900i 0.118319 0.0490095i
\(213\) −53.2210 128.487i −0.249864 0.603225i
\(214\) 58.5178 39.1003i 0.273448 0.182712i
\(215\) 0 0
\(216\) −47.0838 31.4604i −0.217981 0.145650i
\(217\) −109.473 109.473i −0.504482 0.504482i
\(218\) −79.3479 + 15.7833i −0.363981 + 0.0724004i
\(219\) 145.071 350.232i 0.662423 1.59923i
\(220\) 0 0
\(221\) −55.3948 13.7619i −0.250655 0.0622712i
\(222\) 230.532i 1.03843i
\(223\) −154.260 + 372.417i −0.691750 + 1.67003i 0.0494759 + 0.998775i \(0.484245\pi\)
−0.741226 + 0.671256i \(0.765755\pi\)
\(224\) 55.6104 11.0616i 0.248261 0.0493822i
\(225\) 0 0
\(226\) 183.644 274.843i 0.812585 1.21612i
\(227\) 24.6288 123.817i 0.108497 0.545450i −0.887856 0.460121i \(-0.847806\pi\)
0.996353 0.0853288i \(-0.0271941\pi\)
\(228\) 73.2707 48.9579i 0.321363 0.214728i
\(229\) 47.0477 + 113.583i 0.205449 + 0.495997i 0.992696 0.120640i \(-0.0384947\pi\)
−0.787248 + 0.616637i \(0.788495\pi\)
\(230\) 0 0
\(231\) −95.5591 + 63.8505i −0.413676 + 0.276409i
\(232\) 101.568 + 20.2031i 0.437792 + 0.0870823i
\(233\) −33.4139 + 50.0074i −0.143407 + 0.214624i −0.896219 0.443612i \(-0.853697\pi\)
0.752812 + 0.658236i \(0.228697\pi\)
\(234\) 30.9185 30.9185i 0.132130 0.132130i
\(235\) 0 0
\(236\) −3.97107 + 9.58702i −0.0168266 + 0.0406230i
\(237\) −86.8544 −0.366474
\(238\) 82.6533 + 90.8404i 0.347283 + 0.381682i
\(239\) 285.920 1.19632 0.598160 0.801377i \(-0.295899\pi\)
0.598160 + 0.801377i \(0.295899\pi\)
\(240\) 0 0
\(241\) 121.946 24.2566i 0.506002 0.100650i 0.0645131 0.997917i \(-0.479451\pi\)
0.441489 + 0.897267i \(0.354451\pi\)
\(242\) −90.9267 + 90.9267i −0.375730 + 0.375730i
\(243\) −263.686 176.189i −1.08513 0.725060i
\(244\) 61.4092 + 12.2151i 0.251677 + 0.0500617i
\(245\) 0 0
\(246\) −92.4414 223.173i −0.375778 0.907208i
\(247\) −31.6691 76.4560i −0.128215 0.309538i
\(248\) −181.199 271.184i −0.730642 1.09348i
\(249\) −89.6446 + 450.674i −0.360018 + 1.80993i
\(250\) 0 0
\(251\) −99.6747 + 99.6747i −0.397110 + 0.397110i −0.877213 0.480102i \(-0.840600\pi\)
0.480102 + 0.877213i \(0.340600\pi\)
\(252\) 26.1585 5.20324i 0.103803 0.0206478i
\(253\) −73.8588 30.5933i −0.291932 0.120922i
\(254\) 72.5069i 0.285460i
\(255\) 0 0
\(256\) 160.744 0.627906
\(257\) 150.400 363.098i 0.585214 1.41283i −0.302818 0.953048i \(-0.597927\pi\)
0.888032 0.459783i \(-0.152073\pi\)
\(258\) −4.85083 24.3868i −0.0188017 0.0945224i
\(259\) −93.3754 93.3754i −0.360523 0.360523i
\(260\) 0 0
\(261\) 86.9092 + 17.2873i 0.332985 + 0.0662349i
\(262\) −282.537 + 188.785i −1.07839 + 0.720554i
\(263\) 269.286 111.542i 1.02390 0.424113i 0.193393 0.981121i \(-0.438051\pi\)
0.830507 + 0.557008i \(0.188051\pi\)
\(264\) −223.685 + 92.6535i −0.847293 + 0.350960i
\(265\) 0 0
\(266\) −34.7384 + 174.642i −0.130595 + 0.656548i
\(267\) −90.0578 + 134.781i −0.337295 + 0.504798i
\(268\) 17.8569 + 17.8569i 0.0666304 + 0.0666304i
\(269\) −19.8781 99.9342i −0.0738965 0.371503i 0.926087 0.377311i \(-0.123151\pi\)
−0.999983 + 0.00580827i \(0.998151\pi\)
\(270\) 0 0
\(271\) 381.059i 1.40612i −0.711129 0.703061i \(-0.751816\pi\)
0.711129 0.703061i \(-0.248184\pi\)
\(272\) 102.458 + 170.194i 0.376683 + 0.625712i
\(273\) 55.6043i 0.203679i
\(274\) 86.1749 + 35.6948i 0.314507 + 0.130273i
\(275\) 0 0
\(276\) 29.1234 + 29.1234i 0.105520 + 0.105520i
\(277\) 55.8881 + 37.3432i 0.201762 + 0.134813i 0.652347 0.757920i \(-0.273785\pi\)
−0.450585 + 0.892734i \(0.648785\pi\)
\(278\) −18.0730 + 90.8593i −0.0650109 + 0.326832i
\(279\) −155.048 232.046i −0.555727 0.831705i
\(280\) 0 0
\(281\) −348.356 + 144.294i −1.23970 + 0.513501i −0.903621 0.428333i \(-0.859101\pi\)
−0.336079 + 0.941834i \(0.609101\pi\)
\(282\) 17.7788 + 26.6078i 0.0630452 + 0.0943539i
\(283\) 291.125 + 57.9083i 1.02871 + 0.204623i 0.680465 0.732781i \(-0.261778\pi\)
0.348245 + 0.937404i \(0.386778\pi\)
\(284\) −25.2447 16.8680i −0.0888899 0.0593944i
\(285\) 0 0
\(286\) 8.02486 + 40.3437i 0.0280590 + 0.141062i
\(287\) −127.838 52.9521i −0.445428 0.184502i
\(288\) 102.209 0.354892
\(289\) 135.247 255.400i 0.467984 0.883737i
\(290\) 0 0
\(291\) −621.911 257.604i −2.13715 0.885237i
\(292\) −16.1457 81.1699i −0.0552935 0.277979i
\(293\) −99.8472 + 99.8472i −0.340776 + 0.340776i −0.856659 0.515883i \(-0.827464\pi\)
0.515883 + 0.856659i \(0.327464\pi\)
\(294\) 128.015 191.588i 0.435425 0.651660i
\(295\) 0 0
\(296\) −154.555 231.308i −0.522146 0.781446i
\(297\) 42.1132 17.4439i 0.141795 0.0587336i
\(298\) −34.9654 84.4140i −0.117334 0.283269i
\(299\) 32.1600 21.4886i 0.107559 0.0718683i
\(300\) 0 0
\(301\) −11.8425 7.91291i −0.0393439 0.0262887i
\(302\) −299.994 299.994i −0.993357 0.993357i
\(303\) 493.926 98.2481i 1.63012 0.324251i
\(304\) −110.220 + 266.094i −0.362565 + 0.875310i
\(305\) 0 0
\(306\) 114.184 + 189.672i 0.373150 + 0.619843i
\(307\) 259.641i 0.845735i 0.906192 + 0.422868i \(0.138976\pi\)
−0.906192 + 0.422868i \(0.861024\pi\)
\(308\) −9.60165 + 23.1804i −0.0311742 + 0.0752612i
\(309\) −694.922 + 138.229i −2.24894 + 0.447342i
\(310\) 0 0
\(311\) 313.413 469.055i 1.00776 1.50822i 0.153646 0.988126i \(-0.450898\pi\)
0.854112 0.520090i \(-0.174102\pi\)
\(312\) 22.8529 114.889i 0.0732464 0.368234i
\(313\) 378.950 253.206i 1.21070 0.808966i 0.224495 0.974475i \(-0.427927\pi\)
0.986208 + 0.165509i \(0.0529267\pi\)
\(314\) −181.674 438.600i −0.578580 1.39681i
\(315\) 0 0
\(316\) −15.7659 + 10.5344i −0.0498921 + 0.0333368i
\(317\) 325.560 + 64.7580i 1.02700 + 0.204284i 0.679717 0.733475i \(-0.262103\pi\)
0.347288 + 0.937759i \(0.387103\pi\)
\(318\) −121.975 + 182.548i −0.383568 + 0.574050i
\(319\) −58.9447 + 58.9447i −0.184780 + 0.184780i
\(320\) 0 0
\(321\) 61.7394 149.052i 0.192334 0.464336i
\(322\) −83.2238 −0.258459
\(323\) 414.351 62.2820i 1.28282 0.192823i
\(324\) −82.1402 −0.253519
\(325\) 0 0
\(326\) −67.1833 + 13.3636i −0.206084 + 0.0409926i
\(327\) −131.138 + 131.138i −0.401033 + 0.401033i
\(328\) −242.374 161.949i −0.738946 0.493748i
\(329\) 17.9785 + 3.57614i 0.0546459 + 0.0108697i
\(330\) 0 0
\(331\) 225.594 + 544.633i 0.681554 + 1.64542i 0.761139 + 0.648588i \(0.224640\pi\)
−0.0795855 + 0.996828i \(0.525360\pi\)
\(332\) 38.3892 + 92.6796i 0.115630 + 0.279156i
\(333\) −132.249 197.925i −0.397145 0.594369i
\(334\) −12.4082 + 62.3801i −0.0371502 + 0.186767i
\(335\) 0 0
\(336\) −136.841 + 136.841i −0.407266 + 0.407266i
\(337\) 321.295 63.9095i 0.953397 0.189642i 0.306202 0.951967i \(-0.400942\pi\)
0.647195 + 0.762324i \(0.275942\pi\)
\(338\) 257.250 + 106.557i 0.761095 + 0.315256i
\(339\) 757.738i 2.23522i
\(340\) 0 0
\(341\) 262.540 0.769911
\(342\) −122.834 + 296.548i −0.359165 + 0.867100i
\(343\) −64.8699 326.123i −0.189125 0.950796i
\(344\) −21.2167 21.2167i −0.0616766 0.0616766i
\(345\) 0 0
\(346\) 334.196 + 66.4757i 0.965884 + 0.192126i
\(347\) 201.268 134.483i 0.580024 0.387560i −0.230668 0.973033i \(-0.574091\pi\)
0.810692 + 0.585473i \(0.199091\pi\)
\(348\) 39.6776 16.4350i 0.114016 0.0472270i
\(349\) −464.685 + 192.479i −1.33148 + 0.551515i −0.931076 0.364826i \(-0.881129\pi\)
−0.400399 + 0.916341i \(0.631129\pi\)
\(350\) 0 0
\(351\) −4.30251 + 21.6302i −0.0122579 + 0.0616244i
\(352\) −53.4190 + 79.9472i −0.151759 + 0.227123i
\(353\) −231.294 231.294i −0.655223 0.655223i 0.299023 0.954246i \(-0.403339\pi\)
−0.954246 + 0.299023i \(0.903339\pi\)
\(354\) −16.3704 82.2994i −0.0462440 0.232484i
\(355\) 0 0
\(356\) 35.3886i 0.0994062i
\(357\) 273.230 + 67.8794i 0.765349 + 0.190138i
\(358\) 427.922i 1.19531i
\(359\) 490.942 + 203.355i 1.36753 + 0.566448i 0.941117 0.338082i \(-0.109778\pi\)
0.426410 + 0.904530i \(0.359778\pi\)
\(360\) 0 0
\(361\) 174.298 + 174.298i 0.482820 + 0.482820i
\(362\) −200.388 133.895i −0.553557 0.369875i
\(363\) −57.5073 + 289.109i −0.158422 + 0.796443i
\(364\) −6.74416 10.0934i −0.0185279 0.0277290i
\(365\) 0 0
\(366\) −467.767 + 193.755i −1.27805 + 0.529386i
\(367\) 183.923 + 275.260i 0.501152 + 0.750026i 0.992672 0.120840i \(-0.0385587\pi\)
−0.491520 + 0.870866i \(0.663559\pi\)
\(368\) −132.028 26.2621i −0.358773 0.0713644i
\(369\) −207.394 138.576i −0.562043 0.375545i
\(370\) 0 0
\(371\) 24.5348 + 123.345i 0.0661316 + 0.332466i
\(372\) −124.963 51.7613i −0.335922 0.139143i
\(373\) 147.856 0.396396 0.198198 0.980162i \(-0.436491\pi\)
0.198198 + 0.980162i \(0.436491\pi\)
\(374\) −208.038 9.81721i −0.556252 0.0262492i
\(375\) 0 0
\(376\) 35.6772 + 14.7780i 0.0948863 + 0.0393032i
\(377\) −7.86825 39.5564i −0.0208707 0.104924i
\(378\) 33.5543 33.5543i 0.0887681 0.0887681i
\(379\) −24.2695 + 36.3219i −0.0640357 + 0.0958362i −0.862106 0.506729i \(-0.830855\pi\)
0.798070 + 0.602565i \(0.205855\pi\)
\(380\) 0 0
\(381\) −92.3419 138.199i −0.242367 0.362728i
\(382\) −284.269 + 117.748i −0.744160 + 0.308241i
\(383\) 75.6230 + 182.570i 0.197449 + 0.476684i 0.991331 0.131387i \(-0.0419432\pi\)
−0.793882 + 0.608072i \(0.791943\pi\)
\(384\) −236.467 + 158.002i −0.615800 + 0.411464i
\(385\) 0 0
\(386\) 275.471 + 184.064i 0.713656 + 0.476850i
\(387\) −18.1547 18.1547i −0.0469113 0.0469113i
\(388\) −144.134 + 28.6701i −0.371480 + 0.0738920i
\(389\) −8.22534 + 19.8577i −0.0211448 + 0.0510481i −0.934099 0.357013i \(-0.883795\pi\)
0.912954 + 0.408061i \(0.133795\pi\)
\(390\) 0 0
\(391\) 66.3316 + 184.261i 0.169646 + 0.471255i
\(392\) 278.058i 0.709332i
\(393\) −298.092 + 719.657i −0.758503 + 1.83119i
\(394\) 497.155 98.8903i 1.26181 0.250991i
\(395\) 0 0
\(396\) −25.1276 + 37.6062i −0.0634536 + 0.0949650i
\(397\) −6.92123 + 34.7954i −0.0174338 + 0.0876457i −0.988523 0.151073i \(-0.951727\pi\)
0.971089 + 0.238718i \(0.0767273\pi\)
\(398\) −134.450 + 89.8366i −0.337814 + 0.225720i
\(399\) 156.205 + 377.112i 0.391491 + 0.945142i
\(400\) 0 0
\(401\) −124.358 + 83.0937i −0.310121 + 0.207216i −0.700884 0.713275i \(-0.747211\pi\)
0.390763 + 0.920491i \(0.372211\pi\)
\(402\) −200.286 39.8393i −0.498224 0.0991028i
\(403\) −70.5695 + 105.615i −0.175110 + 0.262071i
\(404\) 77.7417 77.7417i 0.192430 0.192430i
\(405\) 0 0
\(406\) −33.2093 + 80.1744i −0.0817964 + 0.197474i
\(407\) 223.935 0.550209
\(408\) 536.647 + 252.547i 1.31531 + 0.618987i
\(409\) 398.892 0.975287 0.487643 0.873043i \(-0.337857\pi\)
0.487643 + 0.873043i \(0.337857\pi\)
\(410\) 0 0
\(411\) 209.711 41.7140i 0.510245 0.101494i
\(412\) −109.378 + 109.378i −0.265479 + 0.265479i
\(413\) −39.9656 26.7041i −0.0967689 0.0646589i
\(414\) −147.139 29.2678i −0.355408 0.0706951i
\(415\) 0 0
\(416\) −17.8024 42.9789i −0.0427943 0.103315i
\(417\) 81.2673 + 196.197i 0.194886 + 0.470496i
\(418\) −167.760 251.070i −0.401339 0.600646i
\(419\) −7.29632 + 36.6811i −0.0174137 + 0.0875444i −0.988515 0.151124i \(-0.951711\pi\)
0.971101 + 0.238668i \(0.0767108\pi\)
\(420\) 0 0
\(421\) 312.706 312.706i 0.742769 0.742769i −0.230341 0.973110i \(-0.573984\pi\)
0.973110 + 0.230341i \(0.0739841\pi\)
\(422\) −62.6078 + 12.4535i −0.148360 + 0.0295106i
\(423\) 30.5282 + 12.6452i 0.0721706 + 0.0298941i
\(424\) 264.938i 0.624853i
\(425\) 0 0
\(426\) 245.515 0.576327
\(427\) −110.987 + 267.945i −0.259922 + 0.627507i
\(428\) −6.87130 34.5444i −0.0160544 0.0807111i
\(429\) 66.6757 + 66.6757i 0.155421 + 0.155421i
\(430\) 0 0
\(431\) −340.230 67.6760i −0.789397 0.157021i −0.216103 0.976371i \(-0.569335\pi\)
−0.573294 + 0.819350i \(0.694335\pi\)
\(432\) 63.8199 42.6431i 0.147731 0.0987109i
\(433\) 49.6556 20.5680i 0.114678 0.0475012i −0.324607 0.945849i \(-0.605232\pi\)
0.439285 + 0.898348i \(0.355232\pi\)
\(434\) 252.506 104.591i 0.581810 0.240994i
\(435\) 0 0
\(436\) −7.89876 + 39.7098i −0.0181164 + 0.0910774i
\(437\) −157.745 + 236.082i −0.360972 + 0.540233i
\(438\) 473.217 + 473.217i 1.08040 + 1.08040i
\(439\) −47.4571 238.583i −0.108103 0.543469i −0.996442 0.0842815i \(-0.973140\pi\)
0.888339 0.459188i \(-0.151860\pi\)
\(440\) 0 0
\(441\) 237.928i 0.539518i
\(442\) 59.8690 81.0509i 0.135450 0.183373i
\(443\) 114.592i 0.258673i −0.991601 0.129336i \(-0.958715\pi\)
0.991601 0.129336i \(-0.0412847\pi\)
\(444\) −106.588 44.1501i −0.240063 0.0994373i
\(445\) 0 0
\(446\) −503.192 503.192i −1.12823 1.12823i
\(447\) −174.151 116.364i −0.389600 0.260322i
\(448\) −56.8453 + 285.780i −0.126887 + 0.637903i
\(449\) 301.785 + 451.653i 0.672127 + 1.00591i 0.998165 + 0.0605527i \(0.0192863\pi\)
−0.326038 + 0.945357i \(0.605714\pi\)
\(450\) 0 0
\(451\) 216.787 89.7961i 0.480681 0.199104i
\(452\) −91.9050 137.546i −0.203330 0.304304i
\(453\) −953.854 189.733i −2.10564 0.418838i
\(454\) 185.305 + 123.817i 0.408162 + 0.272725i
\(455\) 0 0
\(456\) 167.760 + 843.384i 0.367894 + 1.84953i
\(457\) 207.434 + 85.9222i 0.453905 + 0.188014i 0.597910 0.801563i \(-0.295998\pi\)
−0.144005 + 0.989577i \(0.545998\pi\)
\(458\) −217.037 −0.473880
\(459\) −101.034 47.5470i −0.220119 0.103588i
\(460\) 0 0
\(461\) −233.070 96.5408i −0.505575 0.209416i 0.115292 0.993332i \(-0.463219\pi\)
−0.620867 + 0.783916i \(0.713219\pi\)
\(462\) −39.5819 198.991i −0.0856750 0.430717i
\(463\) −88.6506 + 88.6506i −0.191470 + 0.191470i −0.796331 0.604861i \(-0.793229\pi\)
0.604861 + 0.796331i \(0.293229\pi\)
\(464\) −77.9840 + 116.711i −0.168069 + 0.251533i
\(465\) 0 0
\(466\) −58.9878 88.2815i −0.126583 0.189445i
\(467\) 640.133 265.152i 1.37074 0.567777i 0.428748 0.903424i \(-0.358955\pi\)
0.941988 + 0.335647i \(0.108955\pi\)
\(468\) −8.37404 20.2167i −0.0178932 0.0431981i
\(469\) −97.2612 + 64.9879i −0.207380 + 0.138567i
\(470\) 0 0
\(471\) −904.858 604.607i −1.92114 1.28367i
\(472\) −71.6013 71.6013i −0.151698 0.151698i
\(473\) 23.6889 4.71202i 0.0500823 0.00996199i
\(474\) 58.6768 141.658i 0.123791 0.298857i
\(475\) 0 0
\(476\) 57.8299 20.8181i 0.121491 0.0437354i
\(477\) 226.701i 0.475264i
\(478\) −193.161 + 466.332i −0.404103 + 0.975591i
\(479\) −469.496 + 93.3885i −0.980158 + 0.194965i −0.659068 0.752083i \(-0.729049\pi\)
−0.321090 + 0.947049i \(0.604049\pi\)
\(480\) 0 0
\(481\) −60.1927 + 90.0847i −0.125141 + 0.187286i
\(482\) −42.8219 + 215.280i −0.0888421 + 0.446639i
\(483\) −158.626 + 105.991i −0.328418 + 0.219442i
\(484\) 24.6268 + 59.4543i 0.0508818 + 0.122840i
\(485\) 0 0
\(486\) 465.503 311.039i 0.957825 0.639998i
\(487\) −397.869 79.1411i −0.816980 0.162507i −0.231126 0.972924i \(-0.574241\pi\)
−0.585854 + 0.810417i \(0.699241\pi\)
\(488\) −339.443 + 508.012i −0.695579 + 1.04101i
\(489\) −111.033 + 111.033i −0.227062 + 0.227062i
\(490\) 0 0
\(491\) −23.7416 + 57.3172i −0.0483535 + 0.116736i −0.946211 0.323551i \(-0.895123\pi\)
0.897857 + 0.440287i \(0.145123\pi\)
\(492\) −120.889 −0.245710
\(493\) 203.978 + 9.62562i 0.413749 + 0.0195246i
\(494\) 146.094 0.295736
\(495\) 0 0
\(496\) 433.587 86.2458i 0.874167 0.173883i
\(497\) 99.4445 99.4445i 0.200089 0.200089i
\(498\) −674.481 450.674i −1.35438 0.904967i
\(499\) 503.379 + 100.128i 1.00878 + 0.200658i 0.671703 0.740821i \(-0.265563\pi\)
0.337073 + 0.941479i \(0.390563\pi\)
\(500\) 0 0
\(501\) 55.7947 + 134.700i 0.111367 + 0.268863i
\(502\) −95.2302 229.906i −0.189702 0.457980i
\(503\) 183.828 + 275.118i 0.365463 + 0.546954i 0.967940 0.251182i \(-0.0808194\pi\)
−0.602477 + 0.798136i \(0.705819\pi\)
\(504\) −50.7740 + 255.258i −0.100742 + 0.506465i
\(505\) 0 0
\(506\) 99.7945 99.7945i 0.197222 0.197222i
\(507\) 626.030 124.525i 1.23477 0.245612i
\(508\) −33.5240 13.8861i −0.0659922 0.0273349i
\(509\) 343.247i 0.674355i 0.941441 + 0.337178i \(0.109472\pi\)
−0.941441 + 0.337178i \(0.890528\pi\)
\(510\) 0 0
\(511\) 383.347 0.750190
\(512\) −216.169 + 521.878i −0.422205 + 1.01929i
\(513\) −31.5841 158.784i −0.0615674 0.309520i
\(514\) 490.601 + 490.601i 0.954476 + 0.954476i
\(515\) 0 0
\(516\) −12.2044 2.42760i −0.0236519 0.00470466i
\(517\) −25.8464 + 17.2700i −0.0499930 + 0.0334043i
\(518\) 215.376 89.2118i 0.415784 0.172224i
\(519\) 721.645 298.915i 1.39045 0.575944i
\(520\) 0 0
\(521\) 62.1355 312.376i 0.119262 0.599570i −0.874215 0.485539i \(-0.838623\pi\)
0.993477 0.114032i \(-0.0363765\pi\)
\(522\) −86.9092 + 130.069i −0.166493 + 0.249174i
\(523\) −167.575 167.575i −0.320410 0.320410i 0.528514 0.848924i \(-0.322749\pi\)
−0.848924 + 0.528514i \(0.822749\pi\)
\(524\) 33.1762 + 166.788i 0.0633133 + 0.318298i
\(525\) 0 0
\(526\) 514.556i 0.978244i
\(527\) −432.823 475.696i −0.821296 0.902649i
\(528\) 328.176i 0.621545i
\(529\) 366.128 + 151.655i 0.692114 + 0.286683i
\(530\) 0 0
\(531\) −61.2676 61.2676i −0.115381 0.115381i
\(532\) 74.0938 + 49.5079i 0.139274 + 0.0930600i
\(533\) −22.1481 + 111.346i −0.0415537 + 0.208904i
\(534\) −158.985 237.938i −0.297725 0.445577i
\(535\) 0 0
\(536\) −227.670 + 94.3039i −0.424757 + 0.175940i
\(537\) −544.985 815.628i −1.01487 1.51886i
\(538\) 176.421 + 35.0922i 0.327919 + 0.0652272i
\(539\) 186.106 + 124.352i 0.345279 + 0.230708i
\(540\) 0 0
\(541\) 51.6826 + 259.826i 0.0955316 + 0.480270i 0.998700 + 0.0509824i \(0.0162352\pi\)
−0.903168 + 0.429287i \(0.858765\pi\)
\(542\) 621.502 + 257.435i 1.14668 + 0.474972i
\(543\) −552.466 −1.01743
\(544\) 232.923 35.0111i 0.428167 0.0643586i
\(545\) 0 0
\(546\) 90.6899 + 37.5650i 0.166099 + 0.0688003i
\(547\) −70.3869 353.859i −0.128678 0.646909i −0.990253 0.139278i \(-0.955522\pi\)
0.861575 0.507630i \(-0.169478\pi\)
\(548\) 33.0075 33.0075i 0.0602326 0.0602326i
\(549\) −290.453 + 434.694i −0.529058 + 0.791792i
\(550\) 0 0
\(551\) 164.486 + 246.170i 0.298522 + 0.446770i
\(552\) −371.313 + 153.803i −0.672669 + 0.278629i
\(553\) −33.6111 81.1445i −0.0607797 0.146735i
\(554\) −98.6630 + 65.9245i −0.178092 + 0.118997i
\(555\) 0 0
\(556\) 38.5481 + 25.7570i 0.0693312 + 0.0463256i
\(557\) 367.145 + 367.145i 0.659147 + 0.659147i 0.955178 0.296031i \(-0.0956632\pi\)
−0.296031 + 0.955178i \(0.595663\pi\)
\(558\) 483.210 96.1164i 0.865968 0.172252i
\(559\) −4.47192 + 10.7962i −0.00799986 + 0.0193134i
\(560\) 0 0
\(561\) −409.027 + 246.237i −0.729104 + 0.438926i
\(562\) 665.645i 1.18442i
\(563\) −168.267 + 406.232i −0.298875 + 0.721549i 0.701089 + 0.713074i \(0.252698\pi\)
−0.999964 + 0.00847487i \(0.997302\pi\)
\(564\) 15.7072 3.12435i 0.0278496 0.00553963i
\(565\) 0 0
\(566\) −291.125 + 435.699i −0.514355 + 0.769786i
\(567\) 74.2271 373.165i 0.130912 0.658139i
\(568\) 246.342 164.601i 0.433701 0.289790i
\(569\) 183.595 + 443.238i 0.322663 + 0.778977i 0.999098 + 0.0424747i \(0.0135242\pi\)
−0.676435 + 0.736503i \(0.736476\pi\)
\(570\) 0 0
\(571\) 452.464 302.327i 0.792406 0.529469i −0.0922371 0.995737i \(-0.529402\pi\)
0.884643 + 0.466268i \(0.154402\pi\)
\(572\) 20.1901 + 4.01605i 0.0352973 + 0.00702107i
\(573\) −391.863 + 586.464i −0.683879 + 1.02350i
\(574\) 172.728 172.728i 0.300920 0.300920i
\(575\) 0 0
\(576\) −201.004 + 485.266i −0.348965 + 0.842476i
\(577\) 304.419 0.527589 0.263795 0.964579i \(-0.415026\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(578\) 325.184 + 393.129i 0.562602 + 0.680154i
\(579\) 759.470 1.31169
\(580\) 0 0
\(581\) −455.737 + 90.6517i −0.784400 + 0.156027i
\(582\) 840.297 840.297i 1.44381 1.44381i
\(583\) −177.324 118.484i −0.304158 0.203232i
\(584\) 792.068 + 157.552i 1.35628 + 0.269781i
\(585\) 0 0
\(586\) −95.3950 230.304i −0.162790 0.393010i
\(587\) 244.317 + 589.834i 0.416213 + 1.00483i 0.983435 + 0.181263i \(0.0580184\pi\)
−0.567221 + 0.823565i \(0.691982\pi\)
\(588\) −64.0652 95.8804i −0.108954 0.163062i
\(589\) 181.911 914.531i 0.308848 1.55268i
\(590\) 0 0
\(591\) 821.644 821.644i 1.39026 1.39026i
\(592\) 369.831 73.5639i 0.624714 0.124263i
\(593\) 594.149 + 246.104i 1.00194 + 0.415016i 0.822507 0.568755i \(-0.192575\pi\)
0.179430 + 0.983771i \(0.442575\pi\)
\(594\) 80.4708i 0.135473i
\(595\) 0 0
\(596\) −45.7258 −0.0767211
\(597\) −141.852 + 342.460i −0.237608 + 0.573636i
\(598\) 13.3211 + 66.9697i 0.0222761 + 0.111990i
\(599\) −354.327 354.327i −0.591530 0.591530i 0.346514 0.938045i \(-0.387365\pi\)
−0.938045 + 0.346514i \(0.887365\pi\)
\(600\) 0 0
\(601\) 558.804 + 111.153i 0.929791 + 0.184947i 0.636677 0.771131i \(-0.280309\pi\)
0.293114 + 0.956078i \(0.405309\pi\)
\(602\) 20.9064 13.9692i 0.0347282 0.0232046i
\(603\) −194.812 + 80.6936i −0.323071 + 0.133820i
\(604\) −196.157 + 81.2510i −0.324764 + 0.134521i
\(605\) 0 0
\(606\) −173.444 + 871.961i −0.286211 + 1.43888i
\(607\) 100.769 150.811i 0.166011 0.248454i −0.739131 0.673561i \(-0.764764\pi\)
0.905143 + 0.425108i \(0.139764\pi\)
\(608\) 241.474 + 241.474i 0.397162 + 0.397162i
\(609\) 38.8094 + 195.108i 0.0637265 + 0.320375i
\(610\) 0 0
\(611\) 15.0396i 0.0246147i
\(612\) 109.564 16.4688i 0.179026 0.0269098i
\(613\) 155.196i 0.253174i −0.991956 0.126587i \(-0.959598\pi\)
0.991956 0.126587i \(-0.0404023\pi\)
\(614\) −423.470 175.407i −0.689691 0.285679i
\(615\) 0 0
\(616\) −173.125 173.125i −0.281047 0.281047i
\(617\) −388.627 259.673i −0.629866 0.420863i 0.199243 0.979950i \(-0.436152\pi\)
−0.829109 + 0.559087i \(0.811152\pi\)
\(618\) 244.024 1226.79i 0.394861 1.98510i
\(619\) −213.158 319.014i −0.344359 0.515370i 0.618352 0.785901i \(-0.287801\pi\)
−0.962711 + 0.270531i \(0.912801\pi\)
\(620\) 0 0
\(621\) 69.9071 28.9565i 0.112572 0.0466288i
\(622\) 553.288 + 828.054i 0.889531 + 1.33128i
\(623\) −160.771 31.9794i −0.258060 0.0513313i
\(624\) 132.019 + 88.2122i 0.211569 + 0.141366i
\(625\) 0 0
\(626\) 156.966 + 789.123i 0.250745 + 1.26058i
\(627\) −639.506 264.892i −1.01995 0.422475i
\(628\) −237.583 −0.378316
\(629\) −369.179 405.748i −0.586931 0.645068i
\(630\) 0 0
\(631\) −308.547 127.804i −0.488980 0.202542i 0.124550 0.992213i \(-0.460251\pi\)
−0.613531 + 0.789671i \(0.710251\pi\)
\(632\) −36.0974 181.474i −0.0571162 0.287142i
\(633\) −103.471 + 103.471i −0.163462 + 0.163462i
\(634\) −325.560 + 487.236i −0.513502 + 0.768511i
\(635\) 0 0
\(636\) 61.0423 + 91.3563i 0.0959785 + 0.143642i
\(637\) −100.049 + 41.4415i −0.157062 + 0.0650573i
\(638\) −56.3163 135.960i −0.0882701 0.213103i
\(639\) 210.789 140.845i 0.329873 0.220414i
\(640\) 0 0
\(641\) −798.746 533.705i −1.24609 0.832613i −0.255151 0.966901i \(-0.582125\pi\)
−0.990942 + 0.134289i \(0.957125\pi\)
\(642\) 201.392 + 201.392i 0.313695 + 0.313695i
\(643\) 1027.11 204.305i 1.59737 0.317737i 0.685457 0.728113i \(-0.259602\pi\)
0.911917 + 0.410376i \(0.134602\pi\)
\(644\) −15.9385 + 38.4791i −0.0247493 + 0.0597501i
\(645\) 0 0
\(646\) −178.345 + 717.877i −0.276076 + 1.11127i
\(647\) 328.253i 0.507346i −0.967290 0.253673i \(-0.918361\pi\)
0.967290 0.253673i \(-0.0816388\pi\)
\(648\) 306.735 740.523i 0.473356 1.14278i
\(649\) 79.9443 15.9019i 0.123181 0.0245022i
\(650\) 0 0
\(651\) 348.077 520.934i 0.534681 0.800206i
\(652\) −6.68782 + 33.6220i −0.0102574 + 0.0515674i
\(653\) 41.4569 27.7006i 0.0634869 0.0424206i −0.523422 0.852074i \(-0.675345\pi\)
0.586909 + 0.809653i \(0.300345\pi\)
\(654\) −125.290 302.477i −0.191575 0.462504i
\(655\) 0 0
\(656\) 328.527 219.515i 0.500804 0.334626i
\(657\) 677.754 + 134.814i 1.03159 + 0.205196i
\(658\) −17.9785 + 26.9067i −0.0273229 + 0.0408917i
\(659\) −61.2456 + 61.2456i −0.0929371 + 0.0929371i −0.752047 0.659110i \(-0.770933\pi\)
0.659110 + 0.752047i \(0.270933\pi\)
\(660\) 0 0
\(661\) −314.044 + 758.170i −0.475105 + 1.14700i 0.486774 + 0.873528i \(0.338173\pi\)
−0.961879 + 0.273476i \(0.911827\pi\)
\(662\) −1040.69 −1.57205
\(663\) 10.8881 230.731i 0.0164225 0.348011i
\(664\) −978.896 −1.47424
\(665\) 0 0
\(666\) 412.157 81.9831i 0.618854 0.123098i
\(667\) −97.8470 + 97.8470i −0.146697 + 0.146697i
\(668\) 26.4655 + 17.6837i 0.0396190 + 0.0264726i
\(669\) −1599.94 318.248i −2.39154 0.475707i
\(670\) 0 0
\(671\) −188.211 454.381i −0.280493 0.677170i
\(672\) 87.8088 + 211.989i 0.130668 + 0.315460i
\(673\) −305.467 457.164i −0.453889 0.679293i 0.531990 0.846751i \(-0.321444\pi\)
−0.985879 + 0.167457i \(0.946444\pi\)
\(674\) −112.824 + 567.203i −0.167394 + 0.841548i
\(675\) 0 0
\(676\) 98.5342 98.5342i 0.145761 0.145761i
\(677\) −531.400 + 105.702i −0.784933 + 0.156133i −0.571257 0.820772i \(-0.693544\pi\)
−0.213677 + 0.976904i \(0.568544\pi\)
\(678\) 1235.86 + 511.910i 1.82280 + 0.755030i
\(679\) 680.714i 1.00252i
\(680\) 0 0
\(681\) 510.884 0.750197
\(682\) −177.366 + 428.199i −0.260067 + 0.627857i
\(683\) 77.2580 + 388.402i 0.113116 + 0.568671i 0.995223 + 0.0976233i \(0.0311240\pi\)
−0.882108 + 0.471048i \(0.843876\pi\)
\(684\) 113.587 + 113.587i 0.166062 + 0.166062i
\(685\) 0 0
\(686\) 575.727 + 114.519i 0.839252 + 0.166938i
\(687\) −413.677 + 276.410i −0.602150 + 0.402344i
\(688\) 37.5745 15.5639i 0.0546142 0.0226219i
\(689\) 95.3279 39.4861i 0.138357 0.0573093i
\(690\) 0 0
\(691\) 182.146 915.708i 0.263597 1.32519i −0.591324 0.806434i \(-0.701395\pi\)
0.854921 0.518758i \(-0.173605\pi\)
\(692\) 94.7388 141.787i 0.136906 0.204894i
\(693\) −148.139 148.139i −0.213764 0.213764i
\(694\) 83.3681 + 419.120i 0.120127 + 0.603919i
\(695\) 0 0
\(696\) 419.081i 0.602128i
\(697\) −520.097 244.758i −0.746193 0.351160i
\(698\) 887.929i 1.27210i
\(699\) −224.864 93.1416i −0.321693 0.133250i
\(700\) 0 0
\(701\) −411.177 411.177i −0.586558 0.586558i 0.350140 0.936697i \(-0.386134\pi\)
−0.936697 + 0.350140i \(0.886134\pi\)
\(702\) −32.3718 21.6302i −0.0461137 0.0308122i
\(703\) 155.163 780.055i 0.220715 1.10961i
\(704\) −274.519 410.846i −0.389941 0.583588i
\(705\) 0 0
\(706\) 533.494 220.980i 0.755657 0.313003i
\(707\) 282.930 + 423.435i 0.400184 + 0.598918i
\(708\) −41.1868 8.19257i −0.0581735 0.0115714i
\(709\) −967.198 646.261i −1.36417 0.911511i −0.364367 0.931255i \(-0.618715\pi\)
−0.999805 + 0.0197449i \(0.993715\pi\)
\(710\) 0 0
\(711\) −30.8877 155.283i −0.0434426 0.218401i
\(712\) −319.041 132.151i −0.448091 0.185605i
\(713\) 435.811 0.611235
\(714\) −295.298 + 399.776i −0.413583 + 0.559910i
\(715\) 0 0
\(716\) −197.853 81.9532i −0.276330 0.114460i
\(717\) 225.734 + 1134.84i 0.314831 + 1.58276i
\(718\) −663.338 + 663.338i −0.923869 + 0.923869i
\(719\) 8.24905 12.3456i 0.0114729 0.0171705i −0.825689 0.564126i \(-0.809213\pi\)
0.837162 + 0.546955i \(0.184213\pi\)
\(720\) 0 0
\(721\) −398.064 595.745i −0.552100 0.826276i
\(722\) −402.030 + 166.526i −0.556828 + 0.230646i
\(723\) 192.553 + 464.864i 0.266325 + 0.642966i
\(724\) −100.284 + 67.0078i −0.138514 + 0.0925522i
\(725\) 0 0
\(726\) −432.682 289.109i −0.595981 0.398222i
\(727\) 880.136 + 880.136i 1.21064 + 1.21064i 0.970816 + 0.239825i \(0.0770901\pi\)
0.239825 + 0.970816i \(0.422910\pi\)
\(728\) 116.180 23.1096i 0.159588 0.0317440i
\(729\) 170.915 412.626i 0.234452 0.566017i
\(730\) 0 0
\(731\) −47.5913 35.1537i −0.0651044 0.0480899i
\(732\) 253.382i 0.346150i
\(733\) −208.728 + 503.915i −0.284759 + 0.687469i −0.999934 0.0114762i \(-0.996347\pi\)
0.715175 + 0.698945i \(0.246347\pi\)
\(734\) −573.199 + 114.016i −0.780925 + 0.155336i
\(735\) 0 0
\(736\) −88.6744 + 132.711i −0.120482 + 0.180313i
\(737\) 38.6993 194.555i 0.0525092 0.263982i
\(738\) 366.126 244.638i 0.496106 0.331488i
\(739\) 63.1371 + 152.427i 0.0854359 + 0.206261i 0.960823 0.277161i \(-0.0893937\pi\)
−0.875387 + 0.483422i \(0.839394\pi\)
\(740\) 0 0
\(741\) 278.457 186.059i 0.375786 0.251092i
\(742\) −217.749 43.3130i −0.293462 0.0583733i
\(743\) −1.28081 + 1.91687i −0.00172384 + 0.00257991i −0.832331 0.554280i \(-0.812994\pi\)
0.830607 + 0.556860i \(0.187994\pi\)
\(744\) 933.294 933.294i 1.25443 1.25443i
\(745\) 0 0
\(746\) −99.8879 + 241.151i −0.133898 + 0.323258i
\(747\) −837.618 −1.12131
\(748\) −44.3813 + 94.3076i −0.0593333 + 0.126080i
\(749\) 163.145 0.217817
\(750\) 0 0
\(751\) −1414.78 + 281.416i −1.88386 + 0.374722i −0.996298 0.0859723i \(-0.972600\pi\)
−0.887559 + 0.460695i \(0.847600\pi\)
\(752\) −37.0123 + 37.0123i −0.0492184 + 0.0492184i
\(753\) −474.310 316.924i −0.629894 0.420881i
\(754\) 69.8315 + 13.8904i 0.0926148 + 0.0184222i
\(755\) 0 0
\(756\) −9.08793 21.9402i −0.0120211 0.0290214i
\(757\) 115.414 + 278.634i 0.152463 + 0.368077i 0.981595 0.190975i \(-0.0611651\pi\)
−0.829132 + 0.559052i \(0.811165\pi\)
\(758\) −42.8446 64.1215i −0.0565233 0.0845931i
\(759\) 63.1158 317.305i 0.0831566 0.418056i
\(760\) 0 0
\(761\) −811.549 + 811.549i −1.06642 + 1.06642i −0.0687929 + 0.997631i \(0.521915\pi\)
−0.997631 + 0.0687929i \(0.978085\pi\)
\(762\) 287.786 57.2441i 0.377671 0.0751235i
\(763\) −173.265 71.7685i −0.227083 0.0940610i
\(764\) 153.984i 0.201550i
\(765\) 0 0
\(766\) −348.859 −0.455429
\(767\) −15.0916 + 36.4344i −0.0196762 + 0.0475025i
\(768\) 126.907 + 638.005i 0.165244 + 0.830736i
\(769\) −870.130 870.130i −1.13151 1.13151i −0.989927 0.141582i \(-0.954781\pi\)
−0.141582 0.989927i \(-0.545219\pi\)
\(770\) 0 0
\(771\) 1559.90 + 310.284i 2.02322 + 0.402444i
\(772\) 137.860 92.1150i 0.178575 0.119320i
\(773\) −1306.77 + 541.282i −1.69052 + 0.700235i −0.999739 0.0228308i \(-0.992732\pi\)
−0.690779 + 0.723066i \(0.742732\pi\)
\(774\) 41.8749 17.3451i 0.0541019 0.0224098i
\(775\) 0 0
\(776\) 279.767 1406.49i 0.360525 1.81248i
\(777\) 296.895 444.334i 0.382104 0.571859i
\(778\) −26.8308 26.8308i −0.0344869 0.0344869i
\(779\) −162.586 817.375i −0.208711 1.04926i
\(780\) 0 0
\(781\) 238.490i 0.305365i
\(782\) −345.339 16.2964i −0.441610 0.0208393i
\(783\) 78.9004i 0.100767i
\(784\) 348.205 + 144.231i 0.444139 + 0.183969i
\(785\) 0 0
\(786\) −972.366 972.366i −1.23711 1.23711i
\(787\) −1282.76 857.112i −1.62994 1.08909i −0.925104 0.379713i \(-0.876023\pi\)
−0.704831 0.709375i \(-0.748977\pi\)
\(788\) 49.4897 248.802i 0.0628042 0.315738i
\(789\) 655.319 + 980.754i 0.830569 + 1.24303i
\(790\) 0 0
\(791\) 707.924 293.232i 0.894973 0.370710i
\(792\) −245.199 366.967i −0.309595 0.463342i
\(793\) 233.379 + 46.4220i 0.294299 + 0.0585397i
\(794\) −52.0749 34.7954i −0.0655856 0.0438229i
\(795\) 0 0
\(796\) 15.7874 + 79.3688i 0.0198335 + 0.0997095i
\(797\) 1040.17 + 430.853i 1.30511 + 0.540593i 0.923453 0.383712i \(-0.125355\pi\)
0.381654 + 0.924305i \(0.375355\pi\)
\(798\) −720.593 −0.902998
\(799\) 73.9019 + 18.3597i 0.0924930 + 0.0229784i
\(800\) 0 0
\(801\) −272.996 113.079i −0.340819 0.141172i
\(802\) −51.5110 258.963i −0.0642281 0.322897i
\(803\) −459.675 + 459.675i −0.572448 + 0.572448i
\(804\) −56.7776 + 84.9737i −0.0706189 + 0.105689i
\(805\) 0 0
\(806\) −124.581 186.449i −0.154567 0.231326i
\(807\) 380.953 157.796i 0.472061 0.195534i
\(808\) 410.560 + 991.179i 0.508119 + 1.22671i
\(809\) 273.249 182.579i 0.337761 0.225685i −0.375109 0.926981i \(-0.622395\pi\)
0.712870 + 0.701296i \(0.247395\pi\)
\(810\) 0 0
\(811\) −242.645 162.131i −0.299193 0.199914i 0.396908 0.917859i \(-0.370083\pi\)
−0.696101 + 0.717944i \(0.745083\pi\)
\(812\) 30.7091 + 30.7091i 0.0378191 + 0.0378191i
\(813\) 1512.45 300.846i 1.86034 0.370044i
\(814\) −151.285 + 365.235i −0.185854 + 0.448692i
\(815\) 0 0
\(816\) −594.622 + 541.031i −0.728703 + 0.663028i
\(817\) 85.7829i 0.104997i
\(818\) −269.482 + 650.588i −0.329441 + 0.795340i
\(819\) 99.4124 19.7743i 0.121383 0.0241445i
\(820\) 0 0
\(821\) −600.209 + 898.276i −0.731070 + 1.09412i 0.260616 + 0.965443i \(0.416074\pi\)
−0.991686 + 0.128681i \(0.958926\pi\)
\(822\) −73.6406 + 370.216i −0.0895871 + 0.450385i
\(823\) −75.4620 + 50.4221i −0.0916914 + 0.0612662i −0.600571 0.799572i \(-0.705060\pi\)
0.508879 + 0.860838i \(0.330060\pi\)
\(824\) −577.631 1394.52i −0.701008 1.69238i
\(825\) 0 0
\(826\) 70.5539 47.1426i 0.0854163 0.0570733i
\(827\) 476.748 + 94.8310i 0.576479 + 0.114669i 0.474715 0.880140i \(-0.342551\pi\)
0.101764 + 0.994809i \(0.467551\pi\)
\(828\) −41.7114 + 62.4255i −0.0503760 + 0.0753931i
\(829\) −743.445 + 743.445i −0.896797 + 0.896797i −0.995151 0.0983544i \(-0.968642\pi\)
0.0983544 + 0.995151i \(0.468642\pi\)
\(830\) 0 0
\(831\) −104.095 + 251.307i −0.125264 + 0.302415i
\(832\) 239.065 0.287338
\(833\) −81.5008 542.211i −0.0978401 0.650914i
\(834\) −374.896 −0.449516
\(835\) 0 0
\(836\) −148.212 + 29.4812i −0.177287 + 0.0352646i
\(837\) −175.711 + 175.711i −0.209930 + 0.209930i
\(838\) −54.8971 36.6811i −0.0655097 0.0437722i
\(839\) 449.855 + 89.4817i 0.536180 + 0.106653i 0.455751 0.890108i \(-0.349371\pi\)
0.0804292 + 0.996760i \(0.474371\pi\)
\(840\) 0 0
\(841\) −266.619 643.676i −0.317027 0.765370i
\(842\) 298.762 + 721.276i 0.354824 + 0.856622i
\(843\) −847.739 1268.73i −1.00562 1.50502i
\(844\) −6.23235 + 31.3321i −0.00738430 + 0.0371234i
\(845\) 0 0
\(846\) −41.2482 + 41.2482i −0.0487568 + 0.0487568i
\(847\) −292.357 + 58.1534i −0.345167 + 0.0686581i
\(848\) −331.775 137.426i −0.391244 0.162059i
\(849\) 1201.22i 1.41486i
\(850\) 0 0
\(851\) 371.728 0.436813
\(852\) 47.0197 113.516i 0.0551875 0.133234i
\(853\) 1.46888 + 7.38457i 0.00172202 + 0.00865717i 0.981637 0.190760i \(-0.0610952\pi\)
−0.979915 + 0.199417i \(0.936095\pi\)
\(854\) −362.035 362.035i −0.423929 0.423929i
\(855\) 0 0
\(856\) 337.089 + 67.0512i 0.393796 + 0.0783309i
\(857\) −42.1566 + 28.1682i −0.0491910 + 0.0328683i −0.579923 0.814672i \(-0.696917\pi\)
0.530732 + 0.847540i \(0.321917\pi\)
\(858\) −153.792 + 63.7026i −0.179244 + 0.0742455i
\(859\) 464.849 192.547i 0.541151 0.224152i −0.0953281 0.995446i \(-0.530390\pi\)
0.636479 + 0.771294i \(0.280390\pi\)
\(860\) 0 0
\(861\) 109.243 549.204i 0.126880 0.637867i
\(862\) 340.230 509.190i 0.394698 0.590708i
\(863\) −98.9573 98.9573i −0.114667 0.114667i 0.647445 0.762112i \(-0.275837\pi\)
−0.762112 + 0.647445i \(0.775837\pi\)
\(864\) −17.7546 89.2585i −0.0205493 0.103309i
\(865\) 0 0
\(866\) 94.8830i 0.109565i
\(867\) 1120.48 + 335.169i 1.29237 + 0.386585i
\(868\) 136.778i 0.157579i
\(869\) 137.605 + 56.9977i 0.158348 + 0.0655900i
\(870\) 0 0
\(871\) 67.8634 + 67.8634i 0.0779143 + 0.0779143i
\(872\) −328.502 219.498i −0.376722 0.251718i
\(873\) 239.390 1203.50i 0.274216 1.37858i
\(874\) −278.477 416.771i −0.318624 0.476855i
\(875\) 0 0
\(876\) 309.423 128.167i 0.353222 0.146309i
\(877\) −527.563 789.554i −0.601554 0.900289i 0.398302 0.917254i \(-0.369600\pi\)
−0.999856 + 0.0169652i \(0.994600\pi\)
\(878\) 421.187 + 83.7792i 0.479711 + 0.0954205i
\(879\) −475.131 317.472i −0.540536 0.361174i
\(880\) 0 0
\(881\) 204.085 + 1026.00i 0.231651 + 1.16459i 0.905049 + 0.425308i \(0.139834\pi\)
−0.673398 + 0.739280i \(0.735166\pi\)
\(882\) 388.057 + 160.738i 0.439974 + 0.182243i
\(883\) 1264.99 1.43261 0.716303 0.697789i \(-0.245833\pi\)
0.716303 + 0.697789i \(0.245833\pi\)
\(884\) −26.0086 43.2032i −0.0294215 0.0488724i
\(885\) 0 0
\(886\) 186.898 + 77.4157i 0.210946 + 0.0873766i
\(887\) −152.500 766.671i −0.171928 0.864341i −0.966401 0.257041i \(-0.917253\pi\)
0.794472 0.607300i \(-0.207747\pi\)
\(888\) 796.059 796.059i 0.896463 0.896463i
\(889\) 93.3794 139.752i 0.105039 0.157201i
\(890\) 0 0
\(891\) 358.459 + 536.472i 0.402311 + 0.602101i
\(892\) −329.023 + 136.286i −0.368860 + 0.152787i
\(893\) 42.2496 + 102.000i 0.0473120 + 0.114221i
\(894\) 307.441 205.425i 0.343894 0.229782i
\(895\) 0 0
\(896\) −239.124 159.777i −0.266879 0.178323i
\(897\) 110.680 + 110.680i 0.123389 + 0.123389i
\(898\) −940.519 + 187.081i −1.04735 + 0.208331i
\(899\) 173.904 419.842i 0.193442 0.467010i
\(900\) 0 0
\(901\) 77.6552 + 516.627i 0.0861878 + 0.573393i
\(902\) 414.241i 0.459247i
\(903\) 22.0573 53.2511i 0.0244267 0.0589713i
\(904\) 1583.22 314.922i 1.75135 0.348365i
\(905\) 0 0
\(906\) 953.854 1427.54i 1.05282 1.57566i
\(907\) −72.9154 + 366.570i −0.0803918 + 0.404157i 0.919546 + 0.392983i \(0.128557\pi\)
−0.999938 + 0.0111739i \(0.996443\pi\)
\(908\) 92.7363 61.9644i 0.102133 0.0682428i
\(909\) 351.306 + 848.129i 0.386476 + 0.933035i
\(910\) 0 0
\(911\) −101.362 + 67.7280i −0.111265 + 0.0743447i −0.609958 0.792434i \(-0.708814\pi\)
0.498693 + 0.866779i \(0.333814\pi\)
\(912\) −1143.17 227.390i −1.25347 0.249331i
\(913\) 437.777 655.180i 0.479493 0.717612i
\(914\) −280.276 + 280.276i −0.306647 + 0.306647i
\(915\) 0 0
\(916\) −41.5657 + 100.349i −0.0453774 + 0.109551i
\(917\) −787.702 −0.858999
\(918\) 145.805 132.664i 0.158829 0.144514i
\(919\) −1592.00 −1.73232 −0.866158 0.499770i \(-0.833418\pi\)
−0.866158 + 0.499770i \(0.833418\pi\)
\(920\) 0 0
\(921\) −1030.53 + 204.986i −1.11893 + 0.222569i
\(922\) 314.913 314.913i 0.341555 0.341555i
\(923\) −95.9399 64.1050i −0.103944 0.0694528i
\(924\) −99.5855 19.8088i −0.107777 0.0214381i
\(925\) 0 0
\(926\) −84.6976 204.478i −0.0914661 0.220819i
\(927\) −494.265 1193.26i −0.533188 1.28723i
\(928\) 92.4638 + 138.382i 0.0996377 + 0.149118i
\(929\) 132.478 666.010i 0.142602 0.716910i −0.841633 0.540049i \(-0.818406\pi\)
0.984236 0.176861i \(-0.0565944\pi\)
\(930\) 0 0
\(931\) 562.118 562.118i 0.603778 0.603778i
\(932\) −52.1145 + 10.3662i −0.0559169 + 0.0111226i
\(933\) 2109.16 + 873.641i 2.26062 + 0.936378i
\(934\) 1223.18i 1.30961i
\(935\) 0 0
\(936\) 213.532 0.228133
\(937\) 112.652 271.967i 0.120227 0.290253i −0.852296 0.523059i \(-0.824791\pi\)
0.972523 + 0.232806i \(0.0747907\pi\)
\(938\) −40.2869 202.536i −0.0429498 0.215923i
\(939\) 1304.18 + 1304.18i 1.38890 + 1.38890i
\(940\) 0 0
\(941\) 819.035 + 162.916i 0.870388 + 0.173131i 0.610027 0.792381i \(-0.291159\pi\)
0.260361 + 0.965511i \(0.416159\pi\)
\(942\) 1597.41 1067.35i 1.69576 1.13307i
\(943\) 359.862 149.060i 0.381614 0.158070i
\(944\) 126.805 52.5243i 0.134327 0.0556402i
\(945\) 0 0
\(946\) −8.31845 + 41.8196i −0.00879328 + 0.0442068i
\(947\) 346.036 517.880i 0.365403 0.546864i −0.602523 0.798102i \(-0.705838\pi\)
0.967925 + 0.251238i \(0.0808376\pi\)
\(948\) −54.2592 54.2592i −0.0572355 0.0572355i
\(949\) −61.3599 308.477i −0.0646575 0.325055i
\(950\) 0 0
\(951\) 1343.30i 1.41252i
\(952\) −28.2711 + 599.098i −0.0296966 + 0.629305i
\(953\) 373.214i 0.391620i −0.980642 0.195810i \(-0.937266\pi\)
0.980642 0.195810i \(-0.0627335\pi\)
\(954\) −369.746 153.154i −0.387575 0.160539i
\(955\) 0 0
\(956\) 178.619 + 178.619i 0.186840 + 0.186840i
\(957\) −280.493 187.419i −0.293096 0.195841i
\(958\) 164.865 828.832i 0.172093 0.865169i
\(959\) 120.126 + 179.781i 0.125262 + 0.187468i
\(960\) 0 0
\(961\) −434.426 + 179.945i −0.452056 + 0.187248i
\(962\) −106.262 159.033i −0.110460 0.165315i
\(963\) 288.439 + 57.3741i 0.299522 + 0.0595786i
\(964\) 91.3352 + 61.0282i 0.0947460 + 0.0633073i
\(965\) 0 0
\(966\) −65.7051 330.322i −0.0680177 0.341948i
\(967\) 947.512 + 392.472i 0.979847 + 0.405866i 0.814369 0.580348i \(-0.197083\pi\)
0.165478 + 0.986213i \(0.447083\pi\)
\(968\) −627.966 −0.648725
\(969\) 574.332 + 1595.42i 0.592706 + 1.64646i
\(970\) 0 0
\(971\) 909.171 + 376.591i 0.936325 + 0.387838i 0.798074 0.602559i \(-0.205852\pi\)
0.138250 + 0.990397i \(0.455852\pi\)
\(972\) −54.6605 274.797i −0.0562351 0.282713i
\(973\) −151.849 + 151.849i −0.156063 + 0.156063i
\(974\) 397.869 595.453i 0.408490 0.611348i
\(975\) 0 0
\(976\) −460.099 688.586i −0.471413 0.705519i
\(977\) 525.837 217.809i 0.538216 0.222936i −0.0969814 0.995286i \(-0.530919\pi\)
0.635197 + 0.772350i \(0.280919\pi\)
\(978\) −106.082 256.105i −0.108469 0.261866i
\(979\) 231.129 154.436i 0.236087 0.157748i
\(980\) 0 0
\(981\) −281.091 187.819i −0.286535 0.191457i
\(982\) −77.4444 77.4444i −0.0788639 0.0788639i
\(983\) 1410.25 280.516i 1.43464 0.285368i 0.584272 0.811558i \(-0.301380\pi\)
0.850367 + 0.526190i \(0.176380\pi\)
\(984\) 451.436 1089.86i 0.458776 1.10758i
\(985\) 0 0
\(986\) −153.502 + 326.183i −0.155682 + 0.330814i
\(987\) 74.1814i 0.0751585i
\(988\) 27.9790 67.5473i 0.0283188 0.0683677i
\(989\) 39.3231 7.82186i 0.0397605 0.00790886i
\(990\) 0 0
\(991\) 46.6472 69.8125i 0.0470709 0.0704465i −0.807188 0.590295i \(-0.799012\pi\)
0.854259 + 0.519848i \(0.174012\pi\)
\(992\) 102.259 514.093i 0.103084 0.518239i
\(993\) −1983.58 + 1325.39i −1.99757 + 1.33473i
\(994\) 95.0102 + 229.375i 0.0955837 + 0.230759i
\(995\) 0 0
\(996\) −337.545 + 225.540i −0.338900 + 0.226446i
\(997\) 738.843 + 146.965i 0.741066 + 0.147407i 0.551165 0.834396i \(-0.314183\pi\)
0.189901 + 0.981803i \(0.439183\pi\)
\(998\) −503.379 + 753.360i −0.504388 + 0.754870i
\(999\) −149.874 + 149.874i −0.150024 + 0.150024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.t.b.74.1 8
5.2 odd 4 17.3.e.b.6.1 yes 8
5.3 odd 4 425.3.u.a.176.1 8
5.4 even 2 425.3.t.d.74.1 8
15.2 even 4 153.3.p.a.91.1 8
17.3 odd 16 425.3.t.d.224.1 8
20.7 even 4 272.3.bh.b.193.1 8
85.2 odd 8 289.3.e.n.75.1 8
85.3 even 16 425.3.u.a.326.1 8
85.7 even 16 289.3.e.j.158.1 8
85.12 even 16 289.3.e.f.65.1 8
85.22 even 16 289.3.e.h.65.1 8
85.27 even 16 289.3.e.n.158.1 8
85.32 odd 8 289.3.e.j.75.1 8
85.37 even 16 17.3.e.b.3.1 8
85.42 odd 8 289.3.e.a.214.1 8
85.47 odd 4 289.3.e.f.249.1 8
85.54 odd 16 inner 425.3.t.b.224.1 8
85.57 even 16 289.3.e.e.131.1 8
85.62 even 16 289.3.e.a.131.1 8
85.67 odd 4 289.3.e.g.40.1 8
85.72 odd 4 289.3.e.h.249.1 8
85.77 odd 8 289.3.e.e.214.1 8
85.82 even 16 289.3.e.g.224.1 8
255.122 odd 16 153.3.p.a.37.1 8
340.207 odd 16 272.3.bh.b.241.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.3.1 8 85.37 even 16
17.3.e.b.6.1 yes 8 5.2 odd 4
153.3.p.a.37.1 8 255.122 odd 16
153.3.p.a.91.1 8 15.2 even 4
272.3.bh.b.193.1 8 20.7 even 4
272.3.bh.b.241.1 8 340.207 odd 16
289.3.e.a.131.1 8 85.62 even 16
289.3.e.a.214.1 8 85.42 odd 8
289.3.e.e.131.1 8 85.57 even 16
289.3.e.e.214.1 8 85.77 odd 8
289.3.e.f.65.1 8 85.12 even 16
289.3.e.f.249.1 8 85.47 odd 4
289.3.e.g.40.1 8 85.67 odd 4
289.3.e.g.224.1 8 85.82 even 16
289.3.e.h.65.1 8 85.22 even 16
289.3.e.h.249.1 8 85.72 odd 4
289.3.e.j.75.1 8 85.32 odd 8
289.3.e.j.158.1 8 85.7 even 16
289.3.e.n.75.1 8 85.2 odd 8
289.3.e.n.158.1 8 85.27 even 16
425.3.t.b.74.1 8 1.1 even 1 trivial
425.3.t.b.224.1 8 85.54 odd 16 inner
425.3.t.d.74.1 8 5.4 even 2
425.3.t.d.224.1 8 17.3 odd 16
425.3.u.a.176.1 8 5.3 odd 4
425.3.u.a.326.1 8 85.3 even 16