Properties

Label 425.3.u.a.326.1
Level $425$
Weight $3$
Character 425.326
Analytic conductor $11.580$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [425,3,Mod(126,425)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("425.126"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(425, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([0, 11])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 425.u (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,-8,0,0,16,-16,8,0,40,-40] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(12)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5804112353\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 326.1
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 425.326
Dual form 425.3.u.a.176.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63099 - 0.675577i) q^{2} +(-3.96908 - 0.789499i) q^{3} +(-0.624715 + 0.624715i) q^{4} +(-7.00688 + 1.39376i) q^{6} +(2.27356 - 3.40262i) q^{7} +(-3.29916 + 7.96489i) q^{8} +(6.81537 + 2.82302i) q^{9} +(1.35387 + 6.80638i) q^{11} +(2.97275 - 1.98633i) q^{12} +(-2.37416 - 2.37416i) q^{13} +(1.40941 - 7.08560i) q^{14} +11.6855i q^{16} +(8.76791 - 14.5645i) q^{17} +13.0229 q^{18} +(22.7712 - 9.43215i) q^{19} +(-11.7103 + 11.7103i) q^{21} +(6.80638 + 10.1865i) q^{22} +(11.2984 - 2.24740i) q^{23} +(19.3829 - 29.0086i) q^{24} +(-5.47615 - 2.26829i) q^{26} +(5.46144 + 3.64922i) q^{27} +(0.705343 + 3.54600i) q^{28} +(9.98767 - 6.67355i) q^{29} +(7.38055 - 37.1045i) q^{31} +(-5.30218 - 12.8006i) q^{32} -28.0839i q^{33} +(4.46094 - 29.6778i) q^{34} +(-6.02124 + 2.49408i) q^{36} +(31.6486 + 6.29529i) q^{37} +(30.7674 - 30.7674i) q^{38} +(7.54883 + 11.2976i) q^{39} +(18.7852 - 28.1140i) q^{41} +(-11.1881 + 27.0106i) q^{42} +(-3.21547 - 1.33189i) q^{43} +(-5.09783 - 3.40626i) q^{44} +(16.9093 - 11.2984i) q^{46} +(-3.16735 - 3.16735i) q^{47} +(9.22573 - 46.3809i) q^{48} +(12.3427 + 29.7979i) q^{49} +(-46.2992 + 50.8853i) q^{51} +2.96634 q^{52} +(28.3919 - 11.7603i) q^{53} +(11.3729 + 2.26220i) q^{54} +(19.6007 + 29.3345i) q^{56} +(-97.8275 + 19.4591i) q^{57} +(11.7813 - 17.6319i) q^{58} +(-4.49481 + 10.8514i) q^{59} +(58.9263 + 39.3733i) q^{61} +(-13.0294 - 65.5031i) q^{62} +(25.1008 - 16.7718i) q^{63} +(-50.3473 - 50.3473i) q^{64} +(-18.9728 - 45.8045i) q^{66} +28.5842i q^{67} +(3.62119 + 14.5761i) q^{68} -46.6187 q^{69} +(-33.7056 - 6.70446i) q^{71} +(-44.9700 + 44.9700i) q^{72} +(52.0431 + 77.8880i) q^{73} +(55.8713 - 11.1135i) q^{74} +(-8.33312 + 20.1179i) q^{76} +(26.2377 + 10.8680i) q^{77} +(19.9444 + 13.3265i) q^{78} +(4.18708 + 21.0499i) q^{79} +(-65.7422 - 65.7422i) q^{81} +(11.6452 - 58.5443i) q^{82} +(-43.4522 - 104.903i) q^{83} -14.6312i q^{84} -6.14419 q^{86} +(-44.9106 + 18.6026i) q^{87} +(-58.6787 - 11.6719i) q^{88} +(-28.3238 + 28.3238i) q^{89} +(-13.4762 + 2.68058i) q^{91} +(-5.65432 + 8.46229i) q^{92} +(-58.5880 + 141.444i) q^{93} +(-7.30570 - 3.02612i) q^{94} +(10.9387 + 54.9926i) q^{96} +(138.307 - 92.4136i) q^{97} +(40.2616 + 40.2616i) q^{98} +(-9.98738 + 50.2100i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 16 q^{7} - 16 q^{8} + 8 q^{9} + 40 q^{11} - 40 q^{12} + 16 q^{14} + 16 q^{17} + 136 q^{18} - 32 q^{19} - 64 q^{21} + 8 q^{23} + 24 q^{24} - 96 q^{27} - 80 q^{28} + 24 q^{29} + 32 q^{31}+ \cdots + 136 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63099 0.675577i 0.815493 0.337788i 0.0643498 0.997927i \(-0.479503\pi\)
0.751143 + 0.660139i \(0.229503\pi\)
\(3\) −3.96908 0.789499i −1.32303 0.263166i −0.517478 0.855696i \(-0.673129\pi\)
−0.805548 + 0.592530i \(0.798129\pi\)
\(4\) −0.624715 + 0.624715i −0.156179 + 0.156179i
\(5\) 0 0
\(6\) −7.00688 + 1.39376i −1.16781 + 0.232293i
\(7\) 2.27356 3.40262i 0.324794 0.486089i −0.632757 0.774350i \(-0.718077\pi\)
0.957552 + 0.288261i \(0.0930770\pi\)
\(8\) −3.29916 + 7.96489i −0.412396 + 0.995611i
\(9\) 6.81537 + 2.82302i 0.757263 + 0.313669i
\(10\) 0 0
\(11\) 1.35387 + 6.80638i 0.123079 + 0.618761i 0.992251 + 0.124251i \(0.0396527\pi\)
−0.869172 + 0.494511i \(0.835347\pi\)
\(12\) 2.97275 1.98633i 0.247729 0.165528i
\(13\) −2.37416 2.37416i −0.182628 0.182628i 0.609872 0.792500i \(-0.291221\pi\)
−0.792500 + 0.609872i \(0.791221\pi\)
\(14\) 1.40941 7.08560i 0.100672 0.506114i
\(15\) 0 0
\(16\) 11.6855i 0.730347i
\(17\) 8.76791 14.5645i 0.515760 0.856733i
\(18\) 13.0229 0.723496
\(19\) 22.7712 9.43215i 1.19849 0.496429i 0.307977 0.951394i \(-0.400348\pi\)
0.890509 + 0.454965i \(0.150348\pi\)
\(20\) 0 0
\(21\) −11.7103 + 11.7103i −0.557634 + 0.557634i
\(22\) 6.80638 + 10.1865i 0.309381 + 0.463021i
\(23\) 11.2984 2.24740i 0.491237 0.0977131i 0.0567447 0.998389i \(-0.481928\pi\)
0.434492 + 0.900676i \(0.356928\pi\)
\(24\) 19.3829 29.0086i 0.807622 1.20869i
\(25\) 0 0
\(26\) −5.47615 2.26829i −0.210621 0.0872421i
\(27\) 5.46144 + 3.64922i 0.202276 + 0.135156i
\(28\) 0.705343 + 3.54600i 0.0251908 + 0.126643i
\(29\) 9.98767 6.67355i 0.344402 0.230122i −0.371324 0.928504i \(-0.621096\pi\)
0.715726 + 0.698381i \(0.246096\pi\)
\(30\) 0 0
\(31\) 7.38055 37.1045i 0.238082 1.19692i −0.657995 0.753022i \(-0.728595\pi\)
0.896077 0.443898i \(-0.146405\pi\)
\(32\) −5.30218 12.8006i −0.165693 0.400019i
\(33\) 28.0839i 0.851028i
\(34\) 4.46094 29.6778i 0.131204 0.872878i
\(35\) 0 0
\(36\) −6.02124 + 2.49408i −0.167257 + 0.0692800i
\(37\) 31.6486 + 6.29529i 0.855366 + 0.170143i 0.603248 0.797554i \(-0.293873\pi\)
0.252118 + 0.967696i \(0.418873\pi\)
\(38\) 30.7674 30.7674i 0.809669 0.809669i
\(39\) 7.54883 + 11.2976i 0.193560 + 0.289683i
\(40\) 0 0
\(41\) 18.7852 28.1140i 0.458175 0.685707i −0.528404 0.848993i \(-0.677209\pi\)
0.986579 + 0.163286i \(0.0522094\pi\)
\(42\) −11.1881 + 27.0106i −0.266384 + 0.643109i
\(43\) −3.21547 1.33189i −0.0747784 0.0309742i 0.344981 0.938610i \(-0.387885\pi\)
−0.419759 + 0.907636i \(0.637885\pi\)
\(44\) −5.09783 3.40626i −0.115860 0.0774150i
\(45\) 0 0
\(46\) 16.9093 11.2984i 0.367594 0.245618i
\(47\) −3.16735 3.16735i −0.0673905 0.0673905i 0.672608 0.739999i \(-0.265174\pi\)
−0.739999 + 0.672608i \(0.765174\pi\)
\(48\) 9.22573 46.3809i 0.192203 0.966268i
\(49\) 12.3427 + 29.7979i 0.251892 + 0.608121i
\(50\) 0 0
\(51\) −46.2992 + 50.8853i −0.907827 + 0.997750i
\(52\) 2.96634 0.0570451
\(53\) 28.3919 11.7603i 0.535697 0.221893i −0.0983994 0.995147i \(-0.531372\pi\)
0.634096 + 0.773254i \(0.281372\pi\)
\(54\) 11.3729 + 2.26220i 0.210609 + 0.0418927i
\(55\) 0 0
\(56\) 19.6007 + 29.3345i 0.350012 + 0.523830i
\(57\) −97.8275 + 19.4591i −1.71627 + 0.341388i
\(58\) 11.7813 17.6319i 0.203125 0.303998i
\(59\) −4.49481 + 10.8514i −0.0761832 + 0.183923i −0.957383 0.288822i \(-0.906737\pi\)
0.881200 + 0.472744i \(0.156737\pi\)
\(60\) 0 0
\(61\) 58.9263 + 39.3733i 0.966006 + 0.645464i 0.935222 0.354062i \(-0.115200\pi\)
0.0307835 + 0.999526i \(0.490200\pi\)
\(62\) −13.0294 65.5031i −0.210151 1.05650i
\(63\) 25.1008 16.7718i 0.398426 0.266220i
\(64\) −50.3473 50.3473i −0.786676 0.786676i
\(65\) 0 0
\(66\) −18.9728 45.8045i −0.287467 0.694008i
\(67\) 28.5842i 0.426629i 0.976984 + 0.213315i \(0.0684260\pi\)
−0.976984 + 0.213315i \(0.931574\pi\)
\(68\) 3.62119 + 14.5761i 0.0532528 + 0.214354i
\(69\) −46.6187 −0.675634
\(70\) 0 0
\(71\) −33.7056 6.70446i −0.474726 0.0944290i −0.0480724 0.998844i \(-0.515308\pi\)
−0.426654 + 0.904415i \(0.640308\pi\)
\(72\) −44.9700 + 44.9700i −0.624584 + 0.624584i
\(73\) 52.0431 + 77.8880i 0.712919 + 1.06696i 0.994222 + 0.107340i \(0.0342334\pi\)
−0.281303 + 0.959619i \(0.590767\pi\)
\(74\) 55.8713 11.1135i 0.755018 0.150182i
\(75\) 0 0
\(76\) −8.33312 + 20.1179i −0.109646 + 0.264710i
\(77\) 26.2377 + 10.8680i 0.340749 + 0.141143i
\(78\) 19.9444 + 13.3265i 0.255698 + 0.170852i
\(79\) 4.18708 + 21.0499i 0.0530011 + 0.266454i 0.998195 0.0600549i \(-0.0191276\pi\)
−0.945194 + 0.326509i \(0.894128\pi\)
\(80\) 0 0
\(81\) −65.7422 65.7422i −0.811632 0.811632i
\(82\) 11.6452 58.5443i 0.142015 0.713955i
\(83\) −43.4522 104.903i −0.523521 1.26389i −0.935703 0.352789i \(-0.885233\pi\)
0.412182 0.911102i \(-0.364767\pi\)
\(84\) 14.6312i 0.174181i
\(85\) 0 0
\(86\) −6.14419 −0.0714440
\(87\) −44.9106 + 18.6026i −0.516214 + 0.213823i
\(88\) −58.6787 11.6719i −0.666803 0.132635i
\(89\) −28.3238 + 28.3238i −0.318245 + 0.318245i −0.848093 0.529848i \(-0.822249\pi\)
0.529848 + 0.848093i \(0.322249\pi\)
\(90\) 0 0
\(91\) −13.4762 + 2.68058i −0.148090 + 0.0294569i
\(92\) −5.65432 + 8.46229i −0.0614600 + 0.0919814i
\(93\) −58.5880 + 141.444i −0.629978 + 1.52090i
\(94\) −7.30570 3.02612i −0.0777202 0.0321928i
\(95\) 0 0
\(96\) 10.9387 + 54.9926i 0.113945 + 0.572840i
\(97\) 138.307 92.4136i 1.42584 0.952718i 0.427018 0.904243i \(-0.359564\pi\)
0.998824 0.0484747i \(-0.0154360\pi\)
\(98\) 40.2616 + 40.2616i 0.410833 + 0.410833i
\(99\) −9.98738 + 50.2100i −0.100883 + 0.507171i
\(100\) 0 0
\(101\) 124.444i 1.23211i 0.787701 + 0.616057i \(0.211271\pi\)
−0.787701 + 0.616057i \(0.788729\pi\)
\(102\) −41.1364 + 114.272i −0.403298 + 1.12031i
\(103\) −175.084 −1.69984 −0.849922 0.526908i \(-0.823351\pi\)
−0.849922 + 0.526908i \(0.823351\pi\)
\(104\) 26.7427 11.0772i 0.257141 0.106511i
\(105\) 0 0
\(106\) 38.3619 38.3619i 0.361904 0.361904i
\(107\) −22.1486 33.1477i −0.206996 0.309791i 0.713416 0.700740i \(-0.247147\pi\)
−0.920412 + 0.390949i \(0.872147\pi\)
\(108\) −5.69157 + 1.13212i −0.0526997 + 0.0104826i
\(109\) −25.4604 + 38.1042i −0.233582 + 0.349580i −0.929681 0.368366i \(-0.879917\pi\)
0.696099 + 0.717946i \(0.254917\pi\)
\(110\) 0 0
\(111\) −120.645 49.9730i −1.08690 0.450207i
\(112\) 39.7615 + 26.5678i 0.355014 + 0.237213i
\(113\) 36.5291 + 183.644i 0.323267 + 1.62517i 0.710855 + 0.703338i \(0.248308\pi\)
−0.387589 + 0.921832i \(0.626692\pi\)
\(114\) −146.409 + 97.8275i −1.28429 + 0.858136i
\(115\) 0 0
\(116\) −2.07038 + 10.4085i −0.0178481 + 0.0897285i
\(117\) −9.47847 22.8831i −0.0810126 0.195582i
\(118\) 20.7351i 0.175721i
\(119\) −29.6230 62.9471i −0.248933 0.528967i
\(120\) 0 0
\(121\) 67.2956 27.8748i 0.556162 0.230370i
\(122\) 122.708 + 24.4081i 1.00580 + 0.200066i
\(123\) −96.7557 + 96.7557i −0.786632 + 0.786632i
\(124\) 18.5690 + 27.7905i 0.149750 + 0.224117i
\(125\) 0 0
\(126\) 29.6084 44.3122i 0.234988 0.351684i
\(127\) 15.7175 37.9454i 0.123760 0.298783i −0.849841 0.527039i \(-0.823302\pi\)
0.973601 + 0.228256i \(0.0733023\pi\)
\(128\) −64.9268 26.8936i −0.507241 0.210106i
\(129\) 11.7109 + 7.82500i 0.0907825 + 0.0606589i
\(130\) 0 0
\(131\) 160.044 106.938i 1.22171 0.816323i 0.233944 0.972250i \(-0.424837\pi\)
0.987769 + 0.155927i \(0.0498366\pi\)
\(132\) 17.5444 + 17.5444i 0.132912 + 0.132912i
\(133\) 19.6777 98.9266i 0.147953 0.743809i
\(134\) 19.3108 + 46.6204i 0.144110 + 0.347913i
\(135\) 0 0
\(136\) 87.0776 + 117.886i 0.640276 + 0.866809i
\(137\) −52.8361 −0.385665 −0.192832 0.981232i \(-0.561767\pi\)
−0.192832 + 0.981232i \(0.561767\pi\)
\(138\) −76.0345 + 31.4945i −0.550975 + 0.228221i
\(139\) −51.4676 10.2376i −0.370271 0.0736514i 0.00644773 0.999979i \(-0.497948\pi\)
−0.376719 + 0.926328i \(0.622948\pi\)
\(140\) 0 0
\(141\) 10.0709 + 15.0721i 0.0714245 + 0.106894i
\(142\) −59.5027 + 11.8358i −0.419033 + 0.0833509i
\(143\) 12.9451 19.3737i 0.0905253 0.135481i
\(144\) −32.9885 + 79.6413i −0.229087 + 0.553064i
\(145\) 0 0
\(146\) 137.501 + 91.8752i 0.941787 + 0.629282i
\(147\) −25.4638 128.015i −0.173223 0.870850i
\(148\) −23.7041 + 15.8386i −0.160163 + 0.107017i
\(149\) 36.5973 + 36.5973i 0.245620 + 0.245620i 0.819170 0.573551i \(-0.194434\pi\)
−0.573551 + 0.819170i \(0.694434\pi\)
\(150\) 0 0
\(151\) −91.9670 222.028i −0.609053 1.47038i −0.864032 0.503437i \(-0.832069\pi\)
0.254979 0.966947i \(-0.417931\pi\)
\(152\) 212.489i 1.39795i
\(153\) 100.872 74.5102i 0.659296 0.486995i
\(154\) 50.1354 0.325555
\(155\) 0 0
\(156\) −11.7737 2.34193i −0.0754721 0.0150123i
\(157\) 190.153 190.153i 1.21117 1.21117i 0.240522 0.970644i \(-0.422681\pi\)
0.970644 0.240522i \(-0.0773185\pi\)
\(158\) 21.0499 + 31.5034i 0.133227 + 0.199389i
\(159\) −121.975 + 24.2623i −0.767136 + 0.152593i
\(160\) 0 0
\(161\) 18.0406 43.5540i 0.112054 0.270522i
\(162\) −151.638 62.8107i −0.936040 0.387720i
\(163\) −32.2626 21.5571i −0.197930 0.132252i 0.452656 0.891685i \(-0.350477\pi\)
−0.650586 + 0.759433i \(0.725477\pi\)
\(164\) 5.82785 + 29.2986i 0.0355357 + 0.178650i
\(165\) 0 0
\(166\) −141.740 141.740i −0.853855 0.853855i
\(167\) −7.02867 + 35.3355i −0.0420878 + 0.211590i −0.996107 0.0881571i \(-0.971902\pi\)
0.954019 + 0.299747i \(0.0969022\pi\)
\(168\) −54.6371 131.906i −0.325221 0.785152i
\(169\) 157.727i 0.933294i
\(170\) 0 0
\(171\) 181.821 1.06328
\(172\) 2.84081 1.17670i 0.0165163 0.00684128i
\(173\) 189.307 + 37.6555i 1.09426 + 0.217662i 0.709043 0.705165i \(-0.249127\pi\)
0.385215 + 0.922827i \(0.374127\pi\)
\(174\) −60.6811 + 60.6811i −0.348742 + 0.348742i
\(175\) 0 0
\(176\) −79.5362 + 15.8207i −0.451910 + 0.0898905i
\(177\) 26.4075 39.5216i 0.149195 0.223286i
\(178\) −27.0608 + 65.3307i −0.152027 + 0.367026i
\(179\) 223.947 + 92.7619i 1.25110 + 0.518223i 0.907167 0.420771i \(-0.138241\pi\)
0.343933 + 0.938994i \(0.388241\pi\)
\(180\) 0 0
\(181\) −26.6333 133.895i −0.147146 0.739750i −0.981941 0.189190i \(-0.939414\pi\)
0.834795 0.550561i \(-0.185586\pi\)
\(182\) −20.1685 + 13.4762i −0.110816 + 0.0740449i
\(183\) −202.798 202.798i −1.10819 1.10819i
\(184\) −19.3751 + 97.4054i −0.105300 + 0.529377i
\(185\) 0 0
\(186\) 270.274i 1.45308i
\(187\) 111.002 + 39.9593i 0.593593 + 0.213686i
\(188\) 3.95738 0.0210499
\(189\) 24.8339 10.2865i 0.131396 0.0544260i
\(190\) 0 0
\(191\) 123.244 123.244i 0.645254 0.645254i −0.306588 0.951842i \(-0.599187\pi\)
0.951842 + 0.306588i \(0.0991874\pi\)
\(192\) 160.083 + 239.581i 0.833767 + 1.24782i
\(193\) 184.064 36.6126i 0.953700 0.189703i 0.306370 0.951913i \(-0.400886\pi\)
0.647330 + 0.762210i \(0.275886\pi\)
\(194\) 163.144 244.162i 0.840948 1.25857i
\(195\) 0 0
\(196\) −26.3259 10.9045i −0.134316 0.0556354i
\(197\) −238.742 159.522i −1.21189 0.809759i −0.225509 0.974241i \(-0.572405\pi\)
−0.986380 + 0.164482i \(0.947405\pi\)
\(198\) 17.6314 + 88.6390i 0.0890474 + 0.447672i
\(199\) −76.1598 + 50.8883i −0.382712 + 0.255720i −0.732013 0.681290i \(-0.761419\pi\)
0.349301 + 0.937011i \(0.386419\pi\)
\(200\) 0 0
\(201\) 22.5672 113.453i 0.112274 0.564442i
\(202\) 84.0712 + 202.966i 0.416194 + 1.00478i
\(203\) 49.1570i 0.242153i
\(204\) −2.86499 60.7125i −0.0140441 0.297610i
\(205\) 0 0
\(206\) −285.560 + 118.283i −1.38621 + 0.574188i
\(207\) 83.3475 + 16.5788i 0.402645 + 0.0800911i
\(208\) 27.7433 27.7433i 0.133381 0.133381i
\(209\) 95.0281 + 142.220i 0.454680 + 0.680477i
\(210\) 0 0
\(211\) 20.0890 30.0653i 0.0952086 0.142490i −0.780807 0.624772i \(-0.785192\pi\)
0.876016 + 0.482282i \(0.160192\pi\)
\(212\) −10.3900 + 25.0837i −0.0490095 + 0.118319i
\(213\) 128.487 + 53.2210i 0.603225 + 0.249864i
\(214\) −58.5178 39.1003i −0.273448 0.182712i
\(215\) 0 0
\(216\) −47.0838 + 31.4604i −0.217981 + 0.145650i
\(217\) −109.473 109.473i −0.504482 0.504482i
\(218\) −15.7833 + 79.3479i −0.0724004 + 0.363981i
\(219\) −145.071 350.232i −0.662423 1.59923i
\(220\) 0 0
\(221\) −55.3948 + 13.7619i −0.250655 + 0.0622712i
\(222\) −230.532 −1.03843
\(223\) −372.417 + 154.260i −1.67003 + 0.691750i −0.998775 0.0494759i \(-0.984245\pi\)
−0.671256 + 0.741226i \(0.734245\pi\)
\(224\) −55.6104 11.0616i −0.248261 0.0493822i
\(225\) 0 0
\(226\) 183.644 + 274.843i 0.812585 + 1.21612i
\(227\) −123.817 + 24.6288i −0.545450 + 0.108497i −0.460121 0.887856i \(-0.652194\pi\)
−0.0853288 + 0.996353i \(0.527194\pi\)
\(228\) 48.9579 73.2707i 0.214728 0.321363i
\(229\) −47.0477 + 113.583i −0.205449 + 0.495997i −0.992696 0.120640i \(-0.961505\pi\)
0.787248 + 0.616637i \(0.211505\pi\)
\(230\) 0 0
\(231\) −95.5591 63.8505i −0.413676 0.276409i
\(232\) 20.2031 + 101.568i 0.0870823 + 0.437792i
\(233\) −50.0074 + 33.4139i −0.214624 + 0.143407i −0.658236 0.752812i \(-0.728697\pi\)
0.443612 + 0.896219i \(0.353697\pi\)
\(234\) −30.9185 30.9185i −0.132130 0.132130i
\(235\) 0 0
\(236\) −3.97107 9.58702i −0.0168266 0.0406230i
\(237\) 86.8544i 0.366474i
\(238\) −90.8404 82.6533i −0.381682 0.347283i
\(239\) −285.920 −1.19632 −0.598160 0.801377i \(-0.704101\pi\)
−0.598160 + 0.801377i \(0.704101\pi\)
\(240\) 0 0
\(241\) 121.946 + 24.2566i 0.506002 + 0.100650i 0.441489 0.897267i \(-0.354451\pi\)
0.0645131 + 0.997917i \(0.479451\pi\)
\(242\) 90.9267 90.9267i 0.375730 0.375730i
\(243\) 176.189 + 263.686i 0.725060 + 1.08513i
\(244\) −61.4092 + 12.2151i −0.251677 + 0.0500617i
\(245\) 0 0
\(246\) −92.4414 + 223.173i −0.375778 + 0.907208i
\(247\) −76.4560 31.6691i −0.309538 0.128215i
\(248\) 271.184 + 181.199i 1.09348 + 0.730642i
\(249\) 89.6446 + 450.674i 0.360018 + 1.80993i
\(250\) 0 0
\(251\) −99.6747 99.6747i −0.397110 0.397110i 0.480102 0.877213i \(-0.340600\pi\)
−0.877213 + 0.480102i \(0.840600\pi\)
\(252\) −5.20324 + 26.1585i −0.0206478 + 0.103803i
\(253\) 30.5933 + 73.8588i 0.120922 + 0.291932i
\(254\) 72.5069i 0.285460i
\(255\) 0 0
\(256\) 160.744 0.627906
\(257\) −363.098 + 150.400i −1.41283 + 0.585214i −0.953048 0.302818i \(-0.902073\pi\)
−0.459783 + 0.888032i \(0.652073\pi\)
\(258\) 24.3868 + 4.85083i 0.0945224 + 0.0188017i
\(259\) 93.3754 93.3754i 0.360523 0.360523i
\(260\) 0 0
\(261\) 86.9092 17.2873i 0.332985 0.0662349i
\(262\) 188.785 282.537i 0.720554 1.07839i
\(263\) 111.542 269.286i 0.424113 1.02390i −0.557008 0.830507i \(-0.688051\pi\)
0.981121 0.193393i \(-0.0619493\pi\)
\(264\) 223.685 + 92.6535i 0.847293 + 0.350960i
\(265\) 0 0
\(266\) −34.7384 174.642i −0.130595 0.656548i
\(267\) 134.781 90.0578i 0.504798 0.337295i
\(268\) −17.8569 17.8569i −0.0666304 0.0666304i
\(269\) 19.8781 99.9342i 0.0738965 0.371503i −0.926087 0.377311i \(-0.876849\pi\)
0.999983 + 0.00580827i \(0.00184884\pi\)
\(270\) 0 0
\(271\) 381.059i 1.40612i 0.711129 + 0.703061i \(0.248184\pi\)
−0.711129 + 0.703061i \(0.751816\pi\)
\(272\) 170.194 + 102.458i 0.625712 + 0.376683i
\(273\) 55.6043 0.203679
\(274\) −86.1749 + 35.6948i −0.314507 + 0.130273i
\(275\) 0 0
\(276\) 29.1234 29.1234i 0.105520 0.105520i
\(277\) 37.3432 + 55.8881i 0.134813 + 0.201762i 0.892734 0.450585i \(-0.148785\pi\)
−0.757920 + 0.652347i \(0.773785\pi\)
\(278\) −90.8593 + 18.0730i −0.326832 + 0.0650109i
\(279\) 155.048 232.046i 0.555727 0.831705i
\(280\) 0 0
\(281\) −348.356 144.294i −1.23970 0.513501i −0.336079 0.941834i \(-0.609101\pi\)
−0.903621 + 0.428333i \(0.859101\pi\)
\(282\) 26.6078 + 17.7788i 0.0943539 + 0.0630452i
\(283\) −57.9083 291.125i −0.204623 1.02871i −0.937404 0.348245i \(-0.886778\pi\)
0.732781 0.680465i \(-0.238222\pi\)
\(284\) 25.2447 16.8680i 0.0888899 0.0593944i
\(285\) 0 0
\(286\) 8.02486 40.3437i 0.0280590 0.141062i
\(287\) −52.9521 127.838i −0.184502 0.445428i
\(288\) 102.209i 0.354892i
\(289\) −135.247 255.400i −0.467984 0.883737i
\(290\) 0 0
\(291\) −621.911 + 257.604i −2.13715 + 0.885237i
\(292\) −81.1699 16.1457i −0.277979 0.0552935i
\(293\) −99.8472 + 99.8472i −0.340776 + 0.340776i −0.856659 0.515883i \(-0.827464\pi\)
0.515883 + 0.856659i \(0.327464\pi\)
\(294\) −128.015 191.588i −0.435425 0.651660i
\(295\) 0 0
\(296\) −154.555 + 231.308i −0.522146 + 0.781446i
\(297\) −17.4439 + 42.1132i −0.0587336 + 0.141795i
\(298\) 84.4140 + 34.9654i 0.283269 + 0.117334i
\(299\) −32.1600 21.4886i −0.107559 0.0718683i
\(300\) 0 0
\(301\) −11.8425 + 7.91291i −0.0393439 + 0.0262887i
\(302\) −299.994 299.994i −0.993357 0.993357i
\(303\) 98.2481 493.926i 0.324251 1.63012i
\(304\) 110.220 + 266.094i 0.362565 + 0.875310i
\(305\) 0 0
\(306\) 114.184 189.672i 0.373150 0.619843i
\(307\) 259.641 0.845735 0.422868 0.906192i \(-0.361024\pi\)
0.422868 + 0.906192i \(0.361024\pi\)
\(308\) −23.1804 + 9.60165i −0.0752612 + 0.0311742i
\(309\) 694.922 + 138.229i 2.24894 + 0.447342i
\(310\) 0 0
\(311\) 313.413 + 469.055i 1.00776 + 1.50822i 0.854112 + 0.520090i \(0.174102\pi\)
0.153646 + 0.988126i \(0.450898\pi\)
\(312\) −114.889 + 22.8529i −0.368234 + 0.0732464i
\(313\) 253.206 378.950i 0.808966 1.21070i −0.165509 0.986208i \(-0.552927\pi\)
0.974475 0.224495i \(-0.0720733\pi\)
\(314\) 181.674 438.600i 0.578580 1.39681i
\(315\) 0 0
\(316\) −15.7659 10.5344i −0.0498921 0.0333368i
\(317\) 64.7580 + 325.560i 0.204284 + 1.02700i 0.937759 + 0.347288i \(0.112897\pi\)
−0.733475 + 0.679717i \(0.762103\pi\)
\(318\) −182.548 + 121.975i −0.574050 + 0.383568i
\(319\) 58.9447 + 58.9447i 0.184780 + 0.184780i
\(320\) 0 0
\(321\) 61.7394 + 149.052i 0.192334 + 0.464336i
\(322\) 83.2238i 0.258459i
\(323\) 62.2820 414.351i 0.192823 1.28282i
\(324\) 82.1402 0.253519
\(325\) 0 0
\(326\) −67.1833 13.3636i −0.206084 0.0409926i
\(327\) 131.138 131.138i 0.401033 0.401033i
\(328\) 161.949 + 242.374i 0.493748 + 0.738946i
\(329\) −17.9785 + 3.57614i −0.0546459 + 0.0108697i
\(330\) 0 0
\(331\) 225.594 544.633i 0.681554 1.64542i −0.0795855 0.996828i \(-0.525360\pi\)
0.761139 0.648588i \(-0.224640\pi\)
\(332\) 92.6796 + 38.3892i 0.279156 + 0.115630i
\(333\) 197.925 + 132.249i 0.594369 + 0.397145i
\(334\) 12.4082 + 62.3801i 0.0371502 + 0.186767i
\(335\) 0 0
\(336\) −136.841 136.841i −0.407266 0.407266i
\(337\) −63.9095 + 321.295i −0.189642 + 0.953397i 0.762324 + 0.647195i \(0.224058\pi\)
−0.951967 + 0.306202i \(0.900942\pi\)
\(338\) −106.557 257.250i −0.315256 0.761095i
\(339\) 757.738i 2.23522i
\(340\) 0 0
\(341\) 262.540 0.769911
\(342\) 296.548 122.834i 0.867100 0.359165i
\(343\) 326.123 + 64.8699i 0.950796 + 0.189125i
\(344\) 21.2167 21.2167i 0.0616766 0.0616766i
\(345\) 0 0
\(346\) 334.196 66.4757i 0.965884 0.192126i
\(347\) −134.483 + 201.268i −0.387560 + 0.580024i −0.973033 0.230668i \(-0.925909\pi\)
0.585473 + 0.810692i \(0.300909\pi\)
\(348\) 16.4350 39.6776i 0.0472270 0.114016i
\(349\) 464.685 + 192.479i 1.33148 + 0.551515i 0.931076 0.364826i \(-0.118871\pi\)
0.400399 + 0.916341i \(0.368871\pi\)
\(350\) 0 0
\(351\) −4.30251 21.6302i −0.0122579 0.0616244i
\(352\) 79.9472 53.4190i 0.227123 0.151759i
\(353\) 231.294 + 231.294i 0.655223 + 0.655223i 0.954246 0.299023i \(-0.0966606\pi\)
−0.299023 + 0.954246i \(0.596661\pi\)
\(354\) 16.3704 82.2994i 0.0462440 0.232484i
\(355\) 0 0
\(356\) 35.3886i 0.0994062i
\(357\) 67.8794 + 273.230i 0.190138 + 0.765349i
\(358\) 427.922 1.19531
\(359\) −490.942 + 203.355i −1.36753 + 0.566448i −0.941117 0.338082i \(-0.890222\pi\)
−0.426410 + 0.904530i \(0.640222\pi\)
\(360\) 0 0
\(361\) 174.298 174.298i 0.482820 0.482820i
\(362\) −133.895 200.388i −0.369875 0.553557i
\(363\) −289.109 + 57.5073i −0.796443 + 0.158422i
\(364\) 6.74416 10.0934i 0.0185279 0.0277290i
\(365\) 0 0
\(366\) −467.767 193.755i −1.27805 0.529386i
\(367\) 275.260 + 183.923i 0.750026 + 0.501152i 0.870866 0.491520i \(-0.163559\pi\)
−0.120840 + 0.992672i \(0.538559\pi\)
\(368\) 26.2621 + 132.028i 0.0713644 + 0.358773i
\(369\) 207.394 138.576i 0.562043 0.375545i
\(370\) 0 0
\(371\) 24.5348 123.345i 0.0661316 0.332466i
\(372\) −51.7613 124.963i −0.139143 0.335922i
\(373\) 147.856i 0.396396i −0.980162 0.198198i \(-0.936491\pi\)
0.980162 0.198198i \(-0.0635089\pi\)
\(374\) 208.038 9.81721i 0.556252 0.0262492i
\(375\) 0 0
\(376\) 35.6772 14.7780i 0.0948863 0.0393032i
\(377\) −39.5564 7.86825i −0.104924 0.0208707i
\(378\) 33.5543 33.5543i 0.0887681 0.0887681i
\(379\) 24.2695 + 36.3219i 0.0640357 + 0.0958362i 0.862106 0.506729i \(-0.169145\pi\)
−0.798070 + 0.602565i \(0.794145\pi\)
\(380\) 0 0
\(381\) −92.3419 + 138.199i −0.242367 + 0.362728i
\(382\) 117.748 284.269i 0.308241 0.744160i
\(383\) −182.570 75.6230i −0.476684 0.197449i 0.131387 0.991331i \(-0.458057\pi\)
−0.608072 + 0.793882i \(0.708057\pi\)
\(384\) 236.467 + 158.002i 0.615800 + 0.411464i
\(385\) 0 0
\(386\) 275.471 184.064i 0.713656 0.476850i
\(387\) −18.1547 18.1547i −0.0469113 0.0469113i
\(388\) −28.6701 + 144.134i −0.0738920 + 0.371480i
\(389\) 8.22534 + 19.8577i 0.0211448 + 0.0510481i 0.934099 0.357013i \(-0.116205\pi\)
−0.912954 + 0.408061i \(0.866205\pi\)
\(390\) 0 0
\(391\) 66.3316 184.261i 0.169646 0.471255i
\(392\) −278.058 −0.709332
\(393\) −719.657 + 298.092i −1.83119 + 0.758503i
\(394\) −497.155 98.8903i −1.26181 0.250991i
\(395\) 0 0
\(396\) −25.1276 37.6062i −0.0634536 0.0949650i
\(397\) 34.7954 6.92123i 0.0876457 0.0174338i −0.151073 0.988523i \(-0.548273\pi\)
0.238718 + 0.971089i \(0.423273\pi\)
\(398\) −89.8366 + 134.450i −0.225720 + 0.337814i
\(399\) −156.205 + 377.112i −0.391491 + 0.945142i
\(400\) 0 0
\(401\) −124.358 83.0937i −0.310121 0.207216i 0.390763 0.920491i \(-0.372211\pi\)
−0.700884 + 0.713275i \(0.747211\pi\)
\(402\) −39.8393 200.286i −0.0991028 0.498224i
\(403\) −105.615 + 70.5695i −0.262071 + 0.175110i
\(404\) −77.7417 77.7417i −0.192430 0.192430i
\(405\) 0 0
\(406\) −33.2093 80.1744i −0.0817964 0.197474i
\(407\) 223.935i 0.550209i
\(408\) −252.547 536.647i −0.618987 1.31531i
\(409\) −398.892 −0.975287 −0.487643 0.873043i \(-0.662143\pi\)
−0.487643 + 0.873043i \(0.662143\pi\)
\(410\) 0 0
\(411\) 209.711 + 41.7140i 0.510245 + 0.101494i
\(412\) 109.378 109.378i 0.265479 0.265479i
\(413\) 26.7041 + 39.9656i 0.0646589 + 0.0967689i
\(414\) 147.139 29.2678i 0.355408 0.0706951i
\(415\) 0 0
\(416\) −17.8024 + 42.9789i −0.0427943 + 0.103315i
\(417\) 196.197 + 81.2673i 0.470496 + 0.194886i
\(418\) 251.070 + 167.760i 0.600646 + 0.401339i
\(419\) 7.29632 + 36.6811i 0.0174137 + 0.0875444i 0.988515 0.151124i \(-0.0482892\pi\)
−0.971101 + 0.238668i \(0.923289\pi\)
\(420\) 0 0
\(421\) 312.706 + 312.706i 0.742769 + 0.742769i 0.973110 0.230341i \(-0.0739841\pi\)
−0.230341 + 0.973110i \(0.573984\pi\)
\(422\) 12.4535 62.6078i 0.0295106 0.148360i
\(423\) −12.6452 30.5282i −0.0298941 0.0721706i
\(424\) 264.938i 0.624853i
\(425\) 0 0
\(426\) 245.515 0.576327
\(427\) 267.945 110.987i 0.627507 0.259922i
\(428\) 34.5444 + 6.87130i 0.0807111 + 0.0160544i
\(429\) −66.6757 + 66.6757i −0.155421 + 0.155421i
\(430\) 0 0
\(431\) −340.230 + 67.6760i −0.789397 + 0.157021i −0.573294 0.819350i \(-0.694335\pi\)
−0.216103 + 0.976371i \(0.569335\pi\)
\(432\) −42.6431 + 63.8199i −0.0987109 + 0.147731i
\(433\) 20.5680 49.6556i 0.0475012 0.114678i −0.898348 0.439285i \(-0.855232\pi\)
0.945849 + 0.324607i \(0.105232\pi\)
\(434\) −252.506 104.591i −0.581810 0.240994i
\(435\) 0 0
\(436\) −7.89876 39.7098i −0.0181164 0.0910774i
\(437\) 236.082 157.745i 0.540233 0.360972i
\(438\) −473.217 473.217i −1.08040 1.08040i
\(439\) 47.4571 238.583i 0.108103 0.543469i −0.888339 0.459188i \(-0.848140\pi\)
0.996442 0.0842815i \(-0.0268595\pi\)
\(440\) 0 0
\(441\) 237.928i 0.539518i
\(442\) −81.0509 + 59.8690i −0.183373 + 0.135450i
\(443\) 114.592 0.258673 0.129336 0.991601i \(-0.458715\pi\)
0.129336 + 0.991601i \(0.458715\pi\)
\(444\) 106.588 44.1501i 0.240063 0.0994373i
\(445\) 0 0
\(446\) −503.192 + 503.192i −1.12823 + 1.12823i
\(447\) −116.364 174.151i −0.260322 0.389600i
\(448\) −285.780 + 56.8453i −0.637903 + 0.126887i
\(449\) −301.785 + 451.653i −0.672127 + 1.00591i 0.326038 + 0.945357i \(0.394286\pi\)
−0.998165 + 0.0605527i \(0.980714\pi\)
\(450\) 0 0
\(451\) 216.787 + 89.7961i 0.480681 + 0.199104i
\(452\) −137.546 91.9050i −0.304304 0.203330i
\(453\) 189.733 + 953.854i 0.418838 + 2.10564i
\(454\) −185.305 + 123.817i −0.408162 + 0.272725i
\(455\) 0 0
\(456\) 167.760 843.384i 0.367894 1.84953i
\(457\) 85.9222 + 207.434i 0.188014 + 0.453905i 0.989577 0.144005i \(-0.0459981\pi\)
−0.801563 + 0.597910i \(0.795998\pi\)
\(458\) 217.037i 0.473880i
\(459\) 101.034 47.5470i 0.220119 0.103588i
\(460\) 0 0
\(461\) −233.070 + 96.5408i −0.505575 + 0.209416i −0.620867 0.783916i \(-0.713219\pi\)
0.115292 + 0.993332i \(0.463219\pi\)
\(462\) −198.991 39.5819i −0.430717 0.0856750i
\(463\) −88.6506 + 88.6506i −0.191470 + 0.191470i −0.796331 0.604861i \(-0.793229\pi\)
0.604861 + 0.796331i \(0.293229\pi\)
\(464\) 77.9840 + 116.711i 0.168069 + 0.251533i
\(465\) 0 0
\(466\) −58.9878 + 88.2815i −0.126583 + 0.189445i
\(467\) −265.152 + 640.133i −0.567777 + 1.37074i 0.335647 + 0.941988i \(0.391045\pi\)
−0.903424 + 0.428748i \(0.858955\pi\)
\(468\) 20.2167 + 8.37404i 0.0431981 + 0.0178932i
\(469\) 97.2612 + 64.9879i 0.207380 + 0.138567i
\(470\) 0 0
\(471\) −904.858 + 604.607i −1.92114 + 1.28367i
\(472\) −71.6013 71.6013i −0.151698 0.151698i
\(473\) 4.71202 23.6889i 0.00996199 0.0500823i
\(474\) −58.6768 141.658i −0.123791 0.298857i
\(475\) 0 0
\(476\) 57.8299 + 20.8181i 0.121491 + 0.0437354i
\(477\) 226.701 0.475264
\(478\) −466.332 + 193.161i −0.975591 + 0.404103i
\(479\) 469.496 + 93.3885i 0.980158 + 0.194965i 0.659068 0.752083i \(-0.270951\pi\)
0.321090 + 0.947049i \(0.395951\pi\)
\(480\) 0 0
\(481\) −60.1927 90.0847i −0.125141 0.187286i
\(482\) 215.280 42.8219i 0.446639 0.0888421i
\(483\) −105.991 + 158.626i −0.219442 + 0.328418i
\(484\) −24.6268 + 59.4543i −0.0508818 + 0.122840i
\(485\) 0 0
\(486\) 465.503 + 311.039i 0.957825 + 0.639998i
\(487\) −79.1411 397.869i −0.162507 0.816980i −0.972924 0.231126i \(-0.925759\pi\)
0.810417 0.585854i \(-0.199241\pi\)
\(488\) −508.012 + 339.443i −1.04101 + 0.695579i
\(489\) 111.033 + 111.033i 0.227062 + 0.227062i
\(490\) 0 0
\(491\) −23.7416 57.3172i −0.0483535 0.116736i 0.897857 0.440287i \(-0.145123\pi\)
−0.946211 + 0.323551i \(0.895123\pi\)
\(492\) 120.889i 0.245710i
\(493\) −9.62562 203.978i −0.0195246 0.413749i
\(494\) −146.094 −0.295736
\(495\) 0 0
\(496\) 433.587 + 86.2458i 0.874167 + 0.173883i
\(497\) −99.4445 + 99.4445i −0.200089 + 0.200089i
\(498\) 450.674 + 674.481i 0.904967 + 1.35438i
\(499\) −503.379 + 100.128i −1.00878 + 0.200658i −0.671703 0.740821i \(-0.734437\pi\)
−0.337073 + 0.941479i \(0.609437\pi\)
\(500\) 0 0
\(501\) 55.7947 134.700i 0.111367 0.268863i
\(502\) −229.906 95.2302i −0.457980 0.189702i
\(503\) −275.118 183.828i −0.546954 0.365463i 0.251182 0.967940i \(-0.419181\pi\)
−0.798136 + 0.602477i \(0.794181\pi\)
\(504\) 50.7740 + 255.258i 0.100742 + 0.506465i
\(505\) 0 0
\(506\) 99.7945 + 99.7945i 0.197222 + 0.197222i
\(507\) −124.525 + 626.030i −0.245612 + 1.23477i
\(508\) 13.8861 + 33.5240i 0.0273349 + 0.0659922i
\(509\) 343.247i 0.674355i 0.941441 + 0.337178i \(0.109472\pi\)
−0.941441 + 0.337178i \(0.890528\pi\)
\(510\) 0 0
\(511\) 383.347 0.750190
\(512\) 521.878 216.169i 1.01929 0.422205i
\(513\) 158.784 + 31.5841i 0.309520 + 0.0615674i
\(514\) −490.601 + 490.601i −0.954476 + 0.954476i
\(515\) 0 0
\(516\) −12.2044 + 2.42760i −0.0236519 + 0.00470466i
\(517\) 17.2700 25.8464i 0.0334043 0.0499930i
\(518\) 89.2118 215.376i 0.172224 0.415784i
\(519\) −721.645 298.915i −1.39045 0.575944i
\(520\) 0 0
\(521\) 62.1355 + 312.376i 0.119262 + 0.599570i 0.993477 + 0.114032i \(0.0363765\pi\)
−0.874215 + 0.485539i \(0.838623\pi\)
\(522\) 130.069 86.9092i 0.249174 0.166493i
\(523\) 167.575 + 167.575i 0.320410 + 0.320410i 0.848924 0.528514i \(-0.177251\pi\)
−0.528514 + 0.848924i \(0.677251\pi\)
\(524\) −33.1762 + 166.788i −0.0633133 + 0.318298i
\(525\) 0 0
\(526\) 514.556i 0.978244i
\(527\) −475.696 432.823i −0.902649 0.821296i
\(528\) 328.176 0.621545
\(529\) −366.128 + 151.655i −0.692114 + 0.286683i
\(530\) 0 0
\(531\) −61.2676 + 61.2676i −0.115381 + 0.115381i
\(532\) 49.5079 + 74.0938i 0.0930600 + 0.139274i
\(533\) −111.346 + 22.1481i −0.208904 + 0.0415537i
\(534\) 158.985 237.938i 0.297725 0.445577i
\(535\) 0 0
\(536\) −227.670 94.3039i −0.424757 0.175940i
\(537\) −815.628 544.985i −1.51886 1.01487i
\(538\) −35.0922 176.421i −0.0652272 0.327919i
\(539\) −186.106 + 124.352i −0.345279 + 0.230708i
\(540\) 0 0
\(541\) 51.6826 259.826i 0.0955316 0.480270i −0.903168 0.429287i \(-0.858765\pi\)
0.998700 0.0509824i \(-0.0162352\pi\)
\(542\) 257.435 + 621.502i 0.474972 + 1.14668i
\(543\) 552.466i 1.01743i
\(544\) −232.923 35.0111i −0.428167 0.0643586i
\(545\) 0 0
\(546\) 90.6899 37.5650i 0.166099 0.0688003i
\(547\) −353.859 70.3869i −0.646909 0.128678i −0.139278 0.990253i \(-0.544478\pi\)
−0.507630 + 0.861575i \(0.669478\pi\)
\(548\) 33.0075 33.0075i 0.0602326 0.0602326i
\(549\) 290.453 + 434.694i 0.529058 + 0.791792i
\(550\) 0 0
\(551\) 164.486 246.170i 0.298522 0.446770i
\(552\) 153.803 371.313i 0.278629 0.672669i
\(553\) 81.1445 + 33.6111i 0.146735 + 0.0607797i
\(554\) 98.6630 + 65.9245i 0.178092 + 0.118997i
\(555\) 0 0
\(556\) 38.5481 25.7570i 0.0693312 0.0463256i
\(557\) 367.145 + 367.145i 0.659147 + 0.659147i 0.955178 0.296031i \(-0.0956632\pi\)
−0.296031 + 0.955178i \(0.595663\pi\)
\(558\) 96.1164 483.210i 0.172252 0.865968i
\(559\) 4.47192 + 10.7962i 0.00799986 + 0.0193134i
\(560\) 0 0
\(561\) −409.027 246.237i −0.729104 0.438926i
\(562\) −665.645 −1.18442
\(563\) −406.232 + 168.267i −0.721549 + 0.298875i −0.713074 0.701089i \(-0.752698\pi\)
−0.00847487 + 0.999964i \(0.502698\pi\)
\(564\) −15.7072 3.12435i −0.0278496 0.00553963i
\(565\) 0 0
\(566\) −291.125 435.699i −0.514355 0.769786i
\(567\) −373.165 + 74.2271i −0.658139 + 0.130912i
\(568\) 164.601 246.342i 0.289790 0.433701i
\(569\) −183.595 + 443.238i −0.322663 + 0.778977i 0.676435 + 0.736503i \(0.263524\pi\)
−0.999098 + 0.0424747i \(0.986476\pi\)
\(570\) 0 0
\(571\) 452.464 + 302.327i 0.792406 + 0.529469i 0.884643 0.466268i \(-0.154402\pi\)
−0.0922371 + 0.995737i \(0.529402\pi\)
\(572\) 4.01605 + 20.1901i 0.00702107 + 0.0352973i
\(573\) −586.464 + 391.863i −1.02350 + 0.683879i
\(574\) −172.728 172.728i −0.300920 0.300920i
\(575\) 0 0
\(576\) −201.004 485.266i −0.348965 0.842476i
\(577\) 304.419i 0.527589i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(578\) −393.129 325.184i −0.680154 0.562602i
\(579\) −759.470 −1.31169
\(580\) 0 0
\(581\) −455.737 90.6517i −0.784400 0.156027i
\(582\) −840.297 + 840.297i −1.44381 + 1.44381i
\(583\) 118.484 + 177.324i 0.203232 + 0.304158i
\(584\) −792.068 + 157.552i −1.35628 + 0.269781i
\(585\) 0 0
\(586\) −95.3950 + 230.304i −0.162790 + 0.393010i
\(587\) 589.834 + 244.317i 1.00483 + 0.416213i 0.823565 0.567221i \(-0.191982\pi\)
0.181263 + 0.983435i \(0.441982\pi\)
\(588\) 95.8804 + 64.0652i 0.163062 + 0.108954i
\(589\) −181.911 914.531i −0.308848 1.55268i
\(590\) 0 0
\(591\) 821.644 + 821.644i 1.39026 + 1.39026i
\(592\) −73.5639 + 369.831i −0.124263 + 0.624714i
\(593\) −246.104 594.149i −0.415016 1.00194i −0.983771 0.179430i \(-0.942575\pi\)
0.568755 0.822507i \(-0.307425\pi\)
\(594\) 80.4708i 0.135473i
\(595\) 0 0
\(596\) −45.7258 −0.0767211
\(597\) 342.460 141.852i 0.573636 0.237608i
\(598\) −66.9697 13.3211i −0.111990 0.0222761i
\(599\) 354.327 354.327i 0.591530 0.591530i −0.346514 0.938045i \(-0.612635\pi\)
0.938045 + 0.346514i \(0.112635\pi\)
\(600\) 0 0
\(601\) 558.804 111.153i 0.929791 0.184947i 0.293114 0.956078i \(-0.405309\pi\)
0.636677 + 0.771131i \(0.280309\pi\)
\(602\) −13.9692 + 20.9064i −0.0232046 + 0.0347282i
\(603\) −80.6936 + 194.812i −0.133820 + 0.323071i
\(604\) 196.157 + 81.2510i 0.324764 + 0.134521i
\(605\) 0 0
\(606\) −173.444 871.961i −0.286211 1.43888i
\(607\) −150.811 + 100.769i −0.248454 + 0.166011i −0.673561 0.739131i \(-0.735236\pi\)
0.425108 + 0.905143i \(0.360236\pi\)
\(608\) −241.474 241.474i −0.397162 0.397162i
\(609\) −38.8094 + 195.108i −0.0637265 + 0.320375i
\(610\) 0 0
\(611\) 15.0396i 0.0246147i
\(612\) −16.4688 + 109.564i −0.0269098 + 0.179026i
\(613\) 155.196 0.253174 0.126587 0.991956i \(-0.459598\pi\)
0.126587 + 0.991956i \(0.459598\pi\)
\(614\) 423.470 175.407i 0.689691 0.285679i
\(615\) 0 0
\(616\) −173.125 + 173.125i −0.281047 + 0.281047i
\(617\) −259.673 388.627i −0.420863 0.629866i 0.559087 0.829109i \(-0.311152\pi\)
−0.979950 + 0.199243i \(0.936152\pi\)
\(618\) 1226.79 244.024i 1.98510 0.394861i
\(619\) 213.158 319.014i 0.344359 0.515370i −0.618352 0.785901i \(-0.712199\pi\)
0.962711 + 0.270531i \(0.0871993\pi\)
\(620\) 0 0
\(621\) 69.9071 + 28.9565i 0.112572 + 0.0466288i
\(622\) 828.054 + 553.288i 1.33128 + 0.889531i
\(623\) 31.9794 + 160.771i 0.0513313 + 0.258060i
\(624\) −132.019 + 88.2122i −0.211569 + 0.141366i
\(625\) 0 0
\(626\) 156.966 789.123i 0.250745 1.26058i
\(627\) −264.892 639.506i −0.422475 1.01995i
\(628\) 237.583i 0.378316i
\(629\) 369.179 405.748i 0.586931 0.645068i
\(630\) 0 0
\(631\) −308.547 + 127.804i −0.488980 + 0.202542i −0.613531 0.789671i \(-0.710251\pi\)
0.124550 + 0.992213i \(0.460251\pi\)
\(632\) −181.474 36.0974i −0.287142 0.0571162i
\(633\) −103.471 + 103.471i −0.163462 + 0.163462i
\(634\) 325.560 + 487.236i 0.513502 + 0.768511i
\(635\) 0 0
\(636\) 61.0423 91.3563i 0.0959785 0.143642i
\(637\) 41.4415 100.049i 0.0650573 0.157062i
\(638\) 135.960 + 56.3163i 0.213103 + 0.0882701i
\(639\) −210.789 140.845i −0.329873 0.220414i
\(640\) 0 0
\(641\) −798.746 + 533.705i −1.24609 + 0.832613i −0.990942 0.134289i \(-0.957125\pi\)
−0.255151 + 0.966901i \(0.582125\pi\)
\(642\) 201.392 + 201.392i 0.313695 + 0.313695i
\(643\) 204.305 1027.11i 0.317737 1.59737i −0.410376 0.911917i \(-0.634602\pi\)
0.728113 0.685457i \(-0.240398\pi\)
\(644\) 15.9385 + 38.4791i 0.0247493 + 0.0597501i
\(645\) 0 0
\(646\) −178.345 717.877i −0.276076 1.11127i
\(647\) −328.253 −0.507346 −0.253673 0.967290i \(-0.581639\pi\)
−0.253673 + 0.967290i \(0.581639\pi\)
\(648\) 740.523 306.735i 1.14278 0.473356i
\(649\) −79.9443 15.9019i −0.123181 0.0245022i
\(650\) 0 0
\(651\) 348.077 + 520.934i 0.534681 + 0.800206i
\(652\) 33.6220 6.68782i 0.0515674 0.0102574i
\(653\) 27.7006 41.4569i 0.0424206 0.0634869i −0.809653 0.586909i \(-0.800345\pi\)
0.852074 + 0.523422i \(0.175345\pi\)
\(654\) 125.290 302.477i 0.191575 0.462504i
\(655\) 0 0
\(656\) 328.527 + 219.515i 0.500804 + 0.334626i
\(657\) 134.814 + 677.754i 0.205196 + 1.03159i
\(658\) −26.9067 + 17.9785i −0.0408917 + 0.0273229i
\(659\) 61.2456 + 61.2456i 0.0929371 + 0.0929371i 0.752047 0.659110i \(-0.229067\pi\)
−0.659110 + 0.752047i \(0.729067\pi\)
\(660\) 0 0
\(661\) −314.044 758.170i −0.475105 1.14700i −0.961879 0.273476i \(-0.911827\pi\)
0.486774 0.873528i \(-0.338173\pi\)
\(662\) 1040.69i 1.57205i
\(663\) 230.731 10.8881i 0.348011 0.0164225i
\(664\) 978.896 1.47424
\(665\) 0 0
\(666\) 412.157 + 81.9831i 0.618854 + 0.123098i
\(667\) 97.8470 97.8470i 0.146697 0.146697i
\(668\) −17.6837 26.4655i −0.0264726 0.0396190i
\(669\) 1599.94 318.248i 2.39154 0.475707i
\(670\) 0 0
\(671\) −188.211 + 454.381i −0.280493 + 0.677170i
\(672\) 211.989 + 87.8088i 0.315460 + 0.130668i
\(673\) 457.164 + 305.467i 0.679293 + 0.453889i 0.846751 0.531990i \(-0.178556\pi\)
−0.167457 + 0.985879i \(0.553556\pi\)
\(674\) 112.824 + 567.203i 0.167394 + 0.841548i
\(675\) 0 0
\(676\) 98.5342 + 98.5342i 0.145761 + 0.145761i
\(677\) 105.702 531.400i 0.156133 0.784933i −0.820772 0.571257i \(-0.806456\pi\)
0.976904 0.213677i \(-0.0685439\pi\)
\(678\) −511.910 1235.86i −0.755030 1.82280i
\(679\) 680.714i 1.00252i
\(680\) 0 0
\(681\) 510.884 0.750197
\(682\) 428.199 177.366i 0.627857 0.260067i
\(683\) −388.402 77.2580i −0.568671 0.113116i −0.0976233 0.995223i \(-0.531124\pi\)
−0.471048 + 0.882108i \(0.656124\pi\)
\(684\) −113.587 + 113.587i −0.166062 + 0.166062i
\(685\) 0 0
\(686\) 575.727 114.519i 0.839252 0.166938i
\(687\) 276.410 413.677i 0.402344 0.602150i
\(688\) 15.5639 37.5745i 0.0226219 0.0546142i
\(689\) −95.3279 39.4861i −0.138357 0.0573093i
\(690\) 0 0
\(691\) 182.146 + 915.708i 0.263597 + 1.32519i 0.854921 + 0.518758i \(0.173605\pi\)
−0.591324 + 0.806434i \(0.701395\pi\)
\(692\) −141.787 + 94.7388i −0.204894 + 0.136906i
\(693\) 148.139 + 148.139i 0.213764 + 0.213764i
\(694\) −83.3681 + 419.120i −0.120127 + 0.603919i
\(695\) 0 0
\(696\) 419.081i 0.602128i
\(697\) −244.758 520.097i −0.351160 0.746193i
\(698\) 887.929 1.27210
\(699\) 224.864 93.1416i 0.321693 0.133250i
\(700\) 0 0
\(701\) −411.177 + 411.177i −0.586558 + 0.586558i −0.936697 0.350140i \(-0.886134\pi\)
0.350140 + 0.936697i \(0.386134\pi\)
\(702\) −21.6302 32.3718i −0.0308122 0.0461137i
\(703\) 780.055 155.163i 1.10961 0.220715i
\(704\) 274.519 410.846i 0.389941 0.583588i
\(705\) 0 0
\(706\) 533.494 + 220.980i 0.755657 + 0.313003i
\(707\) 423.435 + 282.930i 0.598918 + 0.400184i
\(708\) 8.19257 + 41.1868i 0.0115714 + 0.0581735i
\(709\) 967.198 646.261i 1.36417 0.911511i 0.364367 0.931255i \(-0.381285\pi\)
0.999805 + 0.0197449i \(0.00628541\pi\)
\(710\) 0 0
\(711\) −30.8877 + 155.283i −0.0434426 + 0.218401i
\(712\) −132.151 319.041i −0.185605 0.448091i
\(713\) 435.811i 0.611235i
\(714\) 295.298 + 399.776i 0.413583 + 0.559910i
\(715\) 0 0
\(716\) −197.853 + 81.9532i −0.276330 + 0.114460i
\(717\) 1134.84 + 225.734i 1.58276 + 0.314831i
\(718\) −663.338 + 663.338i −0.923869 + 0.923869i
\(719\) −8.24905 12.3456i −0.0114729 0.0171705i 0.825689 0.564126i \(-0.190787\pi\)
−0.837162 + 0.546955i \(0.815787\pi\)
\(720\) 0 0
\(721\) −398.064 + 595.745i −0.552100 + 0.826276i
\(722\) 166.526 402.030i 0.230646 0.556828i
\(723\) −464.864 192.553i −0.642966 0.266325i
\(724\) 100.284 + 67.0078i 0.138514 + 0.0925522i
\(725\) 0 0
\(726\) −432.682 + 289.109i −0.595981 + 0.398222i
\(727\) 880.136 + 880.136i 1.21064 + 1.21064i 0.970816 + 0.239825i \(0.0770901\pi\)
0.239825 + 0.970816i \(0.422910\pi\)
\(728\) 23.1096 116.180i 0.0317440 0.159588i
\(729\) −170.915 412.626i −0.234452 0.566017i
\(730\) 0 0
\(731\) −47.5913 + 35.1537i −0.0651044 + 0.0480899i
\(732\) 253.382 0.346150
\(733\) −503.915 + 208.728i −0.687469 + 0.284759i −0.698945 0.715175i \(-0.746347\pi\)
0.0114762 + 0.999934i \(0.496347\pi\)
\(734\) 573.199 + 114.016i 0.780925 + 0.155336i
\(735\) 0 0
\(736\) −88.6744 132.711i −0.120482 0.180313i
\(737\) −194.555 + 38.6993i −0.263982 + 0.0525092i
\(738\) 244.638 366.126i 0.331488 0.496106i
\(739\) −63.1371 + 152.427i −0.0854359 + 0.206261i −0.960823 0.277161i \(-0.910606\pi\)
0.875387 + 0.483422i \(0.160606\pi\)
\(740\) 0 0
\(741\) 278.457 + 186.059i 0.375786 + 0.251092i
\(742\) −43.3130 217.749i −0.0583733 0.293462i
\(743\) −1.91687 + 1.28081i −0.00257991 + 0.00172384i −0.556860 0.830607i \(-0.687994\pi\)
0.554280 + 0.832331i \(0.312994\pi\)
\(744\) −933.294 933.294i −1.25443 1.25443i
\(745\) 0 0
\(746\) −99.8879 241.151i −0.133898 0.323258i
\(747\) 837.618i 1.12131i
\(748\) −94.3076 + 44.3813i −0.126080 + 0.0593333i
\(749\) −163.145 −0.217817
\(750\) 0 0
\(751\) −1414.78 281.416i −1.88386 0.374722i −0.887559 0.460695i \(-0.847600\pi\)
−0.996298 + 0.0859723i \(0.972600\pi\)
\(752\) 37.0123 37.0123i 0.0492184 0.0492184i
\(753\) 316.924 + 474.310i 0.420881 + 0.629894i
\(754\) −69.8315 + 13.8904i −0.0926148 + 0.0184222i
\(755\) 0 0
\(756\) −9.08793 + 21.9402i −0.0120211 + 0.0290214i
\(757\) 278.634 + 115.414i 0.368077 + 0.152463i 0.559052 0.829132i \(-0.311165\pi\)
−0.190975 + 0.981595i \(0.561165\pi\)
\(758\) 64.1215 + 42.8446i 0.0845931 + 0.0565233i
\(759\) −63.1158 317.305i −0.0831566 0.418056i
\(760\) 0 0
\(761\) −811.549 811.549i −1.06642 1.06642i −0.997631 0.0687929i \(-0.978085\pi\)
−0.0687929 0.997631i \(-0.521915\pi\)
\(762\) −57.2441 + 287.786i −0.0751235 + 0.377671i
\(763\) 71.7685 + 173.265i 0.0940610 + 0.227083i
\(764\) 153.984i 0.201550i
\(765\) 0 0
\(766\) −348.859 −0.455429
\(767\) 36.4344 15.0916i 0.0475025 0.0196762i
\(768\) −638.005 126.907i −0.830736 0.165244i
\(769\) 870.130 870.130i 1.13151 1.13151i 0.141582 0.989927i \(-0.454781\pi\)
0.989927 0.141582i \(-0.0452189\pi\)
\(770\) 0 0
\(771\) 1559.90 310.284i 2.02322 0.402444i
\(772\) −92.1150 + 137.860i −0.119320 + 0.178575i
\(773\) −541.282 + 1306.77i −0.700235 + 1.69052i 0.0228308 + 0.999739i \(0.492732\pi\)
−0.723066 + 0.690779i \(0.757268\pi\)
\(774\) −41.8749 17.3451i −0.0541019 0.0224098i
\(775\) 0 0
\(776\) 279.767 + 1406.49i 0.360525 + 1.81248i
\(777\) −444.334 + 296.895i −0.571859 + 0.382104i
\(778\) 26.8308 + 26.8308i 0.0344869 + 0.0344869i
\(779\) 162.586 817.375i 0.208711 1.04926i
\(780\) 0 0
\(781\) 238.490i 0.305365i
\(782\) −16.2964 345.339i −0.0208393 0.441610i
\(783\) 78.9004 0.100767
\(784\) −348.205 + 144.231i −0.444139 + 0.183969i
\(785\) 0 0
\(786\) −972.366 + 972.366i −1.23711 + 1.23711i
\(787\) −857.112 1282.76i −1.08909 1.62994i −0.709375 0.704831i \(-0.751023\pi\)
−0.379713 0.925104i \(-0.623977\pi\)
\(788\) 248.802 49.4897i 0.315738 0.0628042i
\(789\) −655.319 + 980.754i −0.830569 + 1.24303i
\(790\) 0 0
\(791\) 707.924 + 293.232i 0.894973 + 0.370710i
\(792\) −366.967 245.199i −0.463342 0.309595i
\(793\) −46.4220 233.379i −0.0585397 0.294299i
\(794\) 52.0749 34.7954i 0.0655856 0.0438229i
\(795\) 0 0
\(796\) 15.7874 79.3688i 0.0198335 0.0997095i
\(797\) 430.853 + 1040.17i 0.540593 + 1.30511i 0.924305 + 0.381654i \(0.124645\pi\)
−0.383712 + 0.923453i \(0.625355\pi\)
\(798\) 720.593i 0.902998i
\(799\) −73.9019 + 18.3597i −0.0924930 + 0.0229784i
\(800\) 0 0
\(801\) −272.996 + 113.079i −0.340819 + 0.141172i
\(802\) −258.963 51.5110i −0.322897 0.0642281i
\(803\) −459.675 + 459.675i −0.572448 + 0.572448i
\(804\) 56.7776 + 84.9737i 0.0706189 + 0.105689i
\(805\) 0 0
\(806\) −124.581 + 186.449i −0.154567 + 0.231326i
\(807\) −157.796 + 380.953i −0.195534 + 0.472061i
\(808\) −991.179 410.560i −1.22671 0.508119i
\(809\) −273.249 182.579i −0.337761 0.225685i 0.375109 0.926981i \(-0.377605\pi\)
−0.712870 + 0.701296i \(0.752605\pi\)
\(810\) 0 0
\(811\) −242.645 + 162.131i −0.299193 + 0.199914i −0.696101 0.717944i \(-0.745083\pi\)
0.396908 + 0.917859i \(0.370083\pi\)
\(812\) 30.7091 + 30.7091i 0.0378191 + 0.0378191i
\(813\) 300.846 1512.45i 0.370044 1.86034i
\(814\) 151.285 + 365.235i 0.185854 + 0.448692i
\(815\) 0 0
\(816\) −594.622 541.031i −0.728703 0.663028i
\(817\) −85.7829 −0.104997
\(818\) −650.588 + 269.482i −0.795340 + 0.329441i
\(819\) −99.4124 19.7743i −0.121383 0.0241445i
\(820\) 0 0
\(821\) −600.209 898.276i −0.731070 1.09412i −0.991686 0.128681i \(-0.958926\pi\)
0.260616 0.965443i \(-0.416074\pi\)
\(822\) 370.216 73.6406i 0.450385 0.0895871i
\(823\) −50.4221 + 75.4620i −0.0612662 + 0.0916914i −0.860838 0.508879i \(-0.830060\pi\)
0.799572 + 0.600571i \(0.205060\pi\)
\(824\) 577.631 1394.52i 0.701008 1.69238i
\(825\) 0 0
\(826\) 70.5539 + 47.1426i 0.0854163 + 0.0570733i
\(827\) 94.8310 + 476.748i 0.114669 + 0.576479i 0.994809 + 0.101764i \(0.0324487\pi\)
−0.880140 + 0.474715i \(0.842551\pi\)
\(828\) −62.4255 + 41.7114i −0.0753931 + 0.0503760i
\(829\) 743.445 + 743.445i 0.896797 + 0.896797i 0.995151 0.0983544i \(-0.0313579\pi\)
−0.0983544 + 0.995151i \(0.531358\pi\)
\(830\) 0 0
\(831\) −104.095 251.307i −0.125264 0.302415i
\(832\) 239.065i 0.287338i
\(833\) 542.211 + 81.5008i 0.650914 + 0.0978401i
\(834\) 374.896 0.449516
\(835\) 0 0
\(836\) −148.212 29.4812i −0.177287 0.0352646i
\(837\) 175.711 175.711i 0.209930 0.209930i
\(838\) 36.6811 + 54.8971i 0.0437722 + 0.0655097i
\(839\) −449.855 + 89.4817i −0.536180 + 0.106653i −0.455751 0.890108i \(-0.650629\pi\)
−0.0804292 + 0.996760i \(0.525629\pi\)
\(840\) 0 0
\(841\) −266.619 + 643.676i −0.317027 + 0.765370i
\(842\) 721.276 + 298.762i 0.856622 + 0.354824i
\(843\) 1268.73 + 847.739i 1.50502 + 1.00562i
\(844\) 6.23235 + 31.3321i 0.00738430 + 0.0371234i
\(845\) 0 0
\(846\) −41.2482 41.2482i −0.0487568 0.0487568i
\(847\) 58.1534 292.357i 0.0686581 0.345167i
\(848\) 137.426 + 331.775i 0.162059 + 0.391244i
\(849\) 1201.22i 1.41486i
\(850\) 0 0
\(851\) 371.728 0.436813
\(852\) −113.516 + 47.0197i −0.133234 + 0.0551875i
\(853\) −7.38457 1.46888i −0.00865717 0.00172202i 0.190760 0.981637i \(-0.438905\pi\)
−0.199417 + 0.979915i \(0.563905\pi\)
\(854\) 362.035 362.035i 0.423929 0.423929i
\(855\) 0 0
\(856\) 337.089 67.0512i 0.393796 0.0783309i
\(857\) 28.1682 42.1566i 0.0328683 0.0491910i −0.814672 0.579923i \(-0.803083\pi\)
0.847540 + 0.530732i \(0.178083\pi\)
\(858\) −63.7026 + 153.792i −0.0742455 + 0.179244i
\(859\) −464.849 192.547i −0.541151 0.224152i 0.0953281 0.995446i \(-0.469610\pi\)
−0.636479 + 0.771294i \(0.719610\pi\)
\(860\) 0 0
\(861\) 109.243 + 549.204i 0.126880 + 0.637867i
\(862\) −509.190 + 340.230i −0.590708 + 0.394698i
\(863\) 98.9573 + 98.9573i 0.114667 + 0.114667i 0.762112 0.647445i \(-0.224163\pi\)
−0.647445 + 0.762112i \(0.724163\pi\)
\(864\) 17.7546 89.2585i 0.0205493 0.103309i
\(865\) 0 0
\(866\) 94.8830i 0.109565i
\(867\) 335.169 + 1120.48i 0.386585 + 1.29237i
\(868\) 136.778 0.157579
\(869\) −137.605 + 56.9977i −0.158348 + 0.0655900i
\(870\) 0 0
\(871\) 67.8634 67.8634i 0.0779143 0.0779143i
\(872\) −219.498 328.502i −0.251718 0.376722i
\(873\) 1203.50 239.390i 1.37858 0.274216i
\(874\) 278.477 416.771i 0.318624 0.476855i
\(875\) 0 0
\(876\) 309.423 + 128.167i 0.353222 + 0.146309i
\(877\) −789.554 527.563i −0.900289 0.601554i 0.0169652 0.999856i \(-0.494600\pi\)
−0.917254 + 0.398302i \(0.869600\pi\)
\(878\) −83.7792 421.187i −0.0954205 0.479711i
\(879\) 475.131 317.472i 0.540536 0.361174i
\(880\) 0 0
\(881\) 204.085 1026.00i 0.231651 1.16459i −0.673398 0.739280i \(-0.735166\pi\)
0.905049 0.425308i \(-0.139834\pi\)
\(882\) 160.738 + 388.057i 0.182243 + 0.439974i
\(883\) 1264.99i 1.43261i −0.697789 0.716303i \(-0.745833\pi\)
0.697789 0.716303i \(-0.254167\pi\)
\(884\) 26.0086 43.2032i 0.0294215 0.0488724i
\(885\) 0 0
\(886\) 186.898 77.4157i 0.210946 0.0873766i
\(887\) −766.671 152.500i −0.864341 0.171928i −0.257041 0.966401i \(-0.582747\pi\)
−0.607300 + 0.794472i \(0.707747\pi\)
\(888\) 796.059 796.059i 0.896463 0.896463i
\(889\) −93.3794 139.752i −0.105039 0.157201i
\(890\) 0 0
\(891\) 358.459 536.472i 0.402311 0.602101i
\(892\) 136.286 329.023i 0.152787 0.368860i
\(893\) −102.000 42.2496i −0.114221 0.0473120i
\(894\) −307.441 205.425i −0.343894 0.229782i
\(895\) 0 0
\(896\) −239.124 + 159.777i −0.266879 + 0.178323i
\(897\) 110.680 + 110.680i 0.123389 + 0.123389i
\(898\) −187.081 + 940.519i −0.208331 + 1.04735i
\(899\) −173.904 419.842i −0.193442 0.467010i
\(900\) 0 0
\(901\) 77.6552 516.627i 0.0861878 0.573393i
\(902\) 414.241 0.459247
\(903\) 53.2511 22.0573i 0.0589713 0.0244267i
\(904\) −1583.22 314.922i −1.75135 0.348365i
\(905\) 0 0
\(906\) 953.854 + 1427.54i 1.05282 + 1.57566i
\(907\) 366.570 72.9154i 0.404157 0.0803918i 0.0111739 0.999938i \(-0.496443\pi\)
0.392983 + 0.919546i \(0.371443\pi\)
\(908\) 61.9644 92.7363i 0.0682428 0.102133i
\(909\) −351.306 + 848.129i −0.386476 + 0.933035i
\(910\) 0 0
\(911\) −101.362 67.7280i −0.111265 0.0743447i 0.498693 0.866779i \(-0.333814\pi\)
−0.609958 + 0.792434i \(0.708814\pi\)
\(912\) −227.390 1143.17i −0.249331 1.25347i
\(913\) 655.180 437.777i 0.717612 0.479493i
\(914\) 280.276 + 280.276i 0.306647 + 0.306647i
\(915\) 0 0
\(916\) −41.5657 100.349i −0.0453774 0.109551i
\(917\) 787.702i 0.858999i
\(918\) 132.664 145.805i 0.144514 0.158829i
\(919\) 1592.00 1.73232 0.866158 0.499770i \(-0.166582\pi\)
0.866158 + 0.499770i \(0.166582\pi\)
\(920\) 0 0
\(921\) −1030.53 204.986i −1.11893 0.222569i
\(922\) −314.913 + 314.913i −0.341555 + 0.341555i
\(923\) 64.1050 + 95.9399i 0.0694528 + 0.103944i
\(924\) 99.5855 19.8088i 0.107777 0.0214381i
\(925\) 0 0
\(926\) −84.6976 + 204.478i −0.0914661 + 0.220819i
\(927\) −1193.26 494.265i −1.28723 0.533188i
\(928\) −138.382 92.4638i −0.149118 0.0996377i
\(929\) −132.478 666.010i −0.142602 0.716910i −0.984236 0.176861i \(-0.943406\pi\)
0.841633 0.540049i \(-0.181594\pi\)
\(930\) 0 0
\(931\) 562.118 + 562.118i 0.603778 + 0.603778i
\(932\) 10.3662 52.1145i 0.0111226 0.0559169i
\(933\) −873.641 2109.16i −0.936378 2.26062i
\(934\) 1223.18i 1.30961i
\(935\) 0 0
\(936\) 213.532 0.228133
\(937\) −271.967 + 112.652i −0.290253 + 0.120227i −0.523059 0.852296i \(-0.675209\pi\)
0.232806 + 0.972523i \(0.425209\pi\)
\(938\) 202.536 + 40.2869i 0.215923 + 0.0429498i
\(939\) −1304.18 + 1304.18i −1.38890 + 1.38890i
\(940\) 0 0
\(941\) 819.035 162.916i 0.870388 0.173131i 0.260361 0.965511i \(-0.416159\pi\)
0.610027 + 0.792381i \(0.291159\pi\)
\(942\) −1067.35 + 1597.41i −1.13307 + 1.69576i
\(943\) 149.060 359.862i 0.158070 0.381614i
\(944\) −126.805 52.5243i −0.134327 0.0556402i
\(945\) 0 0
\(946\) −8.31845 41.8196i −0.00879328 0.0442068i
\(947\) −517.880 + 346.036i −0.546864 + 0.365403i −0.798102 0.602523i \(-0.794162\pi\)
0.251238 + 0.967925i \(0.419162\pi\)
\(948\) 54.2592 + 54.2592i 0.0572355 + 0.0572355i
\(949\) 61.3599 308.477i 0.0646575 0.325055i
\(950\) 0 0
\(951\) 1343.30i 1.41252i
\(952\) 599.098 28.2711i 0.629305 0.0296966i
\(953\) 373.214 0.391620 0.195810 0.980642i \(-0.437266\pi\)
0.195810 + 0.980642i \(0.437266\pi\)
\(954\) 369.746 153.154i 0.387575 0.160539i
\(955\) 0 0
\(956\) 178.619 178.619i 0.186840 0.186840i
\(957\) −187.419 280.493i −0.195841 0.293096i
\(958\) 828.832 164.865i 0.865169 0.172093i
\(959\) −120.126 + 179.781i −0.125262 + 0.187468i
\(960\) 0 0
\(961\) −434.426 179.945i −0.452056 0.187248i
\(962\) −159.033 106.262i −0.165315 0.110460i
\(963\) −57.3741 288.439i −0.0595786 0.299522i
\(964\) −91.3352 + 61.0282i −0.0947460 + 0.0633073i
\(965\) 0 0
\(966\) −65.7051 + 330.322i −0.0680177 + 0.341948i
\(967\) 392.472 + 947.512i 0.405866 + 0.979847i 0.986213 + 0.165478i \(0.0529167\pi\)
−0.580348 + 0.814369i \(0.697083\pi\)
\(968\) 627.966i 0.648725i
\(969\) −574.332 + 1595.42i −0.592706 + 1.64646i
\(970\) 0 0
\(971\) 909.171 376.591i 0.936325 0.387838i 0.138250 0.990397i \(-0.455852\pi\)
0.798074 + 0.602559i \(0.205852\pi\)
\(972\) −274.797 54.6605i −0.282713 0.0562351i
\(973\) −151.849 + 151.849i −0.156063 + 0.156063i
\(974\) −397.869 595.453i −0.408490 0.611348i
\(975\) 0 0
\(976\) −460.099 + 688.586i −0.471413 + 0.705519i
\(977\) −217.809 + 525.837i −0.222936 + 0.538216i −0.995286 0.0969814i \(-0.969081\pi\)
0.772350 + 0.635197i \(0.219081\pi\)
\(978\) 256.105 + 106.082i 0.261866 + 0.108469i
\(979\) −231.129 154.436i −0.236087 0.157748i
\(980\) 0 0
\(981\) −281.091 + 187.819i −0.286535 + 0.191457i
\(982\) −77.4444 77.4444i −0.0788639 0.0788639i
\(983\) 280.516 1410.25i 0.285368 1.43464i −0.526190 0.850367i \(-0.676380\pi\)
0.811558 0.584272i \(-0.198620\pi\)
\(984\) −451.436 1089.86i −0.458776 1.10758i
\(985\) 0 0
\(986\) −153.502 326.183i −0.155682 0.330814i
\(987\) 74.1814 0.0751585
\(988\) 67.5473 27.9790i 0.0683677 0.0283188i
\(989\) −39.3231 7.82186i −0.0397605 0.00790886i
\(990\) 0 0
\(991\) 46.6472 + 69.8125i 0.0470709 + 0.0704465i 0.854259 0.519848i \(-0.174012\pi\)
−0.807188 + 0.590295i \(0.799012\pi\)
\(992\) −514.093 + 102.259i −0.518239 + 0.103084i
\(993\) −1325.39 + 1983.58i −1.33473 + 1.99757i
\(994\) −95.0102 + 229.375i −0.0955837 + 0.230759i
\(995\) 0 0
\(996\) −337.545 225.540i −0.338900 0.226446i
\(997\) 146.965 + 738.843i 0.147407 + 0.741066i 0.981803 + 0.189901i \(0.0608167\pi\)
−0.834396 + 0.551165i \(0.814183\pi\)
\(998\) −753.360 + 503.379i −0.754870 + 0.504388i
\(999\) 149.874 + 149.874i 0.150024 + 0.150024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.3.u.a.326.1 8
5.2 odd 4 425.3.t.d.224.1 8
5.3 odd 4 425.3.t.b.224.1 8
5.4 even 2 17.3.e.b.3.1 8
15.14 odd 2 153.3.p.a.37.1 8
17.6 odd 16 inner 425.3.u.a.176.1 8
20.19 odd 2 272.3.bh.b.241.1 8
85.4 even 4 289.3.e.f.65.1 8
85.9 even 8 289.3.e.n.158.1 8
85.14 odd 16 289.3.e.a.214.1 8
85.19 even 8 289.3.e.e.131.1 8
85.23 even 16 425.3.t.d.74.1 8
85.24 odd 16 289.3.e.h.249.1 8
85.29 odd 16 289.3.e.n.75.1 8
85.39 odd 16 289.3.e.j.75.1 8
85.44 odd 16 289.3.e.f.249.1 8
85.49 even 8 289.3.e.a.131.1 8
85.54 odd 16 289.3.e.e.214.1 8
85.57 even 16 425.3.t.b.74.1 8
85.59 even 8 289.3.e.j.158.1 8
85.64 even 4 289.3.e.h.65.1 8
85.74 odd 16 17.3.e.b.6.1 yes 8
85.79 odd 16 289.3.e.g.40.1 8
85.84 even 2 289.3.e.g.224.1 8
255.74 even 16 153.3.p.a.91.1 8
340.159 even 16 272.3.bh.b.193.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.3.1 8 5.4 even 2
17.3.e.b.6.1 yes 8 85.74 odd 16
153.3.p.a.37.1 8 15.14 odd 2
153.3.p.a.91.1 8 255.74 even 16
272.3.bh.b.193.1 8 340.159 even 16
272.3.bh.b.241.1 8 20.19 odd 2
289.3.e.a.131.1 8 85.49 even 8
289.3.e.a.214.1 8 85.14 odd 16
289.3.e.e.131.1 8 85.19 even 8
289.3.e.e.214.1 8 85.54 odd 16
289.3.e.f.65.1 8 85.4 even 4
289.3.e.f.249.1 8 85.44 odd 16
289.3.e.g.40.1 8 85.79 odd 16
289.3.e.g.224.1 8 85.84 even 2
289.3.e.h.65.1 8 85.64 even 4
289.3.e.h.249.1 8 85.24 odd 16
289.3.e.j.75.1 8 85.39 odd 16
289.3.e.j.158.1 8 85.59 even 8
289.3.e.n.75.1 8 85.29 odd 16
289.3.e.n.158.1 8 85.9 even 8
425.3.t.b.74.1 8 85.57 even 16
425.3.t.b.224.1 8 5.3 odd 4
425.3.t.d.74.1 8 85.23 even 16
425.3.t.d.224.1 8 5.2 odd 4
425.3.u.a.176.1 8 17.6 odd 16 inner
425.3.u.a.326.1 8 1.1 even 1 trivial