Properties

Label 289.3.e.a.214.1
Level $289$
Weight $3$
Character 289.214
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-8,-16,8,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 214.1
Root \(0.382683 + 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.214
Dual form 289.3.e.a.131.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.675577 + 1.63099i) q^{2} +(-3.36482 - 2.24830i) q^{3} +(0.624715 + 0.624715i) q^{4} +(-7.58960 + 1.50967i) q^{5} +(5.94015 - 3.96908i) q^{6} +(-4.01367 - 0.798369i) q^{7} +(-7.96489 + 3.29916i) q^{8} +(2.82302 + 6.81537i) q^{9} +(2.66511 - 13.3984i) q^{10} +(3.85550 + 5.77017i) q^{11} +(-0.697506 - 3.50660i) q^{12} +(-2.37416 + 2.37416i) q^{13} +(4.01367 - 6.00688i) q^{14} +(28.9319 + 11.9840i) q^{15} -11.6855i q^{16} -13.0229 q^{18} +(9.43215 - 22.7712i) q^{19} +(-5.68445 - 3.79823i) q^{20} +(11.7103 + 11.7103i) q^{21} +(-12.0158 + 2.39008i) q^{22} +(9.57836 - 6.40006i) q^{23} +(34.2180 + 6.80638i) q^{24} +(32.2260 - 13.3484i) q^{25} +(-2.26829 - 5.47615i) q^{26} +(-1.28144 + 6.44221i) q^{27} +(-2.00865 - 3.00615i) q^{28} +(2.34344 + 11.7813i) q^{29} +(-39.0914 + 39.0914i) q^{30} +(21.0180 - 31.4557i) q^{31} +(-12.8006 - 5.30218i) q^{32} -28.0839i q^{33} +31.6674 q^{35} +(-2.49408 + 6.02124i) q^{36} +(26.8303 + 17.9275i) q^{37} +(30.7674 + 30.7674i) q^{38} +(13.3265 - 2.65080i) q^{39} +(55.4697 - 37.0637i) q^{40} +(33.1627 + 6.59647i) q^{41} +(-27.0106 + 11.1881i) q^{42} +(1.33189 + 3.21547i) q^{43} +(-1.19612 + 6.01330i) q^{44} +(-31.7145 - 47.4641i) q^{45} +(3.96749 + 19.9459i) q^{46} +(-3.16735 + 3.16735i) q^{47} +(-26.2726 + 39.3198i) q^{48} +(-29.7979 - 12.3427i) q^{49} +61.5781i q^{50} -2.96634 q^{52} +(-11.7603 + 28.3919i) q^{53} +(-9.64145 - 6.44221i) q^{54} +(-37.9728 - 37.9728i) q^{55} +(34.6024 - 6.88284i) q^{56} +(-82.9342 + 55.4148i) q^{57} +(-20.7982 - 4.13703i) q^{58} +(10.8514 - 4.49481i) q^{59} +(10.5876 + 25.5607i) q^{60} +(13.8261 - 69.5084i) q^{61} +(37.1045 + 55.5309i) q^{62} +(-5.88948 - 29.6084i) q^{63} +(50.3473 - 50.3473i) q^{64} +(14.4347 - 21.6031i) q^{65} +(45.8045 + 18.9728i) q^{66} +28.5842i q^{67} -46.6187 q^{69} +(-21.3938 + 51.6491i) q^{70} +(28.5742 + 19.0927i) q^{71} +(-44.9700 - 44.9700i) q^{72} +(-91.8752 + 18.2751i) q^{73} +(-47.3654 + 31.6486i) q^{74} +(-138.446 - 27.5386i) q^{75} +(20.1179 - 8.33312i) q^{76} +(-10.8680 - 26.2377i) q^{77} +(-4.67963 + 23.5261i) q^{78} +(11.9238 + 17.8452i) q^{79} +(17.6413 + 88.6886i) q^{80} +(65.7422 - 65.7422i) q^{81} +(-33.1627 + 49.6315i) q^{82} +(-104.903 - 43.4522i) q^{83} +14.6312i q^{84} -6.14419 q^{86} +(18.6026 - 44.9106i) q^{87} +(-49.7454 - 33.2388i) q^{88} +(28.3238 + 28.3238i) q^{89} +(98.8389 - 19.6603i) q^{90} +(11.4245 - 7.63364i) q^{91} +(9.98195 + 1.98553i) q^{92} +(-141.444 + 58.5880i) q^{93} +(-3.02612 - 7.30570i) q^{94} +(-37.2094 + 187.064i) q^{95} +(31.1508 + 46.6205i) q^{96} +(-32.4513 - 163.144i) q^{97} +(40.2616 - 40.2616i) q^{98} +(-28.4417 + 42.5659i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{2} - 16 q^{3} + 8 q^{4} - 8 q^{5} + 40 q^{6} - 16 q^{7} - 8 q^{8} + 56 q^{9} + 16 q^{10} - 32 q^{12} + 16 q^{14} + 80 q^{15} - 136 q^{18} + 80 q^{19} - 48 q^{20} + 64 q^{21} - 40 q^{22} - 16 q^{23}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{3}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.675577 + 1.63099i −0.337788 + 0.815493i 0.660139 + 0.751143i \(0.270497\pi\)
−0.997927 + 0.0643498i \(0.979503\pi\)
\(3\) −3.36482 2.24830i −1.12161 0.749434i −0.150627 0.988591i \(-0.548129\pi\)
−0.970981 + 0.239156i \(0.923129\pi\)
\(4\) 0.624715 + 0.624715i 0.156179 + 0.156179i
\(5\) −7.58960 + 1.50967i −1.51792 + 0.301933i −0.882529 0.470257i \(-0.844161\pi\)
−0.635391 + 0.772190i \(0.719161\pi\)
\(6\) 5.94015 3.96908i 0.990025 0.661513i
\(7\) −4.01367 0.798369i −0.573381 0.114053i −0.100121 0.994975i \(-0.531923\pi\)
−0.473260 + 0.880923i \(0.656923\pi\)
\(8\) −7.96489 + 3.29916i −0.995611 + 0.412396i
\(9\) 2.82302 + 6.81537i 0.313669 + 0.757263i
\(10\) 2.66511 13.3984i 0.266511 1.33984i
\(11\) 3.85550 + 5.77017i 0.350500 + 0.524561i 0.964269 0.264925i \(-0.0853473\pi\)
−0.613769 + 0.789486i \(0.710347\pi\)
\(12\) −0.697506 3.50660i −0.0581255 0.292217i
\(13\) −2.37416 + 2.37416i −0.182628 + 0.182628i −0.792500 0.609872i \(-0.791221\pi\)
0.609872 + 0.792500i \(0.291221\pi\)
\(14\) 4.01367 6.00688i 0.286691 0.429063i
\(15\) 28.9319 + 11.9840i 1.92879 + 0.798931i
\(16\) 11.6855i 0.730347i
\(17\) 0 0
\(18\) −13.0229 −0.723496
\(19\) 9.43215 22.7712i 0.496429 1.19849i −0.454965 0.890509i \(-0.650348\pi\)
0.951394 0.307977i \(-0.0996519\pi\)
\(20\) −5.68445 3.79823i −0.284222 0.189911i
\(21\) 11.7103 + 11.7103i 0.557634 + 0.557634i
\(22\) −12.0158 + 2.39008i −0.546170 + 0.108640i
\(23\) 9.57836 6.40006i 0.416450 0.278263i −0.329642 0.944106i \(-0.606928\pi\)
0.746092 + 0.665843i \(0.231928\pi\)
\(24\) 34.2180 + 6.80638i 1.42575 + 0.283599i
\(25\) 32.2260 13.3484i 1.28904 0.533938i
\(26\) −2.26829 5.47615i −0.0872421 0.210621i
\(27\) −1.28144 + 6.44221i −0.0474606 + 0.238600i
\(28\) −2.00865 3.00615i −0.0717373 0.107363i
\(29\) 2.34344 + 11.7813i 0.0808082 + 0.406250i 0.999925 + 0.0122647i \(0.00390406\pi\)
−0.919117 + 0.393986i \(0.871096\pi\)
\(30\) −39.0914 + 39.0914i −1.30305 + 1.30305i
\(31\) 21.0180 31.4557i 0.678001 1.01470i −0.319739 0.947506i \(-0.603595\pi\)
0.997740 0.0671946i \(-0.0214048\pi\)
\(32\) −12.8006 5.30218i −0.400019 0.165693i
\(33\) 28.0839i 0.851028i
\(34\) 0 0
\(35\) 31.6674 0.904784
\(36\) −2.49408 + 6.02124i −0.0692800 + 0.167257i
\(37\) 26.8303 + 17.9275i 0.725145 + 0.484526i 0.862539 0.505990i \(-0.168873\pi\)
−0.137395 + 0.990516i \(0.543873\pi\)
\(38\) 30.7674 + 30.7674i 0.809669 + 0.809669i
\(39\) 13.3265 2.65080i 0.341704 0.0679691i
\(40\) 55.4697 37.0637i 1.38674 0.926592i
\(41\) 33.1627 + 6.59647i 0.808846 + 0.160890i 0.582156 0.813077i \(-0.302209\pi\)
0.226691 + 0.973967i \(0.427209\pi\)
\(42\) −27.0106 + 11.1881i −0.643109 + 0.266384i
\(43\) 1.33189 + 3.21547i 0.0309742 + 0.0747784i 0.938610 0.344981i \(-0.112115\pi\)
−0.907636 + 0.419759i \(0.862115\pi\)
\(44\) −1.19612 + 6.01330i −0.0271845 + 0.136666i
\(45\) −31.7145 47.4641i −0.704767 1.05476i
\(46\) 3.96749 + 19.9459i 0.0862497 + 0.433607i
\(47\) −3.16735 + 3.16735i −0.0673905 + 0.0673905i −0.739999 0.672608i \(-0.765174\pi\)
0.672608 + 0.739999i \(0.265174\pi\)
\(48\) −26.2726 + 39.3198i −0.547347 + 0.819162i
\(49\) −29.7979 12.3427i −0.608121 0.251892i
\(50\) 61.5781i 1.23156i
\(51\) 0 0
\(52\) −2.96634 −0.0570451
\(53\) −11.7603 + 28.3919i −0.221893 + 0.535697i −0.995147 0.0983994i \(-0.968628\pi\)
0.773254 + 0.634096i \(0.218628\pi\)
\(54\) −9.64145 6.44221i −0.178545 0.119300i
\(55\) −37.9728 37.9728i −0.690414 0.690414i
\(56\) 34.6024 6.88284i 0.617900 0.122908i
\(57\) −82.9342 + 55.4148i −1.45499 + 0.972190i
\(58\) −20.7982 4.13703i −0.358590 0.0713281i
\(59\) 10.8514 4.49481i 0.183923 0.0761832i −0.288822 0.957383i \(-0.593263\pi\)
0.472744 + 0.881200i \(0.343263\pi\)
\(60\) 10.5876 + 25.5607i 0.176460 + 0.426012i
\(61\) 13.8261 69.5084i 0.226657 1.13948i −0.685004 0.728539i \(-0.740200\pi\)
0.911661 0.410942i \(-0.134800\pi\)
\(62\) 37.1045 + 55.5309i 0.598460 + 0.895659i
\(63\) −5.88948 29.6084i −0.0934839 0.469975i
\(64\) 50.3473 50.3473i 0.786676 0.786676i
\(65\) 14.4347 21.6031i 0.222073 0.332356i
\(66\) 45.8045 + 18.9728i 0.694008 + 0.287467i
\(67\) 28.5842i 0.426629i 0.976984 + 0.213315i \(0.0684260\pi\)
−0.976984 + 0.213315i \(0.931574\pi\)
\(68\) 0 0
\(69\) −46.6187 −0.675634
\(70\) −21.3938 + 51.6491i −0.305625 + 0.737845i
\(71\) 28.5742 + 19.0927i 0.402454 + 0.268911i 0.740282 0.672297i \(-0.234692\pi\)
−0.337828 + 0.941208i \(0.609692\pi\)
\(72\) −44.9700 44.9700i −0.624584 0.624584i
\(73\) −91.8752 + 18.2751i −1.25856 + 0.250344i −0.778922 0.627120i \(-0.784233\pi\)
−0.479642 + 0.877464i \(0.659233\pi\)
\(74\) −47.3654 + 31.6486i −0.640073 + 0.427683i
\(75\) −138.446 27.5386i −1.84595 0.367182i
\(76\) 20.1179 8.33312i 0.264710 0.109646i
\(77\) −10.8680 26.2377i −0.141143 0.340749i
\(78\) −4.67963 + 23.5261i −0.0599952 + 0.301616i
\(79\) 11.9238 + 17.8452i 0.150934 + 0.225889i 0.899230 0.437476i \(-0.144128\pi\)
−0.748296 + 0.663365i \(0.769128\pi\)
\(80\) 17.6413 + 88.6886i 0.220516 + 1.10861i
\(81\) 65.7422 65.7422i 0.811632 0.811632i
\(82\) −33.1627 + 49.6315i −0.404423 + 0.605262i
\(83\) −104.903 43.4522i −1.26389 0.523521i −0.352789 0.935703i \(-0.614767\pi\)
−0.911102 + 0.412182i \(0.864767\pi\)
\(84\) 14.6312i 0.174181i
\(85\) 0 0
\(86\) −6.14419 −0.0714440
\(87\) 18.6026 44.9106i 0.213823 0.516214i
\(88\) −49.7454 33.2388i −0.565288 0.377714i
\(89\) 28.3238 + 28.3238i 0.318245 + 0.318245i 0.848093 0.529848i \(-0.177751\pi\)
−0.529848 + 0.848093i \(0.677751\pi\)
\(90\) 98.8389 19.6603i 1.09821 0.218448i
\(91\) 11.4245 7.63364i 0.125544 0.0838861i
\(92\) 9.98195 + 1.98553i 0.108499 + 0.0215819i
\(93\) −141.444 + 58.5880i −1.52090 + 0.629978i
\(94\) −3.02612 7.30570i −0.0321928 0.0777202i
\(95\) −37.2094 + 187.064i −0.391677 + 1.96910i
\(96\) 31.1508 + 46.6205i 0.324488 + 0.485630i
\(97\) −32.4513 163.144i −0.334550 1.68190i −0.671999 0.740552i \(-0.734564\pi\)
0.337449 0.941344i \(-0.390436\pi\)
\(98\) 40.2616 40.2616i 0.410833 0.410833i
\(99\) −28.4417 + 42.5659i −0.287289 + 0.429959i
\(100\) 28.4710 + 11.7931i 0.284710 + 0.117931i
\(101\) 124.444i 1.23211i −0.787701 0.616057i \(-0.788729\pi\)
0.787701 0.616057i \(-0.211271\pi\)
\(102\) 0 0
\(103\) 175.084 1.69984 0.849922 0.526908i \(-0.176649\pi\)
0.849922 + 0.526908i \(0.176649\pi\)
\(104\) 11.0772 26.7427i 0.106511 0.257141i
\(105\) −106.555 71.1980i −1.01481 0.678076i
\(106\) −38.3619 38.3619i −0.361904 0.361904i
\(107\) 39.1003 7.77754i 0.365424 0.0726873i −0.00896329 0.999960i \(-0.502853\pi\)
0.374387 + 0.927273i \(0.377853\pi\)
\(108\) −4.82508 + 3.22401i −0.0446766 + 0.0298520i
\(109\) −44.9470 8.94051i −0.412358 0.0820231i −0.0154480 0.999881i \(-0.504917\pi\)
−0.396910 + 0.917858i \(0.629917\pi\)
\(110\) 87.5866 36.2795i 0.796241 0.329814i
\(111\) −49.9730 120.645i −0.450207 1.08690i
\(112\) −9.32937 + 46.9019i −0.0832980 + 0.418767i
\(113\) −104.026 155.686i −0.920585 1.37775i −0.925901 0.377767i \(-0.876692\pi\)
0.00531545 0.999986i \(-0.498308\pi\)
\(114\) −34.3525 172.701i −0.301337 1.51493i
\(115\) −63.0340 + 63.0340i −0.548122 + 0.548122i
\(116\) −5.89595 + 8.82391i −0.0508271 + 0.0760682i
\(117\) −22.8831 9.47847i −0.195582 0.0810126i
\(118\) 20.7351i 0.175721i
\(119\) 0 0
\(120\) −269.976 −2.24980
\(121\) 27.8748 67.2956i 0.230370 0.556162i
\(122\) 104.027 + 69.5084i 0.852677 + 0.569741i
\(123\) −96.7557 96.7557i −0.786632 0.786632i
\(124\) 32.7811 6.52057i 0.264364 0.0525852i
\(125\) −63.5770 + 42.4808i −0.508616 + 0.339846i
\(126\) 52.2698 + 10.3971i 0.414839 + 0.0825167i
\(127\) 37.9454 15.7175i 0.298783 0.123760i −0.228256 0.973601i \(-0.573302\pi\)
0.527039 + 0.849841i \(0.323302\pi\)
\(128\) 26.8936 + 64.9268i 0.210106 + 0.507241i
\(129\) 2.74777 13.8140i 0.0213006 0.107085i
\(130\) 25.4826 + 38.1374i 0.196020 + 0.293365i
\(131\) 37.5517 + 188.785i 0.286654 + 1.44111i 0.808715 + 0.588200i \(0.200163\pi\)
−0.522061 + 0.852908i \(0.674837\pi\)
\(132\) 17.5444 17.5444i 0.132912 0.132912i
\(133\) −56.0374 + 83.8659i −0.421334 + 0.630571i
\(134\) −46.6204 19.3108i −0.347913 0.144110i
\(135\) 50.8284i 0.376507i
\(136\) 0 0
\(137\) 52.8361 0.385665 0.192832 0.981232i \(-0.438233\pi\)
0.192832 + 0.981232i \(0.438233\pi\)
\(138\) 31.4945 76.0345i 0.228221 0.550975i
\(139\) 43.6322 + 29.1541i 0.313900 + 0.209742i 0.702533 0.711651i \(-0.252052\pi\)
−0.388632 + 0.921393i \(0.627052\pi\)
\(140\) 19.7831 + 19.7831i 0.141308 + 0.141308i
\(141\) 17.7788 3.53641i 0.126090 0.0250810i
\(142\) −50.4440 + 33.7056i −0.355239 + 0.237363i
\(143\) −22.8529 4.54572i −0.159810 0.0317882i
\(144\) 79.6413 32.9885i 0.553064 0.229087i
\(145\) −35.5715 85.8773i −0.245321 0.592257i
\(146\) 32.2623 162.193i 0.220974 1.11091i
\(147\) 72.5147 + 108.526i 0.493297 + 0.738271i
\(148\) 5.56176 + 27.9609i 0.0375795 + 0.188925i
\(149\) −36.5973 + 36.5973i −0.245620 + 0.245620i −0.819170 0.573551i \(-0.805566\pi\)
0.573551 + 0.819170i \(0.305566\pi\)
\(150\) 138.446 207.199i 0.922974 1.38133i
\(151\) 222.028 + 91.9670i 1.47038 + 0.609053i 0.966947 0.254979i \(-0.0820686\pi\)
0.503437 + 0.864032i \(0.332069\pi\)
\(152\) 212.489i 1.39795i
\(153\) 0 0
\(154\) 50.1354 0.325555
\(155\) −112.031 + 270.467i −0.722780 + 1.74495i
\(156\) 9.98122 + 6.66924i 0.0639822 + 0.0427515i
\(157\) 190.153 + 190.153i 1.21117 + 1.21117i 0.970644 + 0.240522i \(0.0773185\pi\)
0.240522 + 0.970644i \(0.422681\pi\)
\(158\) −37.1608 + 7.39174i −0.235195 + 0.0467832i
\(159\) 103.405 69.0931i 0.650346 0.434548i
\(160\) 105.156 + 20.9168i 0.657225 + 0.130730i
\(161\) −43.5540 + 18.0406i −0.270522 + 0.112054i
\(162\) 62.8107 + 151.638i 0.387720 + 0.936040i
\(163\) 7.56986 38.0563i 0.0464409 0.233474i −0.950593 0.310441i \(-0.899523\pi\)
0.997034 + 0.0769665i \(0.0245234\pi\)
\(164\) 16.5963 + 24.8381i 0.101197 + 0.151452i
\(165\) 42.3974 + 213.146i 0.256954 + 1.29179i
\(166\) 141.740 141.740i 0.853855 0.853855i
\(167\) 20.0159 29.9560i 0.119856 0.179377i −0.766690 0.642017i \(-0.778098\pi\)
0.886546 + 0.462640i \(0.153098\pi\)
\(168\) −131.906 54.6371i −0.785152 0.325221i
\(169\) 157.727i 0.933294i
\(170\) 0 0
\(171\) 181.821 1.06328
\(172\) −1.17670 + 2.84081i −0.00684128 + 0.0165163i
\(173\) 160.487 + 107.234i 0.927668 + 0.619848i 0.924925 0.380149i \(-0.124127\pi\)
0.00274223 + 0.999996i \(0.499127\pi\)
\(174\) 60.6811 + 60.6811i 0.348742 + 0.348742i
\(175\) −140.001 + 27.8480i −0.800009 + 0.159132i
\(176\) 67.4275 45.0536i 0.383111 0.255987i
\(177\) −46.6188 9.27307i −0.263383 0.0523902i
\(178\) −65.3307 + 27.0608i −0.367026 + 0.152027i
\(179\) 92.7619 + 223.947i 0.518223 + 1.25110i 0.938994 + 0.343933i \(0.111759\pi\)
−0.420771 + 0.907167i \(0.638241\pi\)
\(180\) 9.83901 49.4640i 0.0546612 0.274800i
\(181\) −75.8453 113.511i −0.419035 0.627130i 0.560560 0.828114i \(-0.310586\pi\)
−0.979595 + 0.200984i \(0.935586\pi\)
\(182\) 4.73220 + 23.7904i 0.0260011 + 0.130716i
\(183\) −202.798 + 202.798i −1.10819 + 1.10819i
\(184\) −55.1757 + 82.5763i −0.299868 + 0.448784i
\(185\) −230.696 95.5575i −1.24701 0.516527i
\(186\) 270.274i 1.45308i
\(187\) 0 0
\(188\) −3.95738 −0.0210499
\(189\) 10.2865 24.8339i 0.0544260 0.131396i
\(190\) −279.961 187.064i −1.47348 0.984548i
\(191\) −123.244 123.244i −0.645254 0.645254i 0.306588 0.951842i \(-0.400813\pi\)
−0.951842 + 0.306588i \(0.900813\pi\)
\(192\) −282.606 + 56.2137i −1.47190 + 0.292780i
\(193\) 156.042 104.264i 0.808507 0.540227i −0.0812325 0.996695i \(-0.525886\pi\)
0.889740 + 0.456468i \(0.150886\pi\)
\(194\) 288.009 + 57.2885i 1.48458 + 0.295302i
\(195\) −97.1407 + 40.2370i −0.498157 + 0.206344i
\(196\) −10.9045 26.3259i −0.0556354 0.134316i
\(197\) 56.0168 281.616i 0.284349 1.42952i −0.529433 0.848352i \(-0.677595\pi\)
0.813783 0.581169i \(-0.197405\pi\)
\(198\) −50.2100 75.1445i −0.253586 0.379518i
\(199\) −17.8696 89.8366i −0.0897970 0.451440i −0.999357 0.0358665i \(-0.988581\pi\)
0.909560 0.415574i \(-0.136419\pi\)
\(200\) −212.638 + 212.638i −1.06319 + 1.06319i
\(201\) 64.2659 96.1807i 0.319731 0.478511i
\(202\) 202.966 + 84.0712i 1.00478 + 0.416194i
\(203\) 49.1570i 0.242153i
\(204\) 0 0
\(205\) −261.650 −1.27634
\(206\) −118.283 + 285.560i −0.574188 + 1.38621i
\(207\) 70.6586 + 47.2126i 0.341346 + 0.228080i
\(208\) 27.7433 + 27.7433i 0.133381 + 0.133381i
\(209\) 167.760 33.3694i 0.802677 0.159662i
\(210\) 188.109 125.691i 0.895758 0.598526i
\(211\) 35.4645 + 7.05432i 0.168078 + 0.0334328i 0.278412 0.960462i \(-0.410192\pi\)
−0.110334 + 0.993895i \(0.535192\pi\)
\(212\) −25.0837 + 10.3900i −0.118319 + 0.0490095i
\(213\) −53.2210 128.487i −0.249864 0.603225i
\(214\) −13.7302 + 69.0264i −0.0641599 + 0.322554i
\(215\) −14.9628 22.3934i −0.0695945 0.104156i
\(216\) −11.0474 55.5392i −0.0511455 0.257126i
\(217\) −109.473 + 109.473i −0.504482 + 0.504482i
\(218\) 44.9470 67.2679i 0.206179 0.308569i
\(219\) 350.232 + 145.071i 1.59923 + 0.662423i
\(220\) 47.4443i 0.215656i
\(221\) 0 0
\(222\) 230.532 1.03843
\(223\) 154.260 372.417i 0.691750 1.67003i −0.0494759 0.998775i \(-0.515755\pi\)
0.741226 0.671256i \(-0.234245\pi\)
\(224\) 47.1443 + 31.5008i 0.210465 + 0.140629i
\(225\) 181.949 + 181.949i 0.808663 + 0.808663i
\(226\) 324.200 64.4873i 1.43451 0.285342i
\(227\) −104.967 + 70.1368i −0.462410 + 0.308973i −0.764864 0.644191i \(-0.777194\pi\)
0.302454 + 0.953164i \(0.402194\pi\)
\(228\) −86.4286 17.1917i −0.379073 0.0754023i
\(229\) 113.583 47.0477i 0.495997 0.205449i −0.120640 0.992696i \(-0.538495\pi\)
0.616637 + 0.787248i \(0.288495\pi\)
\(230\) −60.2233 145.392i −0.261840 0.632139i
\(231\) −22.4213 + 112.720i −0.0970620 + 0.487964i
\(232\) −57.5335 86.1050i −0.247989 0.371142i
\(233\) 11.7334 + 58.9878i 0.0503579 + 0.253166i 0.997761 0.0668754i \(-0.0213030\pi\)
−0.947403 + 0.320042i \(0.896303\pi\)
\(234\) 30.9185 30.9185i 0.132130 0.132130i
\(235\) 19.2573 28.8206i 0.0819460 0.122641i
\(236\) 9.58702 + 3.97107i 0.0406230 + 0.0168266i
\(237\) 86.8544i 0.366474i
\(238\) 0 0
\(239\) −285.920 −1.19632 −0.598160 0.801377i \(-0.704101\pi\)
−0.598160 + 0.801377i \(0.704101\pi\)
\(240\) 140.039 338.085i 0.583497 1.40869i
\(241\) −103.381 69.0771i −0.428967 0.286627i 0.322284 0.946643i \(-0.395549\pi\)
−0.751251 + 0.660016i \(0.770549\pi\)
\(242\) 90.9267 + 90.9267i 0.375730 + 0.375730i
\(243\) −311.039 + 61.8695i −1.28000 + 0.254607i
\(244\) 52.0602 34.7855i 0.213362 0.142564i
\(245\) 244.788 + 48.6914i 0.999135 + 0.198740i
\(246\) 223.173 92.4414i 0.907208 0.375778i
\(247\) 31.6691 + 76.4560i 0.128215 + 0.309538i
\(248\) −63.6287 + 319.883i −0.256567 + 1.28985i
\(249\) 255.286 + 382.063i 1.02525 + 1.53439i
\(250\) −26.3344 132.392i −0.105338 0.529569i
\(251\) 99.6747 99.6747i 0.397110 0.397110i −0.480102 0.877213i \(-0.659400\pi\)
0.877213 + 0.480102i \(0.159400\pi\)
\(252\) 14.8176 22.1761i 0.0587999 0.0880003i
\(253\) 73.8588 + 30.5933i 0.291932 + 0.120922i
\(254\) 72.5069i 0.285460i
\(255\) 0 0
\(256\) 160.744 0.627906
\(257\) 150.400 363.098i 0.585214 1.41283i −0.302818 0.953048i \(-0.597927\pi\)
0.888032 0.459783i \(-0.152073\pi\)
\(258\) 20.6741 + 13.8140i 0.0801322 + 0.0535426i
\(259\) −93.3754 93.3754i −0.360523 0.360523i
\(260\) 22.5134 4.47819i 0.0865899 0.0172238i
\(261\) −73.6780 + 49.2301i −0.282291 + 0.188621i
\(262\) −333.275 66.2926i −1.27204 0.253025i
\(263\) 269.286 111.542i 1.02390 0.424113i 0.193393 0.981121i \(-0.438051\pi\)
0.830507 + 0.557008i \(0.188051\pi\)
\(264\) 92.6535 + 223.685i 0.350960 + 0.847293i
\(265\) 46.3939 233.238i 0.175071 0.880142i
\(266\) −98.9266 148.054i −0.371904 0.556594i
\(267\) −31.6241 158.985i −0.118442 0.595450i
\(268\) −17.8569 + 17.8569i −0.0666304 + 0.0666304i
\(269\) 56.6082 84.7201i 0.210439 0.314945i −0.711202 0.702988i \(-0.751849\pi\)
0.921641 + 0.388043i \(0.126849\pi\)
\(270\) 82.9004 + 34.3385i 0.307038 + 0.127180i
\(271\) 381.059i 1.40612i −0.711129 0.703061i \(-0.751816\pi\)
0.711129 0.703061i \(-0.248184\pi\)
\(272\) 0 0
\(273\) −55.6043 −0.203679
\(274\) −35.6948 + 86.1749i −0.130273 + 0.314507i
\(275\) 201.270 + 134.484i 0.731892 + 0.489034i
\(276\) −29.1234 29.1234i −0.105520 0.105520i
\(277\) −65.9245 + 13.1132i −0.237995 + 0.0473401i −0.312646 0.949870i \(-0.601215\pi\)
0.0746518 + 0.997210i \(0.476215\pi\)
\(278\) −77.0268 + 51.4676i −0.277075 + 0.185135i
\(279\) 273.716 + 54.4456i 0.981063 + 0.195146i
\(280\) −252.228 + 104.476i −0.900813 + 0.373129i
\(281\) −144.294 348.356i −0.513501 1.23970i −0.941834 0.336079i \(-0.890899\pi\)
0.428333 0.903621i \(-0.359101\pi\)
\(282\) −6.24307 + 31.3860i −0.0221385 + 0.111298i
\(283\) 164.909 + 246.804i 0.582717 + 0.872098i 0.999316 0.0369928i \(-0.0117778\pi\)
−0.416598 + 0.909091i \(0.636778\pi\)
\(284\) 5.92325 + 29.7782i 0.0208565 + 0.104853i
\(285\) 545.780 545.780i 1.91502 1.91502i
\(286\) 22.8529 34.2017i 0.0799051 0.119586i
\(287\) −127.838 52.9521i −0.445428 0.184502i
\(288\) 102.209i 0.354892i
\(289\) 0 0
\(290\) 164.096 0.565848
\(291\) −257.604 + 621.911i −0.885237 + 2.13715i
\(292\) −68.8125 45.9790i −0.235659 0.157462i
\(293\) −99.8472 99.8472i −0.340776 0.340776i 0.515883 0.856659i \(-0.327464\pi\)
−0.856659 + 0.515883i \(0.827464\pi\)
\(294\) −225.993 + 44.9529i −0.768685 + 0.152901i
\(295\) −75.5724 + 50.4959i −0.256178 + 0.171172i
\(296\) −272.846 54.2725i −0.921778 0.183353i
\(297\) −42.1132 + 17.4439i −0.141795 + 0.0587336i
\(298\) −34.9654 84.4140i −0.117334 0.283269i
\(299\) −7.54580 + 37.9353i −0.0252368 + 0.126874i
\(300\) −69.2855 103.693i −0.230952 0.345644i
\(301\) −2.77864 13.9692i −0.00923138 0.0464093i
\(302\) −299.994 + 299.994i −0.993357 + 0.993357i
\(303\) −279.787 + 418.731i −0.923389 + 1.38195i
\(304\) −266.094 110.220i −0.875310 0.362565i
\(305\) 548.414i 1.79808i
\(306\) 0 0
\(307\) −259.641 −0.845735 −0.422868 0.906192i \(-0.638976\pi\)
−0.422868 + 0.906192i \(0.638976\pi\)
\(308\) 9.60165 23.1804i 0.0311742 0.0752612i
\(309\) −589.127 393.642i −1.90656 1.27392i
\(310\) −365.442 365.442i −1.17884 1.17884i
\(311\) 553.288 110.056i 1.77906 0.353877i 0.807355 0.590066i \(-0.200898\pi\)
0.971707 + 0.236189i \(0.0758985\pi\)
\(312\) −97.3983 + 65.0795i −0.312174 + 0.208588i
\(313\) −447.002 88.9143i −1.42812 0.284071i −0.580322 0.814387i \(-0.697073\pi\)
−0.847800 + 0.530316i \(0.822073\pi\)
\(314\) −438.600 + 181.674i −1.39681 + 0.578580i
\(315\) 89.3977 + 215.825i 0.283802 + 0.685159i
\(316\) −3.69920 + 18.5972i −0.0117063 + 0.0588518i
\(317\) −184.415 275.997i −0.581751 0.870653i 0.417526 0.908665i \(-0.362897\pi\)
−0.999277 + 0.0380125i \(0.987897\pi\)
\(318\) 42.8318 + 215.330i 0.134691 + 0.677138i
\(319\) −58.9447 + 58.9447i −0.184780 + 0.184780i
\(320\) −306.108 + 458.123i −0.956588 + 1.43164i
\(321\) −149.052 61.7394i −0.464336 0.192334i
\(322\) 83.2238i 0.258459i
\(323\) 0 0
\(324\) 82.1402 0.253519
\(325\) −44.8183 + 108.201i −0.137903 + 0.332926i
\(326\) 56.9552 + 38.0563i 0.174709 + 0.116737i
\(327\) 131.138 + 131.138i 0.401033 + 0.401033i
\(328\) −285.900 + 56.8691i −0.871646 + 0.173381i
\(329\) 15.2414 10.1840i 0.0463265 0.0309544i
\(330\) −376.281 74.8469i −1.14024 0.226809i
\(331\) −544.633 + 225.594i −1.64542 + 0.681554i −0.996828 0.0795855i \(-0.974640\pi\)
−0.648588 + 0.761139i \(0.724640\pi\)
\(332\) −38.3892 92.6796i −0.115630 0.279156i
\(333\) −46.4397 + 233.468i −0.139459 + 0.701106i
\(334\) 35.3355 + 52.8833i 0.105795 + 0.158333i
\(335\) −43.1525 216.942i −0.128814 0.647590i
\(336\) 136.841 136.841i 0.407266 0.407266i
\(337\) 181.999 272.381i 0.540056 0.808251i −0.456625 0.889659i \(-0.650942\pi\)
0.996681 + 0.0814084i \(0.0259418\pi\)
\(338\) −257.250 106.557i −0.761095 0.315256i
\(339\) 757.738i 2.23522i
\(340\) 0 0
\(341\) 262.540 0.769911
\(342\) −122.834 + 296.548i −0.359165 + 0.867100i
\(343\) 276.474 + 184.734i 0.806046 + 0.538583i
\(344\) −21.2167 21.2167i −0.0616766 0.0616766i
\(345\) 353.818 70.3787i 1.02556 0.203996i
\(346\) −283.318 + 189.307i −0.818837 + 0.547129i
\(347\) 237.412 + 47.2242i 0.684185 + 0.136093i 0.524931 0.851145i \(-0.324091\pi\)
0.159254 + 0.987238i \(0.449091\pi\)
\(348\) 39.6776 16.4350i 0.114016 0.0472270i
\(349\) 192.479 + 464.685i 0.551515 + 1.33148i 0.916341 + 0.400399i \(0.131129\pi\)
−0.364826 + 0.931076i \(0.618871\pi\)
\(350\) 49.1620 247.154i 0.140463 0.706154i
\(351\) −12.2525 18.3372i −0.0349074 0.0522427i
\(352\) −18.7583 94.3041i −0.0532905 0.267909i
\(353\) 231.294 231.294i 0.655223 0.655223i −0.299023 0.954246i \(-0.596661\pi\)
0.954246 + 0.299023i \(0.0966606\pi\)
\(354\) 46.6188 69.7700i 0.131692 0.197090i
\(355\) −245.691 101.768i −0.692086 0.286671i
\(356\) 35.3886i 0.0994062i
\(357\) 0 0
\(358\) −427.922 −1.19531
\(359\) −203.355 + 490.942i −0.566448 + 1.36753i 0.338082 + 0.941117i \(0.390222\pi\)
−0.904530 + 0.426410i \(0.859778\pi\)
\(360\) 409.194 + 273.415i 1.13665 + 0.759486i
\(361\) −174.298 174.298i −0.482820 0.482820i
\(362\) 236.374 47.0176i 0.652965 0.129883i
\(363\) −245.095 + 163.767i −0.675192 + 0.451149i
\(364\) 11.9059 + 2.36824i 0.0327086 + 0.00650614i
\(365\) 669.707 277.402i 1.83481 0.760005i
\(366\) −193.755 467.767i −0.529386 1.27805i
\(367\) −64.5850 + 324.691i −0.175981 + 0.884716i 0.787372 + 0.616479i \(0.211441\pi\)
−0.963353 + 0.268238i \(0.913559\pi\)
\(368\) −74.7881 111.928i −0.203229 0.304153i
\(369\) 48.6615 + 244.638i 0.131874 + 0.662975i
\(370\) 311.706 311.706i 0.842448 0.842448i
\(371\) 69.8693 104.567i 0.188327 0.281851i
\(372\) −124.963 51.7613i −0.335922 0.139143i
\(373\) 147.856i 0.396396i −0.980162 0.198198i \(-0.936491\pi\)
0.980162 0.198198i \(-0.0635089\pi\)
\(374\) 0 0
\(375\) 309.435 0.825160
\(376\) 14.7780 35.6772i 0.0393032 0.0948863i
\(377\) −33.5343 22.4069i −0.0889504 0.0594347i
\(378\) 33.5543 + 33.5543i 0.0887681 + 0.0887681i
\(379\) 42.8446 8.52233i 0.113047 0.0224864i −0.138243 0.990398i \(-0.544145\pi\)
0.251289 + 0.967912i \(0.419145\pi\)
\(380\) −140.107 + 93.6164i −0.368702 + 0.246359i
\(381\) −163.017 32.4262i −0.427867 0.0851081i
\(382\) 284.269 117.748i 0.744160 0.308241i
\(383\) 75.6230 + 182.570i 0.197449 + 0.476684i 0.991331 0.131387i \(-0.0419432\pi\)
−0.793882 + 0.608072i \(0.791943\pi\)
\(384\) 55.4830 278.932i 0.144487 0.726385i
\(385\) 122.094 + 182.726i 0.317127 + 0.474614i
\(386\) 64.6347 + 324.941i 0.167447 + 0.841815i
\(387\) −18.1547 + 18.1547i −0.0469113 + 0.0469113i
\(388\) 81.6456 122.191i 0.210427 0.314926i
\(389\) −19.8577 8.22534i −0.0510481 0.0211448i 0.357013 0.934099i \(-0.383795\pi\)
−0.408061 + 0.912954i \(0.633795\pi\)
\(390\) 185.618i 0.475944i
\(391\) 0 0
\(392\) 278.058 0.709332
\(393\) 298.092 719.657i 0.758503 1.83119i
\(394\) 421.468 + 281.616i 1.06971 + 0.714761i
\(395\) −117.437 117.437i −0.297310 0.297310i
\(396\) −44.3595 + 8.82365i −0.112019 + 0.0222819i
\(397\) 29.4981 19.7100i 0.0743025 0.0496473i −0.517864 0.855463i \(-0.673273\pi\)
0.592167 + 0.805816i \(0.298273\pi\)
\(398\) 158.594 + 31.5464i 0.398479 + 0.0792623i
\(399\) 377.112 156.205i 0.945142 0.391491i
\(400\) −155.984 376.578i −0.389960 0.941446i
\(401\) −29.1786 + 146.691i −0.0727646 + 0.365812i −0.999962 0.00876160i \(-0.997211\pi\)
0.927197 + 0.374574i \(0.122211\pi\)
\(402\) 113.453 + 169.794i 0.282221 + 0.422374i
\(403\) 24.7807 + 124.581i 0.0614906 + 0.309134i
\(404\) 77.7417 77.7417i 0.192430 0.192430i
\(405\) −399.708 + 598.206i −0.986934 + 1.47705i
\(406\) 80.1744 + 33.2093i 0.197474 + 0.0817964i
\(407\) 223.935i 0.550209i
\(408\) 0 0
\(409\) −398.892 −0.975287 −0.487643 0.873043i \(-0.662143\pi\)
−0.487643 + 0.873043i \(0.662143\pi\)
\(410\) 176.765 426.748i 0.431134 1.04085i
\(411\) −177.784 118.792i −0.432565 0.289030i
\(412\) 109.378 + 109.378i 0.265479 + 0.265479i
\(413\) −47.1426 + 9.37724i −0.114147 + 0.0227052i
\(414\) −124.738 + 83.3475i −0.301300 + 0.201322i
\(415\) 861.770 + 171.417i 2.07655 + 0.413052i
\(416\) 42.9789 17.8024i 0.103315 0.0427943i
\(417\) −81.2673 196.197i −0.194886 0.470496i
\(418\) −58.9093 + 296.157i −0.140931 + 0.708510i
\(419\) 20.7782 + 31.0967i 0.0495899 + 0.0742166i 0.855436 0.517908i \(-0.173289\pi\)
−0.805846 + 0.592125i \(0.798289\pi\)
\(420\) −22.0882 111.045i −0.0525910 0.264393i
\(421\) −312.706 + 312.706i −0.742769 + 0.742769i −0.973110 0.230341i \(-0.926016\pi\)
0.230341 + 0.973110i \(0.426016\pi\)
\(422\) −35.4645 + 53.0763i −0.0840390 + 0.125773i
\(423\) −30.5282 12.6452i −0.0721706 0.0298941i
\(424\) 264.938i 0.624853i
\(425\) 0 0
\(426\) 245.515 0.576327
\(427\) −110.987 + 267.945i −0.259922 + 0.627507i
\(428\) 29.2853 + 19.5678i 0.0684236 + 0.0457192i
\(429\) 66.6757 + 66.6757i 0.155421 + 0.155421i
\(430\) 46.6319 9.27567i 0.108446 0.0215713i
\(431\) 288.433 192.725i 0.669218 0.447157i −0.173988 0.984748i \(-0.555665\pi\)
0.843206 + 0.537590i \(0.180665\pi\)
\(432\) 75.2808 + 14.9743i 0.174261 + 0.0346627i
\(433\) 49.6556 20.5680i 0.114678 0.0475012i −0.324607 0.945849i \(-0.605232\pi\)
0.439285 + 0.898348i \(0.355232\pi\)
\(434\) −104.591 252.506i −0.240994 0.581810i
\(435\) −73.3862 + 368.937i −0.168704 + 0.848132i
\(436\) −22.4938 33.6643i −0.0515912 0.0772117i
\(437\) −55.3926 278.477i −0.126757 0.637248i
\(438\) −473.217 + 473.217i −1.08040 + 1.08040i
\(439\) 135.146 202.261i 0.307851 0.460731i −0.644995 0.764187i \(-0.723140\pi\)
0.952846 + 0.303456i \(0.0981405\pi\)
\(440\) 427.727 + 177.170i 0.972107 + 0.402660i
\(441\) 237.928i 0.539518i
\(442\) 0 0
\(443\) −114.592 −0.258673 −0.129336 0.991601i \(-0.541285\pi\)
−0.129336 + 0.991601i \(0.541285\pi\)
\(444\) 44.1501 106.588i 0.0994373 0.240063i
\(445\) −257.726 172.207i −0.579160 0.386982i
\(446\) 503.192 + 503.192i 1.12823 + 1.12823i
\(447\) 205.425 40.8616i 0.459565 0.0914131i
\(448\) −242.273 + 161.882i −0.540788 + 0.361343i
\(449\) −532.761 105.973i −1.18655 0.236020i −0.437925 0.899012i \(-0.644286\pi\)
−0.748626 + 0.662992i \(0.769286\pi\)
\(450\) −419.677 + 173.836i −0.932616 + 0.386302i
\(451\) 89.7961 + 216.787i 0.199104 + 0.480681i
\(452\) 32.2727 162.246i 0.0713999 0.358951i
\(453\) −540.315 808.639i −1.19275 1.78507i
\(454\) −43.4788 218.583i −0.0957683 0.481460i
\(455\) −75.1835 + 75.1835i −0.165239 + 0.165239i
\(456\) 477.739 714.987i 1.04767 1.56795i
\(457\) 207.434 + 85.9222i 0.453905 + 0.188014i 0.597910 0.801563i \(-0.295998\pi\)
−0.144005 + 0.989577i \(0.545998\pi\)
\(458\) 217.037i 0.473880i
\(459\) 0 0
\(460\) −78.7565 −0.171210
\(461\) −96.5408 + 233.070i −0.209416 + 0.505575i −0.993332 0.115292i \(-0.963219\pi\)
0.783916 + 0.620867i \(0.213219\pi\)
\(462\) −168.697 112.720i −0.365145 0.243982i
\(463\) −88.6506 88.6506i −0.191470 0.191470i 0.604861 0.796331i \(-0.293229\pi\)
−0.796331 + 0.604861i \(0.793229\pi\)
\(464\) 137.670 27.3844i 0.296704 0.0590180i
\(465\) 985.055 658.193i 2.11840 1.41547i
\(466\) −104.135 20.7138i −0.223466 0.0444501i
\(467\) −640.133 + 265.152i −1.37074 + 0.567777i −0.941988 0.335647i \(-0.891045\pi\)
−0.428748 + 0.903424i \(0.641045\pi\)
\(468\) −8.37404 20.2167i −0.0178932 0.0431981i
\(469\) 22.8207 114.727i 0.0486582 0.244621i
\(470\) 33.9962 + 50.8789i 0.0723324 + 0.108253i
\(471\) −212.310 1067.35i −0.450764 2.26614i
\(472\) −71.6013 + 71.6013i −0.151698 + 0.151698i
\(473\) −13.4187 + 20.0825i −0.0283693 + 0.0424577i
\(474\) 141.658 + 58.6768i 0.298857 + 0.123791i
\(475\) 859.730i 1.80996i
\(476\) 0 0
\(477\) −226.701 −0.475264
\(478\) 193.161 466.332i 0.404103 0.975591i
\(479\) −398.019 265.948i −0.830938 0.555215i 0.0657717 0.997835i \(-0.479049\pi\)
−0.896709 + 0.442620i \(0.854049\pi\)
\(480\) −306.804 306.804i −0.639175 0.639175i
\(481\) −106.262 + 21.1369i −0.220919 + 0.0439436i
\(482\) 182.506 121.946i 0.378642 0.253001i
\(483\) 187.112 + 37.2189i 0.387396 + 0.0770579i
\(484\) 59.4543 24.6268i 0.122840 0.0508818i
\(485\) 492.586 + 1189.21i 1.01564 + 2.45197i
\(486\) 109.222 549.098i 0.224737 1.12983i
\(487\) 225.375 + 337.297i 0.462782 + 0.692602i 0.987312 0.158790i \(-0.0507592\pi\)
−0.524531 + 0.851392i \(0.675759\pi\)
\(488\) 119.196 + 599.241i 0.244255 + 1.22795i
\(489\) −111.033 + 111.033i −0.227062 + 0.227062i
\(490\) −244.788 + 366.351i −0.499567 + 0.747655i
\(491\) 57.3172 + 23.7416i 0.116736 + 0.0483535i 0.440287 0.897857i \(-0.354877\pi\)
−0.323551 + 0.946211i \(0.604877\pi\)
\(492\) 120.889i 0.245710i
\(493\) 0 0
\(494\) −146.094 −0.295736
\(495\) 151.601 365.996i 0.306264 0.739386i
\(496\) −367.577 245.607i −0.741083 0.495176i
\(497\) −99.4445 99.4445i −0.200089 0.200089i
\(498\) −795.604 + 158.256i −1.59760 + 0.317782i
\(499\) 426.744 285.141i 0.855199 0.571426i −0.0488735 0.998805i \(-0.515563\pi\)
0.904072 + 0.427379i \(0.140563\pi\)
\(500\) −66.2558 13.1791i −0.132512 0.0263582i
\(501\) −134.700 + 55.7947i −0.268863 + 0.111367i
\(502\) 95.2302 + 229.906i 0.189702 + 0.457980i
\(503\) 64.5518 324.524i 0.128334 0.645176i −0.862050 0.506824i \(-0.830819\pi\)
0.990383 0.138352i \(-0.0441806\pi\)
\(504\) 144.592 + 216.398i 0.286889 + 0.429360i
\(505\) 187.868 + 944.477i 0.372016 + 1.87025i
\(506\) −99.7945 + 99.7945i −0.197222 + 0.197222i
\(507\) 354.617 530.723i 0.699443 1.04679i
\(508\) 33.5240 + 13.8861i 0.0659922 + 0.0273349i
\(509\) 343.247i 0.674355i −0.941441 0.337178i \(-0.890528\pi\)
0.941441 0.337178i \(-0.109472\pi\)
\(510\) 0 0
\(511\) 383.347 0.750190
\(512\) −216.169 + 521.878i −0.422205 + 1.01929i
\(513\) 134.610 + 89.9438i 0.262399 + 0.175329i
\(514\) 490.601 + 490.601i 0.954476 + 0.954476i
\(515\) −1328.82 + 264.318i −2.58023 + 0.513239i
\(516\) 10.3464 6.91323i 0.0200511 0.0133977i
\(517\) −30.4879 6.06442i −0.0589708 0.0117300i
\(518\) 215.376 89.2118i 0.415784 0.172224i
\(519\) −298.915 721.645i −0.575944 1.39045i
\(520\) −43.6989 + 219.689i −0.0840363 + 0.422479i
\(521\) 176.947 + 264.820i 0.339629 + 0.508291i 0.961491 0.274836i \(-0.0886235\pi\)
−0.621862 + 0.783127i \(0.713623\pi\)
\(522\) −30.5184 153.427i −0.0584645 0.293921i
\(523\) 167.575 167.575i 0.320410 0.320410i −0.528514 0.848924i \(-0.677251\pi\)
0.848924 + 0.528514i \(0.177251\pi\)
\(524\) −94.4778 + 141.396i −0.180301 + 0.269840i
\(525\) 533.691 + 221.062i 1.01655 + 0.421071i
\(526\) 514.556i 0.978244i
\(527\) 0 0
\(528\) −328.176 −0.621545
\(529\) −151.655 + 366.128i −0.286683 + 0.692114i
\(530\) 349.065 + 233.238i 0.658613 + 0.440071i
\(531\) 61.2676 + 61.2676i 0.115381 + 0.115381i
\(532\) −87.3996 + 17.3849i −0.164285 + 0.0326783i
\(533\) −94.3946 + 63.0724i −0.177101 + 0.118335i
\(534\) 280.667 + 55.8282i 0.525594 + 0.104547i
\(535\) −285.015 + 118.057i −0.532738 + 0.220667i
\(536\) −94.3039 227.670i −0.175940 0.424757i
\(537\) 191.373 962.098i 0.356375 1.79162i
\(538\) 99.9342 + 149.562i 0.185751 + 0.277996i
\(539\) −43.6665 219.526i −0.0810140 0.407285i
\(540\) 31.7532 31.7532i 0.0588023 0.0588023i
\(541\) 147.180 220.270i 0.272051 0.407153i −0.670137 0.742237i \(-0.733765\pi\)
0.942188 + 0.335084i \(0.108765\pi\)
\(542\) 621.502 + 257.435i 1.14668 + 0.474972i
\(543\) 552.466i 1.01743i
\(544\) 0 0
\(545\) 354.627 0.650692
\(546\) 37.5650 90.6899i 0.0688003 0.166099i
\(547\) −299.987 200.445i −0.548423 0.366444i 0.250277 0.968174i \(-0.419478\pi\)
−0.798700 + 0.601730i \(0.794478\pi\)
\(548\) 33.0075 + 33.0075i 0.0602326 + 0.0602326i
\(549\) 512.756 101.994i 0.933982 0.185781i
\(550\) −355.316 + 237.414i −0.646029 + 0.431662i
\(551\) 290.378 + 57.7597i 0.527001 + 0.104827i
\(552\) 371.313 153.803i 0.672669 0.278629i
\(553\) −33.6111 81.1445i −0.0607797 0.146735i
\(554\) 23.1496 116.381i 0.0417863 0.210074i
\(555\) 561.410 + 840.209i 1.01155 + 1.51389i
\(556\) 9.04467 + 45.4706i 0.0162674 + 0.0817817i
\(557\) 367.145 367.145i 0.659147 0.659147i −0.296031 0.955178i \(-0.595663\pi\)
0.955178 + 0.296031i \(0.0956632\pi\)
\(558\) −273.716 + 409.646i −0.490531 + 0.734132i
\(559\) −10.7962 4.47192i −0.0193134 0.00799986i
\(560\) 370.051i 0.660806i
\(561\) 0 0
\(562\) 665.645 1.18442
\(563\) 168.267 406.232i 0.298875 0.721549i −0.701089 0.713074i \(-0.747302\pi\)
0.999964 0.00847487i \(-0.00269767\pi\)
\(564\) 13.3159 + 8.89740i 0.0236097 + 0.0157755i
\(565\) 1024.55 + 1024.55i 1.81336 + 1.81336i
\(566\) −513.942 + 102.229i −0.908025 + 0.180617i
\(567\) −316.354 + 211.381i −0.557943 + 0.372806i
\(568\) −290.580 57.8000i −0.511585 0.101761i
\(569\) 443.238 183.595i 0.778977 0.322663i 0.0424747 0.999098i \(-0.486476\pi\)
0.736503 + 0.676435i \(0.236476\pi\)
\(570\) 521.443 + 1258.87i 0.914812 + 2.20855i
\(571\) 106.163 533.718i 0.185925 0.934707i −0.769314 0.638871i \(-0.779402\pi\)
0.955239 0.295836i \(-0.0955982\pi\)
\(572\) −11.4367 17.1163i −0.0199943 0.0299236i
\(573\) 137.604 + 691.781i 0.240146 + 1.20730i
\(574\) 172.728 172.728i 0.300920 0.300920i
\(575\) 223.241 334.104i 0.388246 0.581051i
\(576\) 485.266 + 201.004i 0.842476 + 0.348965i
\(577\) 304.419i 0.527589i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(578\) 0 0
\(579\) −759.470 −1.31169
\(580\) 31.4267 75.8709i 0.0541840 0.130812i
\(581\) 386.355 + 258.154i 0.664983 + 0.444327i
\(582\) −840.297 840.297i −1.44381 1.44381i
\(583\) −209.168 + 41.6061i −0.358779 + 0.0713656i
\(584\) 671.483 448.671i 1.14980 0.768272i
\(585\) 187.983 + 37.3921i 0.321338 + 0.0639181i
\(586\) 230.304 95.3950i 0.393010 0.162790i
\(587\) −244.317 589.834i −0.416213 1.00483i −0.983435 0.181263i \(-0.941982\pi\)
0.567221 0.823565i \(-0.308018\pi\)
\(588\) −22.4967 + 113.099i −0.0382597 + 0.192345i
\(589\) −518.040 775.302i −0.879525 1.31630i
\(590\) −31.3031 157.371i −0.0530561 0.266731i
\(591\) −821.644 + 821.644i −1.39026 + 1.39026i
\(592\) 209.492 313.527i 0.353872 0.529607i
\(593\) −594.149 246.104i −1.00194 0.415016i −0.179430 0.983771i \(-0.557425\pi\)
−0.822507 + 0.568755i \(0.807425\pi\)
\(594\) 80.4708i 0.135473i
\(595\) 0 0
\(596\) −45.7258 −0.0767211
\(597\) −141.852 + 342.460i −0.237608 + 0.573636i
\(598\) −56.7742 37.9353i −0.0949401 0.0634370i
\(599\) −354.327 354.327i −0.591530 0.591530i 0.346514 0.938045i \(-0.387365\pi\)
−0.938045 + 0.346514i \(0.887365\pi\)
\(600\) 1193.56 237.414i 1.98927 0.395691i
\(601\) −473.731 + 316.537i −0.788238 + 0.526684i −0.883312 0.468786i \(-0.844691\pi\)
0.0950732 + 0.995470i \(0.469691\pi\)
\(602\) 24.6607 + 4.90533i 0.0409647 + 0.00814838i
\(603\) −194.812 + 80.6936i −0.323071 + 0.133820i
\(604\) 81.2510 + 196.157i 0.134521 + 0.324764i
\(605\) −109.964 + 552.829i −0.181759 + 0.913767i
\(606\) −493.926 739.213i −0.815060 1.21982i
\(607\) 35.3853 + 177.894i 0.0582955 + 0.293071i 0.998925 0.0463651i \(-0.0147638\pi\)
−0.940629 + 0.339436i \(0.889764\pi\)
\(608\) −241.474 + 241.474i −0.397162 + 0.397162i
\(609\) −110.520 + 165.405i −0.181478 + 0.271600i
\(610\) −894.455 370.495i −1.46632 0.607370i
\(611\) 15.0396i 0.0246147i
\(612\) 0 0
\(613\) −155.196 −0.253174 −0.126587 0.991956i \(-0.540402\pi\)
−0.126587 + 0.991956i \(0.540402\pi\)
\(614\) 175.407 423.470i 0.285679 0.689691i
\(615\) 880.407 + 588.269i 1.43156 + 0.956535i
\(616\) 173.125 + 173.125i 0.281047 + 0.281047i
\(617\) 458.417 91.1849i 0.742978 0.147787i 0.190934 0.981603i \(-0.438848\pi\)
0.552043 + 0.833815i \(0.313848\pi\)
\(618\) 1040.02 694.922i 1.68289 1.12447i
\(619\) 376.303 + 74.8513i 0.607921 + 0.120923i 0.489445 0.872034i \(-0.337199\pi\)
0.118475 + 0.992957i \(0.462199\pi\)
\(620\) −238.952 + 98.9771i −0.385406 + 0.159640i
\(621\) 28.9565 + 69.9071i 0.0466288 + 0.112572i
\(622\) −194.289 + 976.757i −0.312362 + 1.57035i
\(623\) −91.0696 136.295i −0.146179 0.218773i
\(624\) −30.9760 155.727i −0.0496410 0.249562i
\(625\) −198.226 + 198.226i −0.317161 + 0.317161i
\(626\) 447.002 668.986i 0.714061 1.06867i
\(627\) −639.506 264.892i −1.01995 0.422475i
\(628\) 237.583i 0.378316i
\(629\) 0 0
\(630\) −412.403 −0.654608
\(631\) −127.804 + 308.547i −0.202542 + 0.488980i −0.992213 0.124550i \(-0.960251\pi\)
0.789671 + 0.613531i \(0.210251\pi\)
\(632\) −153.846 102.797i −0.243428 0.162653i
\(633\) −103.471 103.471i −0.163462 0.163462i
\(634\) 574.734 114.322i 0.906520 0.180318i
\(635\) −264.263 + 176.575i −0.416162 + 0.278070i
\(636\) 107.762 + 21.4352i 0.169437 + 0.0337032i
\(637\) 100.049 41.4415i 0.157062 0.0650573i
\(638\) −56.3163 135.960i −0.0882701 0.213103i
\(639\) −49.4581 + 248.643i −0.0773992 + 0.389112i
\(640\) −302.129 452.168i −0.472077 0.706513i
\(641\) −187.412 942.185i −0.292375 1.46987i −0.795658 0.605746i \(-0.792875\pi\)
0.503284 0.864121i \(-0.332125\pi\)
\(642\) 201.392 201.392i 0.313695 0.313695i
\(643\) −581.812 + 870.743i −0.904840 + 1.35419i 0.0301622 + 0.999545i \(0.490398\pi\)
−0.935002 + 0.354643i \(0.884602\pi\)
\(644\) −38.4791 15.9385i −0.0597501 0.0247493i
\(645\) 108.991i 0.168978i
\(646\) 0 0
\(647\) 328.253 0.507346 0.253673 0.967290i \(-0.418361\pi\)
0.253673 + 0.967290i \(0.418361\pi\)
\(648\) −306.735 + 740.523i −0.473356 + 1.14278i
\(649\) 67.7735 + 45.2848i 0.104428 + 0.0697763i
\(650\) −146.196 146.196i −0.224917 0.224917i
\(651\) 614.484 122.228i 0.943908 0.187755i
\(652\) 28.5033 19.0453i 0.0437167 0.0292106i
\(653\) −48.9018 9.72717i −0.0748879 0.0148961i 0.157504 0.987518i \(-0.449655\pi\)
−0.232392 + 0.972622i \(0.574655\pi\)
\(654\) −302.477 + 125.290i −0.462504 + 0.191575i
\(655\) −570.005 1376.11i −0.870237 2.10094i
\(656\) 77.0833 387.524i 0.117505 0.590738i
\(657\) −383.917 574.572i −0.584348 0.874539i
\(658\) 6.31321 + 31.7386i 0.00959454 + 0.0482350i
\(659\) −61.2456 + 61.2456i −0.0929371 + 0.0929371i −0.752047 0.659110i \(-0.770933\pi\)
0.659110 + 0.752047i \(0.270933\pi\)
\(660\) −106.669 + 159.642i −0.161620 + 0.241881i
\(661\) 758.170 + 314.044i 1.14700 + 0.475105i 0.873528 0.486774i \(-0.161827\pi\)
0.273476 + 0.961879i \(0.411827\pi\)
\(662\) 1040.69i 1.57205i
\(663\) 0 0
\(664\) 978.896 1.47424
\(665\) 298.692 721.107i 0.449161 1.08437i
\(666\) −349.410 233.468i −0.524639 0.350553i
\(667\) 97.8470 + 97.8470i 0.146697 + 0.146697i
\(668\) 31.2182 6.20969i 0.0467338 0.00929594i
\(669\) −1356.36 + 906.294i −2.02745 + 1.35470i
\(670\) 382.983 + 76.1801i 0.571617 + 0.113702i
\(671\) 454.381 188.211i 0.677170 0.280493i
\(672\) −87.8088 211.989i −0.130668 0.315460i
\(673\) −107.266 + 539.262i −0.159385 + 0.801281i 0.815532 + 0.578712i \(0.196444\pi\)
−0.974917 + 0.222569i \(0.928556\pi\)
\(674\) 321.295 + 480.852i 0.476698 + 0.713430i
\(675\) 44.6980 + 224.712i 0.0662192 + 0.332907i
\(676\) −98.5342 + 98.5342i −0.145761 + 0.145761i
\(677\) −301.014 + 450.499i −0.444629 + 0.665434i −0.984313 0.176434i \(-0.943544\pi\)
0.539684 + 0.841868i \(0.318544\pi\)
\(678\) −1235.86 511.910i −1.82280 0.755030i
\(679\) 680.714i 1.00252i
\(680\) 0 0
\(681\) 510.884 0.750197
\(682\) −177.366 + 428.199i −0.260067 + 0.627857i
\(683\) −329.272 220.012i −0.482096 0.322126i 0.290663 0.956825i \(-0.406124\pi\)
−0.772759 + 0.634699i \(0.781124\pi\)
\(684\) 113.587 + 113.587i 0.166062 + 0.166062i
\(685\) −401.005 + 79.7648i −0.585409 + 0.116445i
\(686\) −488.078 + 326.123i −0.711483 + 0.475398i
\(687\) −487.965 97.0623i −0.710284 0.141284i
\(688\) 37.5745 15.5639i 0.0546142 0.0226219i
\(689\) −39.4861 95.3279i −0.0573093 0.138357i
\(690\) −124.244 + 624.618i −0.180064 + 0.905244i
\(691\) 518.707 + 776.300i 0.750661 + 1.12344i 0.988364 + 0.152106i \(0.0486055\pi\)
−0.237703 + 0.971338i \(0.576395\pi\)
\(692\) 33.2678 + 167.249i 0.0480749 + 0.241689i
\(693\) 148.139 148.139i 0.213764 0.213764i
\(694\) −237.412 + 355.313i −0.342093 + 0.511978i
\(695\) −375.164 155.398i −0.539804 0.223594i
\(696\) 419.081i 0.602128i
\(697\) 0 0
\(698\) −887.929 −1.27210
\(699\) 93.1416 224.864i 0.133250 0.321693i
\(700\) −104.858 70.0639i −0.149797 0.100091i
\(701\) 411.177 + 411.177i 0.586558 + 0.586558i 0.936697 0.350140i \(-0.113866\pi\)
−0.350140 + 0.936697i \(0.613866\pi\)
\(702\) 38.1852 7.59550i 0.0543948 0.0108198i
\(703\) 661.299 441.866i 0.940681 0.628543i
\(704\) 484.626 + 96.3981i 0.688389 + 0.136929i
\(705\) −129.595 + 53.6800i −0.183823 + 0.0761418i
\(706\) 220.980 + 533.494i 0.313003 + 0.755657i
\(707\) −99.3518 + 499.475i −0.140526 + 0.706472i
\(708\) −23.3305 34.9165i −0.0329526 0.0493171i
\(709\) 226.937 + 1140.89i 0.320080 + 1.60915i 0.720931 + 0.693007i \(0.243715\pi\)
−0.400851 + 0.916143i \(0.631285\pi\)
\(710\) 331.966 331.966i 0.467557 0.467557i
\(711\) −87.9607 + 131.643i −0.123714 + 0.185151i
\(712\) −319.041 132.151i −0.448091 0.185605i
\(713\) 435.811i 0.611235i
\(714\) 0 0
\(715\) 180.307 0.252177
\(716\) −81.9532 + 197.853i −0.114460 + 0.276330i
\(717\) 962.072 + 642.836i 1.34180 + 0.896563i
\(718\) −663.338 663.338i −0.923869 0.923869i
\(719\) −14.5626 + 2.89668i −0.0202540 + 0.00402876i −0.205207 0.978719i \(-0.565787\pi\)
0.184953 + 0.982747i \(0.440787\pi\)
\(720\) −554.644 + 370.601i −0.770339 + 0.514724i
\(721\) −702.729 139.782i −0.974659 0.193872i
\(722\) 402.030 166.526i 0.556828 0.230646i
\(723\) 192.553 + 464.864i 0.266325 + 0.642966i
\(724\) 23.5300 118.293i 0.0325000 0.163389i
\(725\) 232.781 + 348.382i 0.321077 + 0.480526i
\(726\) −101.522 510.383i −0.139837 0.703007i
\(727\) 880.136 880.136i 1.21064 1.21064i 0.239825 0.970816i \(-0.422910\pi\)
0.970816 0.239825i \(-0.0770901\pi\)
\(728\) −65.8106 + 98.4925i −0.0903992 + 0.135292i
\(729\) 412.626 + 170.915i 0.566017 + 0.234452i
\(730\) 1279.69i 1.75300i
\(731\) 0 0
\(732\) −253.382 −0.346150
\(733\) 208.728 503.915i 0.284759 0.687469i −0.715175 0.698945i \(-0.753653\pi\)
0.999934 + 0.0114762i \(0.00365305\pi\)
\(734\) −485.934 324.691i −0.662036 0.442358i
\(735\) −714.195 714.195i −0.971694 0.971694i
\(736\) −156.543 + 31.1383i −0.212694 + 0.0423075i
\(737\) −164.935 + 110.206i −0.223793 + 0.149534i
\(738\) −431.876 85.9054i −0.585197 0.116403i
\(739\) 152.427 63.1371i 0.206261 0.0854359i −0.277161 0.960823i \(-0.589394\pi\)
0.483422 + 0.875387i \(0.339394\pi\)
\(740\) −84.4231 203.815i −0.114085 0.275426i
\(741\) 65.3353 328.463i 0.0881717 0.443269i
\(742\) 123.345 + 184.599i 0.166233 + 0.248785i
\(743\) 0.449762 + 2.26111i 0.000605333 + 0.00304321i 0.981087 0.193568i \(-0.0620062\pi\)
−0.980481 + 0.196612i \(0.937006\pi\)
\(744\) 933.294 933.294i 1.25443 1.25443i
\(745\) 222.509 333.009i 0.298670 0.446992i
\(746\) 241.151 + 99.8879i 0.323258 + 0.133898i
\(747\) 837.618i 1.12131i
\(748\) 0 0
\(749\) −163.145 −0.217817
\(750\) −209.047 + 504.684i −0.278729 + 0.672912i
\(751\) 1199.39 + 801.406i 1.59706 + 1.06712i 0.953359 + 0.301839i \(0.0976003\pi\)
0.643697 + 0.765280i \(0.277400\pi\)
\(752\) 37.0123 + 37.0123i 0.0492184 + 0.0492184i
\(753\) −559.487 + 111.289i −0.743010 + 0.147794i
\(754\) 59.2003 39.5564i 0.0785150 0.0524620i
\(755\) −1823.94 362.805i −2.41582 0.480536i
\(756\) 21.9402 9.08793i 0.0290214 0.0120211i
\(757\) −115.414 278.634i −0.152463 0.368077i 0.829132 0.559052i \(-0.188835\pi\)
−0.981595 + 0.190975i \(0.938835\pi\)
\(758\) −15.0450 + 75.6365i −0.0198483 + 0.0997843i
\(759\) −179.739 268.998i −0.236810 0.354411i
\(760\) −320.787 1612.70i −0.422088 2.12198i
\(761\) 811.549 811.549i 1.06642 1.06642i 0.0687929 0.997631i \(-0.478085\pi\)
0.997631 0.0687929i \(-0.0219148\pi\)
\(762\) 163.017 243.973i 0.213934 0.320174i
\(763\) 173.265 + 71.7685i 0.227083 + 0.0940610i
\(764\) 153.984i 0.201550i
\(765\) 0 0
\(766\) −348.859 −0.455429
\(767\) −15.0916 + 36.4344i −0.0196762 + 0.0475025i
\(768\) −540.875 361.401i −0.704264 0.470574i
\(769\) −870.130 870.130i −1.13151 1.13151i −0.989927 0.141582i \(-0.954781\pi\)
−0.141582 0.989927i \(-0.545219\pi\)
\(770\) −380.508 + 75.6877i −0.494166 + 0.0982958i
\(771\) −1322.42 + 883.615i −1.71520 + 1.14606i
\(772\) 162.617 + 32.3465i 0.210644 + 0.0418996i
\(773\) −1306.77 + 541.282i −1.69052 + 0.700235i −0.999739 0.0228308i \(-0.992732\pi\)
−0.690779 + 0.723066i \(0.742732\pi\)
\(774\) −17.3451 41.8749i −0.0224098 0.0541019i
\(775\) 257.442 1294.25i 0.332184 1.67000i
\(776\) 796.710 + 1192.36i 1.02669 + 1.53655i
\(777\) 104.256 + 524.128i 0.134177 + 0.674553i
\(778\) 26.8308 26.8308i 0.0344869 0.0344869i
\(779\) 463.005 692.937i 0.594359 0.889521i
\(780\) −85.8218 35.5486i −0.110028 0.0455751i
\(781\) 238.490i 0.305365i
\(782\) 0 0
\(783\) −78.9004 −0.100767
\(784\) −144.231 + 348.205i −0.183969 + 0.444139i
\(785\) −1730.25 1156.12i −2.20414 1.47276i
\(786\) 972.366 + 972.366i 1.23711 + 1.23711i
\(787\) 1513.12 300.978i 1.92264 0.382437i 0.922645 0.385650i \(-0.126023\pi\)
0.999995 + 0.00321327i \(0.00102282\pi\)
\(788\) 210.924 140.935i 0.267670 0.178851i
\(789\) −1156.88 230.117i −1.46626 0.291657i
\(790\) 270.877 112.201i 0.342882 0.142026i
\(791\) 293.232 + 707.924i 0.370710 + 0.894973i
\(792\) 86.1025 432.867i 0.108715 0.546549i
\(793\) 132.199 + 197.849i 0.166707 + 0.249495i
\(794\) 12.2185 + 61.4266i 0.0153885 + 0.0773634i
\(795\) −680.496 + 680.496i −0.855970 + 0.855970i
\(796\) 44.9588 67.2856i 0.0564809 0.0845297i
\(797\) 1040.17 + 430.853i 1.30511 + 0.540593i 0.923453 0.383712i \(-0.125355\pi\)
0.381654 + 0.924305i \(0.375355\pi\)
\(798\) 720.593i 0.902998i
\(799\) 0 0
\(800\) −483.288 −0.604110
\(801\) −113.079 + 272.996i −0.141172 + 0.340819i
\(802\) −219.538 146.691i −0.273739 0.182906i
\(803\) −459.675 459.675i −0.572448 0.572448i
\(804\) 100.233 19.9376i 0.124668 0.0247981i
\(805\) 303.322 202.673i 0.376798 0.251768i
\(806\) −219.931 43.7470i −0.272868 0.0542767i
\(807\) −380.953 + 157.796i −0.472061 + 0.195534i
\(808\) 410.560 + 991.179i 0.508119 + 1.22671i
\(809\) −64.1132 + 322.319i −0.0792500 + 0.398417i 0.920717 + 0.390232i \(0.127605\pi\)
−0.999967 + 0.00818445i \(0.997395\pi\)
\(810\) −705.632 1056.05i −0.871150 1.30377i
\(811\) −56.9327 286.220i −0.0702006 0.352922i 0.929680 0.368368i \(-0.120083\pi\)
−0.999881 + 0.0154457i \(0.995083\pi\)
\(812\) 30.7091 30.7091i 0.0378191 0.0378191i
\(813\) −856.736 + 1282.20i −1.05380 + 1.57712i
\(814\) −365.235 151.285i −0.448692 0.185854i
\(815\) 300.260i 0.368417i
\(816\) 0 0
\(817\) 85.7829 0.104997
\(818\) 269.482 650.588i 0.329441 0.795340i
\(819\) 84.2777 + 56.3126i 0.102903 + 0.0687577i
\(820\) −163.457 163.457i −0.199337 0.199337i
\(821\) −1059.59 + 210.765i −1.29061 + 0.256718i −0.792219 0.610237i \(-0.791074\pi\)
−0.498388 + 0.866954i \(0.666074\pi\)
\(822\) 313.854 209.711i 0.381818 0.255122i
\(823\) 89.0135 + 17.7059i 0.108157 + 0.0215138i 0.248872 0.968536i \(-0.419940\pi\)
−0.140715 + 0.990050i \(0.544940\pi\)
\(824\) −1394.52 + 577.631i −1.69238 + 0.701008i
\(825\) −374.877 905.033i −0.454396 1.09701i
\(826\) 16.5543 83.2240i 0.0200415 0.100755i
\(827\) −270.056 404.167i −0.326549 0.488715i 0.631478 0.775394i \(-0.282449\pi\)
−0.958027 + 0.286679i \(0.907449\pi\)
\(828\) 14.6471 + 73.6358i 0.0176897 + 0.0889322i
\(829\) −743.445 + 743.445i −0.896797 + 0.896797i −0.995151 0.0983544i \(-0.968642\pi\)
0.0983544 + 0.995151i \(0.468642\pi\)
\(830\) −861.770 + 1289.73i −1.03828 + 1.55389i
\(831\) 251.307 + 104.095i 0.302415 + 0.125264i
\(832\) 239.065i 0.287338i
\(833\) 0 0
\(834\) 374.896 0.449516
\(835\) −106.690 + 257.571i −0.127772 + 0.308469i
\(836\) 125.648 + 83.9554i 0.150297 + 0.100425i
\(837\) 175.711 + 175.711i 0.209930 + 0.209930i
\(838\) −64.7556 + 12.8807i −0.0772740 + 0.0153708i
\(839\) 381.369 254.822i 0.454551 0.303721i −0.307137 0.951665i \(-0.599371\pi\)
0.761688 + 0.647944i \(0.224371\pi\)
\(840\) 1083.60 + 215.540i 1.28999 + 0.256596i
\(841\) 643.676 266.619i 0.765370 0.317027i
\(842\) −298.762 721.276i −0.354824 0.856622i
\(843\) −297.687 + 1496.57i −0.353128 + 1.77529i
\(844\) 17.7482 + 26.5621i 0.0210287 + 0.0314717i
\(845\) −238.115 1197.08i −0.281793 1.41667i
\(846\) 41.2482 41.2482i 0.0487568 0.0487568i
\(847\) −165.607 + 247.848i −0.195522 + 0.292619i
\(848\) 331.775 + 137.426i 0.391244 + 0.162059i
\(849\) 1201.22i 1.41486i
\(850\) 0 0
\(851\) 371.728 0.436813
\(852\) 47.0197 113.516i 0.0551875 0.133234i
\(853\) −6.26033 4.18302i −0.00733919 0.00490389i 0.551895 0.833913i \(-0.313905\pi\)
−0.559234 + 0.829010i \(0.688905\pi\)
\(854\) −362.035 362.035i −0.423929 0.423929i
\(855\) −1379.95 + 274.490i −1.61398 + 0.321041i
\(856\) −285.770 + 190.946i −0.333844 + 0.223067i
\(857\) −49.7272 9.89135i −0.0580247 0.0115418i 0.165993 0.986127i \(-0.446917\pi\)
−0.224017 + 0.974585i \(0.571917\pi\)
\(858\) −153.792 + 63.7026i −0.179244 + 0.0742455i
\(859\) −192.547 464.849i −0.224152 0.541151i 0.771294 0.636479i \(-0.219610\pi\)
−0.995446 + 0.0953281i \(0.969610\pi\)
\(860\) 4.64202 23.3370i 0.00539770 0.0271361i
\(861\) 311.099 + 465.592i 0.361323 + 0.540758i
\(862\) 119.473 + 600.631i 0.138600 + 0.696787i
\(863\) 98.9573 98.9573i 0.114667 0.114667i −0.647445 0.762112i \(-0.724163\pi\)
0.762112 + 0.647445i \(0.224163\pi\)
\(864\) 50.5609 75.6697i 0.0585196 0.0875807i
\(865\) −1379.92 571.580i −1.59528 0.660786i
\(866\) 94.8830i 0.109565i
\(867\) 0 0
\(868\) −136.778 −0.157579
\(869\) −56.9977 + 137.605i −0.0655900 + 0.158348i
\(870\) −552.154 368.937i −0.634660 0.424066i
\(871\) −67.8634 67.8634i −0.0779143 0.0779143i
\(872\) 387.494 77.0774i 0.444374 0.0883915i
\(873\) 1020.28 681.726i 1.16870 0.780900i
\(874\) 491.615 + 97.7883i 0.562488 + 0.111886i
\(875\) 289.092 119.746i 0.330391 0.136853i
\(876\) 128.167 + 309.423i 0.146309 + 0.353222i
\(877\) 185.255 931.342i 0.211238 1.06196i −0.719001 0.695009i \(-0.755400\pi\)
0.930239 0.366955i \(-0.119600\pi\)
\(878\) 238.583 + 357.065i 0.271735 + 0.406680i
\(879\) 111.481 + 560.455i 0.126828 + 0.637605i
\(880\) −443.732 + 443.732i −0.504241 + 0.504241i
\(881\) 581.184 869.803i 0.659686 0.987290i −0.339228 0.940704i \(-0.610166\pi\)
0.998914 0.0465861i \(-0.0148342\pi\)
\(882\) 388.057 + 160.738i 0.439974 + 0.182243i
\(883\) 1264.99i 1.43261i −0.697789 0.716303i \(-0.745833\pi\)
0.697789 0.716303i \(-0.254167\pi\)
\(884\) 0 0
\(885\) 367.818 0.415613
\(886\) 77.4157 186.898i 0.0873766 0.210946i
\(887\) −649.952 434.284i −0.732753 0.489610i 0.132351 0.991203i \(-0.457747\pi\)
−0.865104 + 0.501593i \(0.832747\pi\)
\(888\) 796.059 + 796.059i 0.896463 + 0.896463i
\(889\) −164.849 + 32.7905i −0.185432 + 0.0368847i
\(890\) 454.981 304.009i 0.511215 0.341583i
\(891\) 632.812 + 125.874i 0.710227 + 0.141273i
\(892\) 329.023 136.286i 0.368860 0.152787i
\(893\) 42.2496 + 102.000i 0.0473120 + 0.114221i
\(894\) −72.1358 + 362.651i −0.0806888 + 0.405650i
\(895\) −1042.11 1559.63i −1.16437 1.74260i
\(896\) −56.1063 282.066i −0.0626187 0.314805i
\(897\) 110.680 110.680i 0.123389 0.123389i
\(898\) 532.761 797.334i 0.593276 0.887900i
\(899\) 419.842 + 173.904i 0.467010 + 0.193442i
\(900\) 227.333i 0.252592i
\(901\) 0 0
\(902\) −414.241 −0.459247
\(903\) −22.0573 + 53.2511i −0.0244267 + 0.0589713i
\(904\) 1342.19 + 896.823i 1.48472 + 0.992061i
\(905\) 746.999 + 746.999i 0.825413 + 0.825413i
\(906\) 1683.90 334.949i 1.85861 0.369701i
\(907\) 310.763 207.645i 0.342628 0.228936i −0.372336 0.928098i \(-0.621443\pi\)
0.714964 + 0.699161i \(0.246443\pi\)
\(908\) −109.390 21.7590i −0.120474 0.0239637i
\(909\) 848.129 351.306i 0.933035 0.386476i
\(910\) −71.8311 173.416i −0.0789352 0.190567i
\(911\) −23.7829 + 119.565i −0.0261064 + 0.131246i −0.991641 0.129030i \(-0.958814\pi\)
0.965534 + 0.260276i \(0.0838136\pi\)
\(912\) 647.553 + 969.131i 0.710036 + 1.06264i
\(913\) −153.727 772.838i −0.168376 0.846482i
\(914\) −280.276 + 280.276i −0.306647 + 0.306647i
\(915\) 1233.00 1845.31i 1.34754 2.01674i
\(916\) 100.349 + 41.5657i 0.109551 + 0.0453774i
\(917\) 787.702i 0.858999i
\(918\) 0 0
\(919\) 1592.00 1.73232 0.866158 0.499770i \(-0.166582\pi\)
0.866158 + 0.499770i \(0.166582\pi\)
\(920\) 294.099 710.018i 0.319673 0.771759i
\(921\) 873.645 + 583.751i 0.948583 + 0.633823i
\(922\) −314.913 314.913i −0.341555 0.341555i
\(923\) −113.169 + 22.5107i −0.122610 + 0.0243886i
\(924\) −84.4245 + 56.4107i −0.0913685 + 0.0610505i
\(925\) 1103.94 + 219.587i 1.19345 + 0.237391i
\(926\) 204.478 84.6976i 0.220819 0.0914661i
\(927\) 494.265 + 1193.26i 0.533188 + 1.28723i
\(928\) 32.4690 163.232i 0.0349881 0.175897i
\(929\) −377.264 564.616i −0.406097 0.607767i 0.570900 0.821020i \(-0.306594\pi\)
−0.976997 + 0.213252i \(0.931594\pi\)
\(930\) 408.023 + 2051.27i 0.438735 + 2.20567i
\(931\) −562.118 + 562.118i −0.603778 + 0.603778i
\(932\) −29.5205 + 44.1806i −0.0316744 + 0.0474040i
\(933\) −2109.16 873.641i −2.26062 0.936378i
\(934\) 1223.18i 1.30961i
\(935\) 0 0
\(936\) 213.532 0.228133
\(937\) 112.652 271.967i 0.120227 0.290253i −0.852296 0.523059i \(-0.824791\pi\)
0.972523 + 0.232806i \(0.0747907\pi\)
\(938\) 171.702 + 114.727i 0.183051 + 0.122311i
\(939\) 1304.18 + 1304.18i 1.38890 + 1.38890i
\(940\) 30.0350 5.97433i 0.0319521 0.00635567i
\(941\) −694.344 + 463.946i −0.737879 + 0.493035i −0.866822 0.498617i \(-0.833841\pi\)
0.128943 + 0.991652i \(0.458841\pi\)
\(942\) 1884.27 + 374.804i 2.00029 + 0.397882i
\(943\) 359.862 149.060i 0.381614 0.158070i
\(944\) −52.5243 126.805i −0.0556402 0.134327i
\(945\) −40.5798 + 204.008i −0.0429416 + 0.215882i
\(946\) −23.6889 35.4530i −0.0250412 0.0374767i
\(947\) 121.512 + 610.881i 0.128312 + 0.645070i 0.990391 + 0.138295i \(0.0441624\pi\)
−0.862079 + 0.506775i \(0.830838\pi\)
\(948\) 54.2592 54.2592i 0.0572355 0.0572355i
\(949\) 174.738 261.514i 0.184129 0.275568i
\(950\) 1402.21 + 580.814i 1.47601 + 0.611383i
\(951\) 1343.30i 1.41252i
\(952\) 0 0
\(953\) −373.214 −0.391620 −0.195810 0.980642i \(-0.562734\pi\)
−0.195810 + 0.980642i \(0.562734\pi\)
\(954\) 153.154 369.746i 0.160539 0.387575i
\(955\) 1121.43 + 749.313i 1.17427 + 0.784621i
\(956\) −178.619 178.619i −0.186840 0.186840i
\(957\) 330.864 65.8130i 0.345730 0.0687701i
\(958\) 702.650 469.496i 0.733455 0.490079i
\(959\) −212.067 42.1827i −0.221133 0.0439861i
\(960\) 2060.00 853.280i 2.14583 0.888833i
\(961\) −179.945 434.426i −0.187248 0.452056i
\(962\) 37.3143 187.592i 0.0387883 0.195002i
\(963\) 163.388 + 244.527i 0.169665 + 0.253922i
\(964\) −21.4303 107.737i −0.0222306 0.111761i
\(965\) −1026.89 + 1026.89i −1.06414 + 1.06414i
\(966\) −187.112 + 280.033i −0.193698 + 0.289890i
\(967\) 947.512 + 392.472i 0.979847 + 0.405866i 0.814369 0.580348i \(-0.197083\pi\)
0.165478 + 0.986213i \(0.447083\pi\)
\(968\) 627.966i 0.648725i
\(969\) 0 0
\(970\) −2272.36 −2.34264
\(971\) 376.591 909.171i 0.387838 0.936325i −0.602559 0.798074i \(-0.705852\pi\)
0.990397 0.138250i \(-0.0441478\pi\)
\(972\) −232.961 155.660i −0.239672 0.160144i
\(973\) −151.849 151.849i −0.156063 0.156063i
\(974\) −702.385 + 139.713i −0.721134 + 0.143443i
\(975\) 394.074 263.312i 0.404179 0.270064i
\(976\) −812.243 161.565i −0.832216 0.165538i
\(977\) −525.837 + 217.809i −0.538216 + 0.222936i −0.635197 0.772350i \(-0.719081\pi\)
0.0969814 + 0.995286i \(0.469081\pi\)
\(978\) −106.082 256.105i −0.108469 0.261866i
\(979\) −54.2306 + 272.636i −0.0553939 + 0.278484i
\(980\) 122.504 + 183.341i 0.125004 + 0.187082i
\(981\) −65.9533 331.570i −0.0672307 0.337991i
\(982\) −77.4444 + 77.4444i −0.0788639 + 0.0788639i
\(983\) −798.843 + 1195.55i −0.812658 + 1.21623i 0.160715 + 0.987001i \(0.448620\pi\)
−0.973373 + 0.229228i \(0.926380\pi\)
\(984\) 1089.86 + 451.436i 1.10758 + 0.458776i
\(985\) 2221.92i 2.25575i
\(986\) 0 0
\(987\) −74.1814 −0.0751585
\(988\) −27.9790 + 67.5473i −0.0283188 + 0.0683677i
\(989\) 33.3365 + 22.2748i 0.0337073 + 0.0225225i
\(990\) 494.517 + 494.517i 0.499512 + 0.499512i
\(991\) 82.3495 16.3803i 0.0830973 0.0165291i −0.153367 0.988169i \(-0.549012\pi\)
0.236464 + 0.971640i \(0.424012\pi\)
\(992\) −435.827 + 291.210i −0.439342 + 0.293559i
\(993\) 2339.80 + 465.415i 2.35629 + 0.468696i
\(994\) 229.375 95.0102i 0.230759 0.0955837i
\(995\) 271.246 + 654.847i 0.272609 + 0.658137i
\(996\) −79.1992 + 398.161i −0.0795172 + 0.399760i
\(997\) −418.521 626.361i −0.419780 0.628246i 0.559959 0.828520i \(-0.310817\pi\)
−0.979740 + 0.200274i \(0.935817\pi\)
\(998\) 176.763 + 888.649i 0.177118 + 0.890430i
\(999\) −149.874 + 149.874i −0.150024 + 0.150024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.a.214.1 8
17.2 even 8 289.3.e.g.40.1 8
17.3 odd 16 289.3.e.j.158.1 8
17.4 even 4 289.3.e.j.75.1 8
17.5 odd 16 289.3.e.e.131.1 8
17.6 odd 16 289.3.e.g.224.1 8
17.7 odd 16 289.3.e.h.65.1 8
17.8 even 8 289.3.e.f.249.1 8
17.9 even 8 289.3.e.h.249.1 8
17.10 odd 16 289.3.e.f.65.1 8
17.11 odd 16 17.3.e.b.3.1 8
17.12 odd 16 inner 289.3.e.a.131.1 8
17.13 even 4 289.3.e.n.75.1 8
17.14 odd 16 289.3.e.n.158.1 8
17.15 even 8 17.3.e.b.6.1 yes 8
17.16 even 2 289.3.e.e.214.1 8
51.11 even 16 153.3.p.a.37.1 8
51.32 odd 8 153.3.p.a.91.1 8
68.11 even 16 272.3.bh.b.241.1 8
68.15 odd 8 272.3.bh.b.193.1 8
85.28 even 16 425.3.t.d.224.1 8
85.32 odd 8 425.3.t.d.74.1 8
85.49 even 8 425.3.u.a.176.1 8
85.62 even 16 425.3.t.b.224.1 8
85.79 odd 16 425.3.u.a.326.1 8
85.83 odd 8 425.3.t.b.74.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.3.1 8 17.11 odd 16
17.3.e.b.6.1 yes 8 17.15 even 8
153.3.p.a.37.1 8 51.11 even 16
153.3.p.a.91.1 8 51.32 odd 8
272.3.bh.b.193.1 8 68.15 odd 8
272.3.bh.b.241.1 8 68.11 even 16
289.3.e.a.131.1 8 17.12 odd 16 inner
289.3.e.a.214.1 8 1.1 even 1 trivial
289.3.e.e.131.1 8 17.5 odd 16
289.3.e.e.214.1 8 17.16 even 2
289.3.e.f.65.1 8 17.10 odd 16
289.3.e.f.249.1 8 17.8 even 8
289.3.e.g.40.1 8 17.2 even 8
289.3.e.g.224.1 8 17.6 odd 16
289.3.e.h.65.1 8 17.7 odd 16
289.3.e.h.249.1 8 17.9 even 8
289.3.e.j.75.1 8 17.4 even 4
289.3.e.j.158.1 8 17.3 odd 16
289.3.e.n.75.1 8 17.13 even 4
289.3.e.n.158.1 8 17.14 odd 16
425.3.t.b.74.1 8 85.83 odd 8
425.3.t.b.224.1 8 85.62 even 16
425.3.t.d.74.1 8 85.32 odd 8
425.3.t.d.224.1 8 85.28 even 16
425.3.u.a.176.1 8 85.49 even 8
425.3.u.a.326.1 8 85.79 odd 16