Properties

Label 2-17e2-17.10-c2-0-10
Degree $2$
Conductor $289$
Sign $0.997 + 0.0637i$
Analytic cond. $7.87467$
Root an. cond. $2.80618$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.675 + 1.63i)2-s + (−3.36 − 2.24i)3-s + (0.624 + 0.624i)4-s + (−7.58 + 1.50i)5-s + (5.94 − 3.96i)6-s + (−4.01 − 0.798i)7-s + (−7.96 + 3.29i)8-s + (2.82 + 6.81i)9-s + (2.66 − 13.3i)10-s + (3.85 + 5.77i)11-s + (−0.697 − 3.50i)12-s + (−2.37 + 2.37i)13-s + (4.01 − 6.00i)14-s + (28.9 + 11.9i)15-s − 11.6i·16-s + ⋯
L(s)  = 1  + (−0.337 + 0.815i)2-s + (−1.12 − 0.749i)3-s + (0.156 + 0.156i)4-s + (−1.51 + 0.301i)5-s + (0.990 − 0.661i)6-s + (−0.573 − 0.114i)7-s + (−0.995 + 0.412i)8-s + (0.313 + 0.757i)9-s + (0.266 − 1.33i)10-s + (0.350 + 0.524i)11-s + (−0.0581 − 0.292i)12-s + (−0.182 + 0.182i)13-s + (0.286 − 0.429i)14-s + (1.92 + 0.798i)15-s − 0.730i·16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0637i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 289 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0637i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(289\)    =    \(17^{2}\)
Sign: $0.997 + 0.0637i$
Analytic conductor: \(7.87467\)
Root analytic conductor: \(2.80618\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{289} (214, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 289,\ (\ :1),\ 0.997 + 0.0637i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.435225 - 0.0138770i\)
\(L(\frac12)\) \(\approx\) \(0.435225 - 0.0138770i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad17 \( 1 \)
good2 \( 1 + (0.675 - 1.63i)T + (-2.82 - 2.82i)T^{2} \)
3 \( 1 + (3.36 + 2.24i)T + (3.44 + 8.31i)T^{2} \)
5 \( 1 + (7.58 - 1.50i)T + (23.0 - 9.56i)T^{2} \)
7 \( 1 + (4.01 + 0.798i)T + (45.2 + 18.7i)T^{2} \)
11 \( 1 + (-3.85 - 5.77i)T + (-46.3 + 111. i)T^{2} \)
13 \( 1 + (2.37 - 2.37i)T - 169iT^{2} \)
19 \( 1 + (-9.43 + 22.7i)T + (-255. - 255. i)T^{2} \)
23 \( 1 + (-9.57 + 6.40i)T + (202. - 488. i)T^{2} \)
29 \( 1 + (-2.34 - 11.7i)T + (-776. + 321. i)T^{2} \)
31 \( 1 + (-21.0 + 31.4i)T + (-367. - 887. i)T^{2} \)
37 \( 1 + (-26.8 - 17.9i)T + (523. + 1.26e3i)T^{2} \)
41 \( 1 + (-33.1 - 6.59i)T + (1.55e3 + 643. i)T^{2} \)
43 \( 1 + (-1.33 - 3.21i)T + (-1.30e3 + 1.30e3i)T^{2} \)
47 \( 1 + (3.16 - 3.16i)T - 2.20e3iT^{2} \)
53 \( 1 + (11.7 - 28.3i)T + (-1.98e3 - 1.98e3i)T^{2} \)
59 \( 1 + (-10.8 + 4.49i)T + (2.46e3 - 2.46e3i)T^{2} \)
61 \( 1 + (-13.8 + 69.5i)T + (-3.43e3 - 1.42e3i)T^{2} \)
67 \( 1 - 28.5iT - 4.48e3T^{2} \)
71 \( 1 + (-28.5 - 19.0i)T + (1.92e3 + 4.65e3i)T^{2} \)
73 \( 1 + (91.8 - 18.2i)T + (4.92e3 - 2.03e3i)T^{2} \)
79 \( 1 + (-11.9 - 17.8i)T + (-2.38e3 + 5.76e3i)T^{2} \)
83 \( 1 + (104. + 43.4i)T + (4.87e3 + 4.87e3i)T^{2} \)
89 \( 1 + (-28.3 - 28.3i)T + 7.92e3iT^{2} \)
97 \( 1 + (32.4 + 163. i)T + (-8.69e3 + 3.60e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.53254033679320882332009528111, −11.16910329009987271160464016372, −9.526963785857378897884063594993, −8.292244974934896962019479887064, −7.24873476004431489477705973916, −6.97604377869381240939717271412, −6.03821970274723652682374689214, −4.55702224446205081764446394165, −3.03030318548621011436026237179, −0.43060117654496251862540242158, 0.791566606905266164325046499722, 3.20647529124500709640903055039, 4.16550727090641607178471530793, 5.48699082390709938090410469308, 6.47077743051346503521482529971, 7.84742386699406226952959120825, 9.067737168552739575738596368174, 10.05291924771225474876442920104, 10.78210469550571128024680397613, 11.63394616832544125599371494511

Graph of the $Z$-function along the critical line