Properties

Label 289.3.e.n.75.1
Level $289$
Weight $3$
Character 289.75
Analytic conductor $7.875$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [289,3,Mod(40,289)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(289, base_ring=CyclotomicField(16)) chi = DirichletCharacter(H, H._module([15])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("289.40"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 289 = 17^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 289.e (of order \(16\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,8,8,8,-16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.87467964001\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 75.1
Root \(-0.382683 - 0.923880i\) of defining polynomial
Character \(\chi\) \(=\) 289.75
Dual form 289.3.e.n.158.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.675577 - 1.63099i) q^{2} +(2.24830 - 3.36482i) q^{3} +(0.624715 + 0.624715i) q^{4} +(-1.50967 - 7.58960i) q^{5} +(-3.96908 - 5.94015i) q^{6} +(-0.798369 + 4.01367i) q^{7} +(7.96489 - 3.29916i) q^{8} +(-2.82302 - 6.81537i) q^{9} +(-13.3984 - 2.66511i) q^{10} +(5.77017 - 3.85550i) q^{11} +(3.50660 - 0.697506i) q^{12} +(-2.37416 + 2.37416i) q^{13} +(6.00688 + 4.01367i) q^{14} +(-28.9319 - 11.9840i) q^{15} -11.6855i q^{16} -13.0229 q^{18} +(-9.43215 + 22.7712i) q^{19} +(3.79823 - 5.68445i) q^{20} +(11.7103 + 11.7103i) q^{21} +(-2.39008 - 12.0158i) q^{22} +(-6.40006 - 9.57836i) q^{23} +(6.80638 - 34.2180i) q^{24} +(-32.2260 + 13.3484i) q^{25} +(2.26829 + 5.47615i) q^{26} +(6.44221 + 1.28144i) q^{27} +(-3.00615 + 2.00865i) q^{28} +(-11.7813 + 2.34344i) q^{29} +(-39.0914 + 39.0914i) q^{30} +(31.4557 + 21.0180i) q^{31} +(12.8006 + 5.30218i) q^{32} -28.0839i q^{33} +31.6674 q^{35} +(2.49408 - 6.02124i) q^{36} +(-17.9275 + 26.8303i) q^{37} +(30.7674 + 30.7674i) q^{38} +(2.65080 + 13.3265i) q^{39} +(-37.0637 - 55.4697i) q^{40} +(6.59647 - 33.1627i) q^{41} +(27.0106 - 11.1881i) q^{42} +(-1.33189 - 3.21547i) q^{43} +(6.01330 + 1.19612i) q^{44} +(-47.4641 + 31.7145i) q^{45} +(-19.9459 + 3.96749i) q^{46} +(-3.16735 + 3.16735i) q^{47} +(-39.3198 - 26.2726i) q^{48} +(29.7979 + 12.3427i) q^{49} +61.5781i q^{50} -2.96634 q^{52} +(11.7603 - 28.3919i) q^{53} +(6.44221 - 9.64145i) q^{54} +(-37.9728 - 37.9728i) q^{55} +(6.88284 + 34.6024i) q^{56} +(55.4148 + 82.9342i) q^{57} +(-4.13703 + 20.7982i) q^{58} +(-10.8514 + 4.49481i) q^{59} +(-10.5876 - 25.5607i) q^{60} +(-69.5084 - 13.8261i) q^{61} +(55.5309 - 37.1045i) q^{62} +(29.6084 - 5.88948i) q^{63} +(50.3473 - 50.3473i) q^{64} +(21.6031 + 14.4347i) q^{65} +(-45.8045 - 18.9728i) q^{66} +28.5842i q^{67} -46.6187 q^{69} +(21.3938 - 51.6491i) q^{70} +(-19.0927 + 28.5742i) q^{71} +(-44.9700 - 44.9700i) q^{72} +(-18.2751 - 91.8752i) q^{73} +(31.6486 + 47.3654i) q^{74} +(-27.5386 + 138.446i) q^{75} +(-20.1179 + 8.33312i) q^{76} +(10.8680 + 26.2377i) q^{77} +(23.5261 + 4.67963i) q^{78} +(17.8452 - 11.9238i) q^{79} +(-88.6886 + 17.6413i) q^{80} +(65.7422 - 65.7422i) q^{81} +(-49.6315 - 33.1627i) q^{82} +(104.903 + 43.4522i) q^{83} +14.6312i q^{84} -6.14419 q^{86} +(-18.6026 + 44.9106i) q^{87} +(33.2388 - 49.7454i) q^{88} +(28.3238 + 28.3238i) q^{89} +(19.6603 + 98.8389i) q^{90} +(-7.63364 - 11.4245i) q^{91} +(1.98553 - 9.98195i) q^{92} +(141.444 - 58.5880i) q^{93} +(3.02612 + 7.30570i) q^{94} +(187.064 + 37.2094i) q^{95} +(46.6205 - 31.1508i) q^{96} +(163.144 - 32.4513i) q^{97} +(40.2616 - 40.2616i) q^{98} +(-42.5659 - 28.4417i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{2} + 8 q^{3} + 8 q^{4} - 16 q^{5} + 8 q^{7} + 8 q^{8} - 56 q^{9} - 48 q^{10} + 24 q^{11} + 24 q^{12} - 8 q^{14} - 80 q^{15} - 136 q^{18} - 80 q^{19} + 48 q^{20} + 64 q^{21} - 16 q^{22} - 104 q^{23}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/289\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{11}{16}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.675577 1.63099i 0.337788 0.815493i −0.660139 0.751143i \(-0.729503\pi\)
0.997927 0.0643498i \(-0.0204973\pi\)
\(3\) 2.24830 3.36482i 0.749434 1.12161i −0.239156 0.970981i \(-0.576871\pi\)
0.988591 0.150627i \(-0.0481291\pi\)
\(4\) 0.624715 + 0.624715i 0.156179 + 0.156179i
\(5\) −1.50967 7.58960i −0.301933 1.51792i −0.772190 0.635391i \(-0.780839\pi\)
0.470257 0.882529i \(-0.344161\pi\)
\(6\) −3.96908 5.94015i −0.661513 0.990025i
\(7\) −0.798369 + 4.01367i −0.114053 + 0.573381i 0.880923 + 0.473260i \(0.156923\pi\)
−0.994975 + 0.100121i \(0.968077\pi\)
\(8\) 7.96489 3.29916i 0.995611 0.412396i
\(9\) −2.82302 6.81537i −0.313669 0.757263i
\(10\) −13.3984 2.66511i −1.33984 0.266511i
\(11\) 5.77017 3.85550i 0.524561 0.350500i −0.264925 0.964269i \(-0.585347\pi\)
0.789486 + 0.613769i \(0.210347\pi\)
\(12\) 3.50660 0.697506i 0.292217 0.0581255i
\(13\) −2.37416 + 2.37416i −0.182628 + 0.182628i −0.792500 0.609872i \(-0.791221\pi\)
0.609872 + 0.792500i \(0.291221\pi\)
\(14\) 6.00688 + 4.01367i 0.429063 + 0.286691i
\(15\) −28.9319 11.9840i −1.92879 0.798931i
\(16\) 11.6855i 0.730347i
\(17\) 0 0
\(18\) −13.0229 −0.723496
\(19\) −9.43215 + 22.7712i −0.496429 + 1.19849i 0.454965 + 0.890509i \(0.349652\pi\)
−0.951394 + 0.307977i \(0.900348\pi\)
\(20\) 3.79823 5.68445i 0.189911 0.284222i
\(21\) 11.7103 + 11.7103i 0.557634 + 0.557634i
\(22\) −2.39008 12.0158i −0.108640 0.546170i
\(23\) −6.40006 9.57836i −0.278263 0.416450i 0.665843 0.746092i \(-0.268072\pi\)
−0.944106 + 0.329642i \(0.893072\pi\)
\(24\) 6.80638 34.2180i 0.283599 1.42575i
\(25\) −32.2260 + 13.3484i −1.28904 + 0.533938i
\(26\) 2.26829 + 5.47615i 0.0872421 + 0.210621i
\(27\) 6.44221 + 1.28144i 0.238600 + 0.0474606i
\(28\) −3.00615 + 2.00865i −0.107363 + 0.0717373i
\(29\) −11.7813 + 2.34344i −0.406250 + 0.0808082i −0.393986 0.919117i \(-0.628904\pi\)
−0.0122647 + 0.999925i \(0.503904\pi\)
\(30\) −39.0914 + 39.0914i −1.30305 + 1.30305i
\(31\) 31.4557 + 21.0180i 1.01470 + 0.678001i 0.947506 0.319739i \(-0.103595\pi\)
0.0671946 + 0.997740i \(0.478595\pi\)
\(32\) 12.8006 + 5.30218i 0.400019 + 0.165693i
\(33\) 28.0839i 0.851028i
\(34\) 0 0
\(35\) 31.6674 0.904784
\(36\) 2.49408 6.02124i 0.0692800 0.167257i
\(37\) −17.9275 + 26.8303i −0.484526 + 0.725145i −0.990516 0.137395i \(-0.956127\pi\)
0.505990 + 0.862539i \(0.331127\pi\)
\(38\) 30.7674 + 30.7674i 0.809669 + 0.809669i
\(39\) 2.65080 + 13.3265i 0.0679691 + 0.341704i
\(40\) −37.0637 55.4697i −0.926592 1.38674i
\(41\) 6.59647 33.1627i 0.160890 0.808846i −0.813077 0.582156i \(-0.802209\pi\)
0.973967 0.226691i \(-0.0727906\pi\)
\(42\) 27.0106 11.1881i 0.643109 0.266384i
\(43\) −1.33189 3.21547i −0.0309742 0.0747784i 0.907636 0.419759i \(-0.137885\pi\)
−0.938610 + 0.344981i \(0.887885\pi\)
\(44\) 6.01330 + 1.19612i 0.136666 + 0.0271845i
\(45\) −47.4641 + 31.7145i −1.05476 + 0.704767i
\(46\) −19.9459 + 3.96749i −0.433607 + 0.0862497i
\(47\) −3.16735 + 3.16735i −0.0673905 + 0.0673905i −0.739999 0.672608i \(-0.765174\pi\)
0.672608 + 0.739999i \(0.265174\pi\)
\(48\) −39.3198 26.2726i −0.819162 0.547347i
\(49\) 29.7979 + 12.3427i 0.608121 + 0.251892i
\(50\) 61.5781i 1.23156i
\(51\) 0 0
\(52\) −2.96634 −0.0570451
\(53\) 11.7603 28.3919i 0.221893 0.535697i −0.773254 0.634096i \(-0.781372\pi\)
0.995147 + 0.0983994i \(0.0313723\pi\)
\(54\) 6.44221 9.64145i 0.119300 0.178545i
\(55\) −37.9728 37.9728i −0.690414 0.690414i
\(56\) 6.88284 + 34.6024i 0.122908 + 0.617900i
\(57\) 55.4148 + 82.9342i 0.972190 + 1.45499i
\(58\) −4.13703 + 20.7982i −0.0713281 + 0.358590i
\(59\) −10.8514 + 4.49481i −0.183923 + 0.0761832i −0.472744 0.881200i \(-0.656737\pi\)
0.288822 + 0.957383i \(0.406737\pi\)
\(60\) −10.5876 25.5607i −0.176460 0.426012i
\(61\) −69.5084 13.8261i −1.13948 0.226657i −0.410942 0.911661i \(-0.634800\pi\)
−0.728539 + 0.685004i \(0.759800\pi\)
\(62\) 55.5309 37.1045i 0.895659 0.598460i
\(63\) 29.6084 5.88948i 0.469975 0.0934839i
\(64\) 50.3473 50.3473i 0.786676 0.786676i
\(65\) 21.6031 + 14.4347i 0.332356 + 0.222073i
\(66\) −45.8045 18.9728i −0.694008 0.287467i
\(67\) 28.5842i 0.426629i 0.976984 + 0.213315i \(0.0684260\pi\)
−0.976984 + 0.213315i \(0.931574\pi\)
\(68\) 0 0
\(69\) −46.6187 −0.675634
\(70\) 21.3938 51.6491i 0.305625 0.737845i
\(71\) −19.0927 + 28.5742i −0.268911 + 0.402454i −0.941208 0.337828i \(-0.890308\pi\)
0.672297 + 0.740282i \(0.265308\pi\)
\(72\) −44.9700 44.9700i −0.624584 0.624584i
\(73\) −18.2751 91.8752i −0.250344 1.25856i −0.877464 0.479642i \(-0.840767\pi\)
0.627120 0.778922i \(-0.284233\pi\)
\(74\) 31.6486 + 47.3654i 0.427683 + 0.640073i
\(75\) −27.5386 + 138.446i −0.367182 + 1.84595i
\(76\) −20.1179 + 8.33312i −0.264710 + 0.109646i
\(77\) 10.8680 + 26.2377i 0.141143 + 0.340749i
\(78\) 23.5261 + 4.67963i 0.301616 + 0.0599952i
\(79\) 17.8452 11.9238i 0.225889 0.150934i −0.437476 0.899230i \(-0.644128\pi\)
0.663365 + 0.748296i \(0.269128\pi\)
\(80\) −88.6886 + 17.6413i −1.10861 + 0.220516i
\(81\) 65.7422 65.7422i 0.811632 0.811632i
\(82\) −49.6315 33.1627i −0.605262 0.404423i
\(83\) 104.903 + 43.4522i 1.26389 + 0.523521i 0.911102 0.412182i \(-0.135233\pi\)
0.352789 + 0.935703i \(0.385233\pi\)
\(84\) 14.6312i 0.174181i
\(85\) 0 0
\(86\) −6.14419 −0.0714440
\(87\) −18.6026 + 44.9106i −0.213823 + 0.516214i
\(88\) 33.2388 49.7454i 0.377714 0.565288i
\(89\) 28.3238 + 28.3238i 0.318245 + 0.318245i 0.848093 0.529848i \(-0.177751\pi\)
−0.529848 + 0.848093i \(0.677751\pi\)
\(90\) 19.6603 + 98.8389i 0.218448 + 1.09821i
\(91\) −7.63364 11.4245i −0.0838861 0.125544i
\(92\) 1.98553 9.98195i 0.0215819 0.108499i
\(93\) 141.444 58.5880i 1.52090 0.629978i
\(94\) 3.02612 + 7.30570i 0.0321928 + 0.0777202i
\(95\) 187.064 + 37.2094i 1.96910 + 0.391677i
\(96\) 46.6205 31.1508i 0.485630 0.324488i
\(97\) 163.144 32.4513i 1.68190 0.334550i 0.740552 0.671999i \(-0.234564\pi\)
0.941344 + 0.337449i \(0.109564\pi\)
\(98\) 40.2616 40.2616i 0.410833 0.410833i
\(99\) −42.5659 28.4417i −0.429959 0.287289i
\(100\) −28.4710 11.7931i −0.284710 0.117931i
\(101\) 124.444i 1.23211i −0.787701 0.616057i \(-0.788729\pi\)
0.787701 0.616057i \(-0.211271\pi\)
\(102\) 0 0
\(103\) 175.084 1.69984 0.849922 0.526908i \(-0.176649\pi\)
0.849922 + 0.526908i \(0.176649\pi\)
\(104\) −11.0772 + 26.7427i −0.106511 + 0.257141i
\(105\) 71.1980 106.555i 0.678076 1.01481i
\(106\) −38.3619 38.3619i −0.361904 0.361904i
\(107\) 7.77754 + 39.1003i 0.0726873 + 0.365424i 0.999960 0.00896329i \(-0.00285314\pi\)
−0.927273 + 0.374387i \(0.877853\pi\)
\(108\) 3.22401 + 4.82508i 0.0298520 + 0.0446766i
\(109\) −8.94051 + 44.9470i −0.0820231 + 0.412358i 0.917858 + 0.396910i \(0.129917\pi\)
−0.999881 + 0.0154480i \(0.995083\pi\)
\(110\) −87.5866 + 36.2795i −0.796241 + 0.329814i
\(111\) 49.9730 + 120.645i 0.450207 + 1.08690i
\(112\) 46.9019 + 9.32937i 0.418767 + 0.0832980i
\(113\) −155.686 + 104.026i −1.37775 + 0.920585i −0.999986 0.00531545i \(-0.998308\pi\)
−0.377767 + 0.925901i \(0.623308\pi\)
\(114\) 172.701 34.3525i 1.51493 0.301337i
\(115\) −63.0340 + 63.0340i −0.548122 + 0.548122i
\(116\) −8.82391 5.89595i −0.0760682 0.0508271i
\(117\) 22.8831 + 9.47847i 0.195582 + 0.0810126i
\(118\) 20.7351i 0.175721i
\(119\) 0 0
\(120\) −269.976 −2.24980
\(121\) −27.8748 + 67.2956i −0.230370 + 0.556162i
\(122\) −69.5084 + 104.027i −0.569741 + 0.852677i
\(123\) −96.7557 96.7557i −0.786632 0.786632i
\(124\) 6.52057 + 32.7811i 0.0525852 + 0.264364i
\(125\) 42.4808 + 63.5770i 0.339846 + 0.508616i
\(126\) 10.3971 52.2698i 0.0825167 0.414839i
\(127\) −37.9454 + 15.7175i −0.298783 + 0.123760i −0.527039 0.849841i \(-0.676698\pi\)
0.228256 + 0.973601i \(0.426698\pi\)
\(128\) −26.8936 64.9268i −0.210106 0.507241i
\(129\) −13.8140 2.74777i −0.107085 0.0213006i
\(130\) 38.1374 25.4826i 0.293365 0.196020i
\(131\) −188.785 + 37.5517i −1.44111 + 0.286654i −0.852908 0.522061i \(-0.825163\pi\)
−0.588200 + 0.808715i \(0.700163\pi\)
\(132\) 17.5444 17.5444i 0.132912 0.132912i
\(133\) −83.8659 56.0374i −0.630571 0.421334i
\(134\) 46.6204 + 19.3108i 0.347913 + 0.144110i
\(135\) 50.8284i 0.376507i
\(136\) 0 0
\(137\) 52.8361 0.385665 0.192832 0.981232i \(-0.438233\pi\)
0.192832 + 0.981232i \(0.438233\pi\)
\(138\) −31.4945 + 76.0345i −0.228221 + 0.550975i
\(139\) −29.1541 + 43.6322i −0.209742 + 0.313900i −0.921393 0.388632i \(-0.872948\pi\)
0.711651 + 0.702533i \(0.247948\pi\)
\(140\) 19.7831 + 19.7831i 0.141308 + 0.141308i
\(141\) 3.53641 + 17.7788i 0.0250810 + 0.126090i
\(142\) 33.7056 + 50.4440i 0.237363 + 0.355239i
\(143\) −4.54572 + 22.8529i −0.0317882 + 0.159810i
\(144\) −79.6413 + 32.9885i −0.553064 + 0.229087i
\(145\) 35.5715 + 85.8773i 0.245321 + 0.592257i
\(146\) −162.193 32.2623i −1.11091 0.220974i
\(147\) 108.526 72.5147i 0.738271 0.493297i
\(148\) −27.9609 + 5.56176i −0.188925 + 0.0375795i
\(149\) −36.5973 + 36.5973i −0.245620 + 0.245620i −0.819170 0.573551i \(-0.805566\pi\)
0.573551 + 0.819170i \(0.305566\pi\)
\(150\) 207.199 + 138.446i 1.38133 + 0.922974i
\(151\) −222.028 91.9670i −1.47038 0.609053i −0.503437 0.864032i \(-0.667931\pi\)
−0.966947 + 0.254979i \(0.917931\pi\)
\(152\) 212.489i 1.39795i
\(153\) 0 0
\(154\) 50.1354 0.325555
\(155\) 112.031 270.467i 0.722780 1.74495i
\(156\) −6.66924 + 9.98122i −0.0427515 + 0.0639822i
\(157\) 190.153 + 190.153i 1.21117 + 1.21117i 0.970644 + 0.240522i \(0.0773185\pi\)
0.240522 + 0.970644i \(0.422681\pi\)
\(158\) −7.39174 37.1608i −0.0467832 0.235195i
\(159\) −69.0931 103.405i −0.434548 0.650346i
\(160\) 20.9168 105.156i 0.130730 0.657225i
\(161\) 43.5540 18.0406i 0.270522 0.112054i
\(162\) −62.8107 151.638i −0.387720 0.936040i
\(163\) −38.0563 7.56986i −0.233474 0.0464409i 0.0769665 0.997034i \(-0.475477\pi\)
−0.310441 + 0.950593i \(0.600477\pi\)
\(164\) 24.8381 16.5963i 0.151452 0.101197i
\(165\) −213.146 + 42.3974i −1.29179 + 0.256954i
\(166\) 141.740 141.740i 0.853855 0.853855i
\(167\) 29.9560 + 20.0159i 0.179377 + 0.119856i 0.642017 0.766690i \(-0.278098\pi\)
−0.462640 + 0.886546i \(0.653098\pi\)
\(168\) 131.906 + 54.6371i 0.785152 + 0.325221i
\(169\) 157.727i 0.933294i
\(170\) 0 0
\(171\) 181.821 1.06328
\(172\) 1.17670 2.84081i 0.00684128 0.0165163i
\(173\) −107.234 + 160.487i −0.619848 + 0.927668i 0.380149 + 0.924925i \(0.375873\pi\)
−0.999996 + 0.00274223i \(0.999127\pi\)
\(174\) 60.6811 + 60.6811i 0.348742 + 0.348742i
\(175\) −27.8480 140.001i −0.159132 0.800009i
\(176\) −45.0536 67.4275i −0.255987 0.383111i
\(177\) −9.27307 + 46.6188i −0.0523902 + 0.263383i
\(178\) 65.3307 27.0608i 0.367026 0.152027i
\(179\) −92.7619 223.947i −0.518223 1.25110i −0.938994 0.343933i \(-0.888241\pi\)
0.420771 0.907167i \(-0.361759\pi\)
\(180\) −49.4640 9.83901i −0.274800 0.0546612i
\(181\) −113.511 + 75.8453i −0.627130 + 0.419035i −0.828114 0.560560i \(-0.810586\pi\)
0.200984 + 0.979595i \(0.435586\pi\)
\(182\) −23.7904 + 4.73220i −0.130716 + 0.0260011i
\(183\) −202.798 + 202.798i −1.10819 + 1.10819i
\(184\) −82.5763 55.1757i −0.448784 0.299868i
\(185\) 230.696 + 95.5575i 1.24701 + 0.516527i
\(186\) 270.274i 1.45308i
\(187\) 0 0
\(188\) −3.95738 −0.0210499
\(189\) −10.2865 + 24.8339i −0.0544260 + 0.131396i
\(190\) 187.064 279.961i 0.984548 1.47348i
\(191\) −123.244 123.244i −0.645254 0.645254i 0.306588 0.951842i \(-0.400813\pi\)
−0.951842 + 0.306588i \(0.900813\pi\)
\(192\) −56.2137 282.606i −0.292780 1.47190i
\(193\) −104.264 156.042i −0.540227 0.808507i 0.456468 0.889740i \(-0.349114\pi\)
−0.996695 + 0.0812325i \(0.974114\pi\)
\(194\) 57.2885 288.009i 0.295302 1.48458i
\(195\) 97.1407 40.2370i 0.498157 0.206344i
\(196\) 10.9045 + 26.3259i 0.0556354 + 0.134316i
\(197\) −281.616 56.0168i −1.42952 0.284349i −0.581169 0.813783i \(-0.697405\pi\)
−0.848352 + 0.529433i \(0.822405\pi\)
\(198\) −75.1445 + 50.2100i −0.379518 + 0.253586i
\(199\) 89.8366 17.8696i 0.451440 0.0897970i 0.0358665 0.999357i \(-0.488581\pi\)
0.415574 + 0.909560i \(0.363581\pi\)
\(200\) −212.638 + 212.638i −1.06319 + 1.06319i
\(201\) 96.1807 + 64.2659i 0.478511 + 0.319731i
\(202\) −202.966 84.0712i −1.00478 0.416194i
\(203\) 49.1570i 0.242153i
\(204\) 0 0
\(205\) −261.650 −1.27634
\(206\) 118.283 285.560i 0.574188 1.38621i
\(207\) −47.2126 + 70.6586i −0.228080 + 0.341346i
\(208\) 27.7433 + 27.7433i 0.133381 + 0.133381i
\(209\) 33.3694 + 167.760i 0.159662 + 0.802677i
\(210\) −125.691 188.109i −0.598526 0.895758i
\(211\) 7.05432 35.4645i 0.0334328 0.168078i −0.960462 0.278412i \(-0.910192\pi\)
0.993895 + 0.110334i \(0.0351920\pi\)
\(212\) 25.0837 10.3900i 0.118319 0.0490095i
\(213\) 53.2210 + 128.487i 0.249864 + 0.603225i
\(214\) 69.0264 + 13.7302i 0.322554 + 0.0641599i
\(215\) −22.3934 + 14.9628i −0.104156 + 0.0695945i
\(216\) 55.5392 11.0474i 0.257126 0.0511455i
\(217\) −109.473 + 109.473i −0.504482 + 0.504482i
\(218\) 67.2679 + 44.9470i 0.308569 + 0.206179i
\(219\) −350.232 145.071i −1.59923 0.662423i
\(220\) 47.4443i 0.215656i
\(221\) 0 0
\(222\) 230.532 1.03843
\(223\) −154.260 + 372.417i −0.691750 + 1.67003i 0.0494759 + 0.998775i \(0.484245\pi\)
−0.741226 + 0.671256i \(0.765755\pi\)
\(224\) −31.5008 + 47.1443i −0.140629 + 0.210465i
\(225\) 181.949 + 181.949i 0.808663 + 0.808663i
\(226\) 64.4873 + 324.200i 0.285342 + 1.43451i
\(227\) 70.1368 + 104.967i 0.308973 + 0.462410i 0.953164 0.302454i \(-0.0978059\pi\)
−0.644191 + 0.764864i \(0.722806\pi\)
\(228\) −17.1917 + 86.4286i −0.0754023 + 0.379073i
\(229\) −113.583 + 47.0477i −0.495997 + 0.205449i −0.616637 0.787248i \(-0.711505\pi\)
0.120640 + 0.992696i \(0.461505\pi\)
\(230\) 60.2233 + 145.392i 0.261840 + 0.632139i
\(231\) 112.720 + 22.4213i 0.487964 + 0.0970620i
\(232\) −86.1050 + 57.5335i −0.371142 + 0.247989i
\(233\) −58.9878 + 11.7334i −0.253166 + 0.0503579i −0.320042 0.947403i \(-0.603697\pi\)
0.0668754 + 0.997761i \(0.478697\pi\)
\(234\) 30.9185 30.9185i 0.132130 0.132130i
\(235\) 28.8206 + 19.2573i 0.122641 + 0.0819460i
\(236\) −9.58702 3.97107i −0.0406230 0.0168266i
\(237\) 86.8544i 0.366474i
\(238\) 0 0
\(239\) −285.920 −1.19632 −0.598160 0.801377i \(-0.704101\pi\)
−0.598160 + 0.801377i \(0.704101\pi\)
\(240\) −140.039 + 338.085i −0.583497 + 1.40869i
\(241\) 69.0771 103.381i 0.286627 0.428967i −0.660016 0.751251i \(-0.729451\pi\)
0.946643 + 0.322284i \(0.104451\pi\)
\(242\) 90.9267 + 90.9267i 0.375730 + 0.375730i
\(243\) −61.8695 311.039i −0.254607 1.28000i
\(244\) −34.7855 52.0602i −0.142564 0.213362i
\(245\) 48.6914 244.788i 0.198740 0.999135i
\(246\) −223.173 + 92.4414i −0.907208 + 0.375778i
\(247\) −31.6691 76.4560i −0.128215 0.309538i
\(248\) 319.883 + 63.6287i 1.28985 + 0.256567i
\(249\) 382.063 255.286i 1.53439 1.02525i
\(250\) 132.392 26.3344i 0.529569 0.105338i
\(251\) 99.6747 99.6747i 0.397110 0.397110i −0.480102 0.877213i \(-0.659400\pi\)
0.877213 + 0.480102i \(0.159400\pi\)
\(252\) 22.1761 + 14.8176i 0.0880003 + 0.0587999i
\(253\) −73.8588 30.5933i −0.291932 0.120922i
\(254\) 72.5069i 0.285460i
\(255\) 0 0
\(256\) 160.744 0.627906
\(257\) −150.400 + 363.098i −0.585214 + 1.41283i 0.302818 + 0.953048i \(0.402073\pi\)
−0.888032 + 0.459783i \(0.847927\pi\)
\(258\) −13.8140 + 20.6741i −0.0535426 + 0.0801322i
\(259\) −93.3754 93.3754i −0.360523 0.360523i
\(260\) 4.47819 + 22.5134i 0.0172238 + 0.0865899i
\(261\) 49.2301 + 73.6780i 0.188621 + 0.282291i
\(262\) −66.2926 + 333.275i −0.253025 + 1.27204i
\(263\) −269.286 + 111.542i −1.02390 + 0.424113i −0.830507 0.557008i \(-0.811949\pi\)
−0.193393 + 0.981121i \(0.561949\pi\)
\(264\) −92.6535 223.685i −0.350960 0.847293i
\(265\) −233.238 46.3939i −0.880142 0.175071i
\(266\) −148.054 + 98.9266i −0.556594 + 0.371904i
\(267\) 158.985 31.6241i 0.595450 0.118442i
\(268\) −17.8569 + 17.8569i −0.0666304 + 0.0666304i
\(269\) 84.7201 + 56.6082i 0.314945 + 0.210439i 0.702988 0.711202i \(-0.251849\pi\)
−0.388043 + 0.921641i \(0.626849\pi\)
\(270\) −82.9004 34.3385i −0.307038 0.127180i
\(271\) 381.059i 1.40612i −0.711129 0.703061i \(-0.751816\pi\)
0.711129 0.703061i \(-0.248184\pi\)
\(272\) 0 0
\(273\) −55.6043 −0.203679
\(274\) 35.6948 86.1749i 0.130273 0.314507i
\(275\) −134.484 + 201.270i −0.489034 + 0.731892i
\(276\) −29.1234 29.1234i −0.105520 0.105520i
\(277\) −13.1132 65.9245i −0.0473401 0.237995i 0.949870 0.312646i \(-0.101215\pi\)
−0.997210 + 0.0746518i \(0.976215\pi\)
\(278\) 51.4676 + 77.0268i 0.185135 + 0.277075i
\(279\) 54.4456 273.716i 0.195146 0.981063i
\(280\) 252.228 104.476i 0.900813 0.373129i
\(281\) 144.294 + 348.356i 0.513501 + 1.23970i 0.941834 + 0.336079i \(0.109101\pi\)
−0.428333 + 0.903621i \(0.640899\pi\)
\(282\) 31.3860 + 6.24307i 0.111298 + 0.0221385i
\(283\) 246.804 164.909i 0.872098 0.582717i −0.0369928 0.999316i \(-0.511778\pi\)
0.909091 + 0.416598i \(0.136778\pi\)
\(284\) −29.7782 + 5.92325i −0.104853 + 0.0208565i
\(285\) 545.780 545.780i 1.91502 1.91502i
\(286\) 34.2017 + 22.8529i 0.119586 + 0.0799051i
\(287\) 127.838 + 52.9521i 0.445428 + 0.184502i
\(288\) 102.209i 0.354892i
\(289\) 0 0
\(290\) 164.096 0.565848
\(291\) 257.604 621.911i 0.885237 2.13715i
\(292\) 45.9790 68.8125i 0.157462 0.235659i
\(293\) −99.8472 99.8472i −0.340776 0.340776i 0.515883 0.856659i \(-0.327464\pi\)
−0.856659 + 0.515883i \(0.827464\pi\)
\(294\) −44.9529 225.993i −0.152901 0.768685i
\(295\) 50.4959 + 75.5724i 0.171172 + 0.256178i
\(296\) −54.2725 + 272.846i −0.183353 + 0.921778i
\(297\) 42.1132 17.4439i 0.141795 0.0587336i
\(298\) 34.9654 + 84.4140i 0.117334 + 0.283269i
\(299\) 37.9353 + 7.54580i 0.126874 + 0.0252368i
\(300\) −103.693 + 69.2855i −0.345644 + 0.230952i
\(301\) 13.9692 2.77864i 0.0464093 0.00923138i
\(302\) −299.994 + 299.994i −0.993357 + 0.993357i
\(303\) −418.731 279.787i −1.38195 0.923389i
\(304\) 266.094 + 110.220i 0.875310 + 0.362565i
\(305\) 548.414i 1.79808i
\(306\) 0 0
\(307\) −259.641 −0.845735 −0.422868 0.906192i \(-0.638976\pi\)
−0.422868 + 0.906192i \(0.638976\pi\)
\(308\) −9.60165 + 23.1804i −0.0311742 + 0.0752612i
\(309\) 393.642 589.127i 1.27392 1.90656i
\(310\) −365.442 365.442i −1.17884 1.17884i
\(311\) 110.056 + 553.288i 0.353877 + 1.77906i 0.590066 + 0.807355i \(0.299102\pi\)
−0.236189 + 0.971707i \(0.575898\pi\)
\(312\) 65.0795 + 97.3983i 0.208588 + 0.312174i
\(313\) −88.9143 + 447.002i −0.284071 + 1.42812i 0.530316 + 0.847800i \(0.322073\pi\)
−0.814387 + 0.580322i \(0.802927\pi\)
\(314\) 438.600 181.674i 1.39681 0.578580i
\(315\) −89.3977 215.825i −0.283802 0.685159i
\(316\) 18.5972 + 3.69920i 0.0588518 + 0.0117063i
\(317\) −275.997 + 184.415i −0.870653 + 0.581751i −0.908665 0.417526i \(-0.862897\pi\)
0.0380125 + 0.999277i \(0.487897\pi\)
\(318\) −215.330 + 42.8318i −0.677138 + 0.134691i
\(319\) −58.9447 + 58.9447i −0.184780 + 0.184780i
\(320\) −458.123 306.108i −1.43164 0.956588i
\(321\) 149.052 + 61.7394i 0.464336 + 0.192334i
\(322\) 83.2238i 0.258459i
\(323\) 0 0
\(324\) 82.1402 0.253519
\(325\) 44.8183 108.201i 0.137903 0.332926i
\(326\) −38.0563 + 56.9552i −0.116737 + 0.174709i
\(327\) 131.138 + 131.138i 0.401033 + 0.401033i
\(328\) −56.8691 285.900i −0.173381 0.871646i
\(329\) −10.1840 15.2414i −0.0309544 0.0463265i
\(330\) −74.8469 + 376.281i −0.226809 + 1.14024i
\(331\) 544.633 225.594i 1.64542 0.681554i 0.648588 0.761139i \(-0.275360\pi\)
0.996828 + 0.0795855i \(0.0253597\pi\)
\(332\) 38.3892 + 92.6796i 0.115630 + 0.279156i
\(333\) 233.468 + 46.4397i 0.701106 + 0.139459i
\(334\) 52.8833 35.3355i 0.158333 0.105795i
\(335\) 216.942 43.1525i 0.647590 0.128814i
\(336\) 136.841 136.841i 0.407266 0.407266i
\(337\) 272.381 + 181.999i 0.808251 + 0.540056i 0.889659 0.456625i \(-0.150942\pi\)
−0.0814084 + 0.996681i \(0.525942\pi\)
\(338\) 257.250 + 106.557i 0.761095 + 0.315256i
\(339\) 757.738i 2.23522i
\(340\) 0 0
\(341\) 262.540 0.769911
\(342\) 122.834 296.548i 0.359165 0.867100i
\(343\) −184.734 + 276.474i −0.538583 + 0.806046i
\(344\) −21.2167 21.2167i −0.0616766 0.0616766i
\(345\) 70.3787 + 353.818i 0.203996 + 1.02556i
\(346\) 189.307 + 283.318i 0.547129 + 0.818837i
\(347\) 47.2242 237.412i 0.136093 0.684185i −0.851145 0.524931i \(-0.824091\pi\)
0.987238 0.159254i \(-0.0509089\pi\)
\(348\) −39.6776 + 16.4350i −0.114016 + 0.0472270i
\(349\) −192.479 464.685i −0.551515 1.33148i −0.916341 0.400399i \(-0.868871\pi\)
0.364826 0.931076i \(-0.381129\pi\)
\(350\) −247.154 49.1620i −0.706154 0.140463i
\(351\) −18.3372 + 12.2525i −0.0522427 + 0.0349074i
\(352\) 94.3041 18.7583i 0.267909 0.0532905i
\(353\) 231.294 231.294i 0.655223 0.655223i −0.299023 0.954246i \(-0.596661\pi\)
0.954246 + 0.299023i \(0.0966606\pi\)
\(354\) 69.7700 + 46.6188i 0.197090 + 0.131692i
\(355\) 245.691 + 101.768i 0.692086 + 0.286671i
\(356\) 35.3886i 0.0994062i
\(357\) 0 0
\(358\) −427.922 −1.19531
\(359\) 203.355 490.942i 0.566448 1.36753i −0.338082 0.941117i \(-0.609778\pi\)
0.904530 0.426410i \(-0.140222\pi\)
\(360\) −273.415 + 409.194i −0.759486 + 1.13665i
\(361\) −174.298 174.298i −0.482820 0.482820i
\(362\) 47.0176 + 236.374i 0.129883 + 0.652965i
\(363\) 163.767 + 245.095i 0.451149 + 0.675192i
\(364\) 2.36824 11.9059i 0.00650614 0.0327086i
\(365\) −669.707 + 277.402i −1.83481 + 0.760005i
\(366\) 193.755 + 467.767i 0.529386 + 1.27805i
\(367\) 324.691 + 64.5850i 0.884716 + 0.175981i 0.616479 0.787372i \(-0.288559\pi\)
0.268238 + 0.963353i \(0.413559\pi\)
\(368\) −111.928 + 74.7881i −0.304153 + 0.203229i
\(369\) −244.638 + 48.6615i −0.662975 + 0.131874i
\(370\) 311.706 311.706i 0.842448 0.842448i
\(371\) 104.567 + 69.8693i 0.281851 + 0.188327i
\(372\) 124.963 + 51.7613i 0.335922 + 0.139143i
\(373\) 147.856i 0.396396i −0.980162 0.198198i \(-0.936491\pi\)
0.980162 0.198198i \(-0.0635089\pi\)
\(374\) 0 0
\(375\) 309.435 0.825160
\(376\) −14.7780 + 35.6772i −0.0393032 + 0.0948863i
\(377\) 22.4069 33.5343i 0.0594347 0.0889504i
\(378\) 33.5543 + 33.5543i 0.0887681 + 0.0887681i
\(379\) 8.52233 + 42.8446i 0.0224864 + 0.113047i 0.990398 0.138243i \(-0.0441454\pi\)
−0.967912 + 0.251289i \(0.919145\pi\)
\(380\) 93.6164 + 140.107i 0.246359 + 0.368702i
\(381\) −32.4262 + 163.017i −0.0851081 + 0.427867i
\(382\) −284.269 + 117.748i −0.744160 + 0.308241i
\(383\) −75.6230 182.570i −0.197449 0.476684i 0.793882 0.608072i \(-0.208057\pi\)
−0.991331 + 0.131387i \(0.958057\pi\)
\(384\) −278.932 55.4830i −0.726385 0.144487i
\(385\) 182.726 122.094i 0.474614 0.317127i
\(386\) −324.941 + 64.6347i −0.841815 + 0.167447i
\(387\) −18.1547 + 18.1547i −0.0469113 + 0.0469113i
\(388\) 122.191 + 81.6456i 0.314926 + 0.210427i
\(389\) 19.8577 + 8.22534i 0.0510481 + 0.0211448i 0.408061 0.912954i \(-0.366205\pi\)
−0.357013 + 0.934099i \(0.616205\pi\)
\(390\) 185.618i 0.475944i
\(391\) 0 0
\(392\) 278.058 0.709332
\(393\) −298.092 + 719.657i −0.758503 + 1.83119i
\(394\) −281.616 + 421.468i −0.714761 + 1.06971i
\(395\) −117.437 117.437i −0.297310 0.297310i
\(396\) −8.82365 44.3595i −0.0222819 0.112019i
\(397\) −19.7100 29.4981i −0.0496473 0.0743025i 0.805816 0.592167i \(-0.201727\pi\)
−0.855463 + 0.517864i \(0.826727\pi\)
\(398\) 31.5464 158.594i 0.0792623 0.398479i
\(399\) −377.112 + 156.205i −0.945142 + 0.391491i
\(400\) 155.984 + 376.578i 0.389960 + 0.941446i
\(401\) 146.691 + 29.1786i 0.365812 + 0.0727646i 0.374574 0.927197i \(-0.377789\pi\)
−0.00876160 + 0.999962i \(0.502789\pi\)
\(402\) 169.794 113.453i 0.422374 0.282221i
\(403\) −124.581 + 24.7807i −0.309134 + 0.0614906i
\(404\) 77.7417 77.7417i 0.192430 0.192430i
\(405\) −598.206 399.708i −1.47705 0.986934i
\(406\) −80.1744 33.2093i −0.197474 0.0817964i
\(407\) 223.935i 0.550209i
\(408\) 0 0
\(409\) −398.892 −0.975287 −0.487643 0.873043i \(-0.662143\pi\)
−0.487643 + 0.873043i \(0.662143\pi\)
\(410\) −176.765 + 426.748i −0.431134 + 1.04085i
\(411\) 118.792 177.784i 0.289030 0.432565i
\(412\) 109.378 + 109.378i 0.265479 + 0.265479i
\(413\) −9.37724 47.1426i −0.0227052 0.114147i
\(414\) 83.3475 + 124.738i 0.201322 + 0.301300i
\(415\) 171.417 861.770i 0.413052 2.07655i
\(416\) −42.9789 + 17.8024i −0.103315 + 0.0427943i
\(417\) 81.2673 + 196.197i 0.194886 + 0.470496i
\(418\) 296.157 + 58.9093i 0.708510 + 0.140931i
\(419\) 31.0967 20.7782i 0.0742166 0.0495899i −0.517908 0.855436i \(-0.673289\pi\)
0.592125 + 0.805846i \(0.298289\pi\)
\(420\) 111.045 22.0882i 0.264393 0.0525910i
\(421\) −312.706 + 312.706i −0.742769 + 0.742769i −0.973110 0.230341i \(-0.926016\pi\)
0.230341 + 0.973110i \(0.426016\pi\)
\(422\) −53.0763 35.4645i −0.125773 0.0840390i
\(423\) 30.5282 + 12.6452i 0.0721706 + 0.0298941i
\(424\) 264.938i 0.624853i
\(425\) 0 0
\(426\) 245.515 0.576327
\(427\) 110.987 267.945i 0.259922 0.627507i
\(428\) −19.5678 + 29.2853i −0.0457192 + 0.0684236i
\(429\) 66.6757 + 66.6757i 0.155421 + 0.155421i
\(430\) 9.27567 + 46.6319i 0.0215713 + 0.108446i
\(431\) −192.725 288.433i −0.447157 0.669218i 0.537590 0.843206i \(-0.319335\pi\)
−0.984748 + 0.173988i \(0.944335\pi\)
\(432\) 14.9743 75.2808i 0.0346627 0.174261i
\(433\) −49.6556 + 20.5680i −0.114678 + 0.0475012i −0.439285 0.898348i \(-0.644768\pi\)
0.324607 + 0.945849i \(0.394768\pi\)
\(434\) 104.591 + 252.506i 0.240994 + 0.581810i
\(435\) 368.937 + 73.3862i 0.848132 + 0.168704i
\(436\) −33.6643 + 22.4938i −0.0772117 + 0.0515912i
\(437\) 278.477 55.3926i 0.637248 0.126757i
\(438\) −473.217 + 473.217i −1.08040 + 1.08040i
\(439\) 202.261 + 135.146i 0.460731 + 0.307851i 0.764187 0.644995i \(-0.223140\pi\)
−0.303456 + 0.952846i \(0.598140\pi\)
\(440\) −427.727 177.170i −0.972107 0.402660i
\(441\) 237.928i 0.539518i
\(442\) 0 0
\(443\) −114.592 −0.258673 −0.129336 0.991601i \(-0.541285\pi\)
−0.129336 + 0.991601i \(0.541285\pi\)
\(444\) −44.1501 + 106.588i −0.0994373 + 0.240063i
\(445\) 172.207 257.726i 0.386982 0.579160i
\(446\) 503.192 + 503.192i 1.12823 + 1.12823i
\(447\) 40.8616 + 205.425i 0.0914131 + 0.459565i
\(448\) 161.882 + 242.273i 0.361343 + 0.540788i
\(449\) −105.973 + 532.761i −0.236020 + 1.18655i 0.662992 + 0.748626i \(0.269286\pi\)
−0.899012 + 0.437925i \(0.855714\pi\)
\(450\) 419.677 173.836i 0.932616 0.386302i
\(451\) −89.7961 216.787i −0.199104 0.480681i
\(452\) −162.246 32.2727i −0.358951 0.0713999i
\(453\) −808.639 + 540.315i −1.78507 + 1.19275i
\(454\) 218.583 43.4788i 0.481460 0.0957683i
\(455\) −75.1835 + 75.1835i −0.165239 + 0.165239i
\(456\) 714.987 + 477.739i 1.56795 + 1.04767i
\(457\) −207.434 85.9222i −0.453905 0.188014i 0.144005 0.989577i \(-0.454002\pi\)
−0.597910 + 0.801563i \(0.704002\pi\)
\(458\) 217.037i 0.473880i
\(459\) 0 0
\(460\) −78.7565 −0.171210
\(461\) 96.5408 233.070i 0.209416 0.505575i −0.783916 0.620867i \(-0.786781\pi\)
0.993332 + 0.115292i \(0.0367805\pi\)
\(462\) 112.720 168.697i 0.243982 0.365145i
\(463\) −88.6506 88.6506i −0.191470 0.191470i 0.604861 0.796331i \(-0.293229\pi\)
−0.796331 + 0.604861i \(0.793229\pi\)
\(464\) 27.3844 + 137.670i 0.0590180 + 0.296704i
\(465\) −658.193 985.055i −1.41547 2.11840i
\(466\) −20.7138 + 104.135i −0.0444501 + 0.223466i
\(467\) 640.133 265.152i 1.37074 0.567777i 0.428748 0.903424i \(-0.358955\pi\)
0.941988 + 0.335647i \(0.108955\pi\)
\(468\) 8.37404 + 20.2167i 0.0178932 + 0.0431981i
\(469\) −114.727 22.8207i −0.244621 0.0486582i
\(470\) 50.8789 33.9962i 0.108253 0.0723324i
\(471\) 1067.35 212.310i 2.26614 0.450764i
\(472\) −71.6013 + 71.6013i −0.151698 + 0.151698i
\(473\) −20.0825 13.4187i −0.0424577 0.0283693i
\(474\) −141.658 58.6768i −0.298857 0.123791i
\(475\) 859.730i 1.80996i
\(476\) 0 0
\(477\) −226.701 −0.475264
\(478\) −193.161 + 466.332i −0.404103 + 0.975591i
\(479\) 265.948 398.019i 0.555215 0.830938i −0.442620 0.896709i \(-0.645951\pi\)
0.997835 + 0.0657717i \(0.0209509\pi\)
\(480\) −306.804 306.804i −0.639175 0.639175i
\(481\) −21.1369 106.262i −0.0439436 0.220919i
\(482\) −121.946 182.506i −0.253001 0.378642i
\(483\) 37.2189 187.112i 0.0770579 0.387396i
\(484\) −59.4543 + 24.6268i −0.122840 + 0.0508818i
\(485\) −492.586 1189.21i −1.01564 2.45197i
\(486\) −549.098 109.222i −1.12983 0.224737i
\(487\) 337.297 225.375i 0.692602 0.462782i −0.158790 0.987312i \(-0.550759\pi\)
0.851392 + 0.524531i \(0.175759\pi\)
\(488\) −599.241 + 119.196i −1.22795 + 0.244255i
\(489\) −111.033 + 111.033i −0.227062 + 0.227062i
\(490\) −366.351 244.788i −0.747655 0.499567i
\(491\) −57.3172 23.7416i −0.116736 0.0483535i 0.323551 0.946211i \(-0.395123\pi\)
−0.440287 + 0.897857i \(0.645123\pi\)
\(492\) 120.889i 0.245710i
\(493\) 0 0
\(494\) −146.094 −0.295736
\(495\) −151.601 + 365.996i −0.306264 + 0.739386i
\(496\) 245.607 367.577i 0.495176 0.741083i
\(497\) −99.4445 99.4445i −0.200089 0.200089i
\(498\) −158.256 795.604i −0.317782 1.59760i
\(499\) −285.141 426.744i −0.571426 0.855199i 0.427379 0.904072i \(-0.359437\pi\)
−0.998805 + 0.0488735i \(0.984437\pi\)
\(500\) −13.1791 + 66.2558i −0.0263582 + 0.132512i
\(501\) 134.700 55.7947i 0.268863 0.111367i
\(502\) −95.2302 229.906i −0.189702 0.457980i
\(503\) −324.524 64.5518i −0.645176 0.128334i −0.138352 0.990383i \(-0.544181\pi\)
−0.506824 + 0.862050i \(0.669181\pi\)
\(504\) 216.398 144.592i 0.429360 0.286889i
\(505\) −944.477 + 187.868i −1.87025 + 0.372016i
\(506\) −99.7945 + 99.7945i −0.197222 + 0.197222i
\(507\) 530.723 + 354.617i 1.04679 + 0.699443i
\(508\) −33.5240 13.8861i −0.0659922 0.0273349i
\(509\) 343.247i 0.674355i −0.941441 0.337178i \(-0.890528\pi\)
0.941441 0.337178i \(-0.109472\pi\)
\(510\) 0 0
\(511\) 383.347 0.750190
\(512\) 216.169 521.878i 0.422205 1.01929i
\(513\) −89.9438 + 134.610i −0.175329 + 0.262399i
\(514\) 490.601 + 490.601i 0.954476 + 0.954476i
\(515\) −264.318 1328.82i −0.513239 2.58023i
\(516\) −6.91323 10.3464i −0.0133977 0.0200511i
\(517\) −6.06442 + 30.4879i −0.0117300 + 0.0589708i
\(518\) −215.376 + 89.2118i −0.415784 + 0.172224i
\(519\) 298.915 + 721.645i 0.575944 + 1.39045i
\(520\) 219.689 + 43.6989i 0.422479 + 0.0840363i
\(521\) 264.820 176.947i 0.508291 0.339629i −0.274836 0.961491i \(-0.588623\pi\)
0.783127 + 0.621862i \(0.213623\pi\)
\(522\) 153.427 30.5184i 0.293921 0.0584645i
\(523\) 167.575 167.575i 0.320410 0.320410i −0.528514 0.848924i \(-0.677251\pi\)
0.848924 + 0.528514i \(0.177251\pi\)
\(524\) −141.396 94.4778i −0.269840 0.180301i
\(525\) −533.691 221.062i −1.01655 0.421071i
\(526\) 514.556i 0.978244i
\(527\) 0 0
\(528\) −328.176 −0.621545
\(529\) 151.655 366.128i 0.286683 0.692114i
\(530\) −233.238 + 349.065i −0.440071 + 0.658613i
\(531\) 61.2676 + 61.2676i 0.115381 + 0.115381i
\(532\) −17.3849 87.3996i −0.0326783 0.164285i
\(533\) 63.0724 + 94.3946i 0.118335 + 0.177101i
\(534\) 55.8282 280.667i 0.104547 0.525594i
\(535\) 285.015 118.057i 0.532738 0.220667i
\(536\) 94.3039 + 227.670i 0.175940 + 0.424757i
\(537\) −962.098 191.373i −1.79162 0.356375i
\(538\) 149.562 99.9342i 0.277996 0.185751i
\(539\) 219.526 43.6665i 0.407285 0.0810140i
\(540\) 31.7532 31.7532i 0.0588023 0.0588023i
\(541\) 220.270 + 147.180i 0.407153 + 0.272051i 0.742237 0.670137i \(-0.233765\pi\)
−0.335084 + 0.942188i \(0.608765\pi\)
\(542\) −621.502 257.435i −1.14668 0.474972i
\(543\) 552.466i 1.01743i
\(544\) 0 0
\(545\) 354.627 0.650692
\(546\) −37.5650 + 90.6899i −0.0688003 + 0.166099i
\(547\) 200.445 299.987i 0.366444 0.548423i −0.601730 0.798700i \(-0.705522\pi\)
0.968174 + 0.250277i \(0.0805217\pi\)
\(548\) 33.0075 + 33.0075i 0.0602326 + 0.0602326i
\(549\) 101.994 + 512.756i 0.185781 + 0.933982i
\(550\) 237.414 + 355.316i 0.431662 + 0.646029i
\(551\) 57.7597 290.378i 0.104827 0.527001i
\(552\) −371.313 + 153.803i −0.672669 + 0.278629i
\(553\) 33.6111 + 81.1445i 0.0607797 + 0.146735i
\(554\) −116.381 23.1496i −0.210074 0.0417863i
\(555\) 840.209 561.410i 1.51389 1.01155i
\(556\) −45.4706 + 9.04467i −0.0817817 + 0.0162674i
\(557\) 367.145 367.145i 0.659147 0.659147i −0.296031 0.955178i \(-0.595663\pi\)
0.955178 + 0.296031i \(0.0956632\pi\)
\(558\) −409.646 273.716i −0.734132 0.490531i
\(559\) 10.7962 + 4.47192i 0.0193134 + 0.00799986i
\(560\) 370.051i 0.660806i
\(561\) 0 0
\(562\) 665.645 1.18442
\(563\) −168.267 + 406.232i −0.298875 + 0.721549i 0.701089 + 0.713074i \(0.252698\pi\)
−0.999964 + 0.00847487i \(0.997302\pi\)
\(564\) −8.89740 + 13.3159i −0.0157755 + 0.0236097i
\(565\) 1024.55 + 1024.55i 1.81336 + 1.81336i
\(566\) −102.229 513.942i −0.180617 0.908025i
\(567\) 211.381 + 316.354i 0.372806 + 0.557943i
\(568\) −57.8000 + 290.580i −0.101761 + 0.511585i
\(569\) −443.238 + 183.595i −0.778977 + 0.322663i −0.736503 0.676435i \(-0.763524\pi\)
−0.0424747 + 0.999098i \(0.513524\pi\)
\(570\) −521.443 1258.87i −0.914812 2.20855i
\(571\) −533.718 106.163i −0.934707 0.185925i −0.295836 0.955239i \(-0.595598\pi\)
−0.638871 + 0.769314i \(0.720598\pi\)
\(572\) −17.1163 + 11.4367i −0.0299236 + 0.0199943i
\(573\) −691.781 + 137.604i −1.20730 + 0.240146i
\(574\) 172.728 172.728i 0.300920 0.300920i
\(575\) 334.104 + 223.241i 0.581051 + 0.388246i
\(576\) −485.266 201.004i −0.842476 0.348965i
\(577\) 304.419i 0.527589i 0.964579 + 0.263795i \(0.0849741\pi\)
−0.964579 + 0.263795i \(0.915026\pi\)
\(578\) 0 0
\(579\) −759.470 −1.31169
\(580\) −31.4267 + 75.8709i −0.0541840 + 0.130812i
\(581\) −258.154 + 386.355i −0.444327 + 0.664983i
\(582\) −840.297 840.297i −1.44381 1.44381i
\(583\) −41.6061 209.168i −0.0713656 0.358779i
\(584\) −448.671 671.483i −0.768272 1.14980i
\(585\) 37.3921 187.983i 0.0639181 0.321338i
\(586\) −230.304 + 95.3950i −0.393010 + 0.162790i
\(587\) 244.317 + 589.834i 0.416213 + 1.00483i 0.983435 + 0.181263i \(0.0580184\pi\)
−0.567221 + 0.823565i \(0.691982\pi\)
\(588\) 113.099 + 22.4967i 0.192345 + 0.0382597i
\(589\) −775.302 + 518.040i −1.31630 + 0.879525i
\(590\) 157.371 31.3031i 0.266731 0.0530561i
\(591\) −821.644 + 821.644i −1.39026 + 1.39026i
\(592\) 313.527 + 209.492i 0.529607 + 0.353872i
\(593\) 594.149 + 246.104i 1.00194 + 0.415016i 0.822507 0.568755i \(-0.192575\pi\)
0.179430 + 0.983771i \(0.442575\pi\)
\(594\) 80.4708i 0.135473i
\(595\) 0 0
\(596\) −45.7258 −0.0767211
\(597\) 141.852 342.460i 0.237608 0.573636i
\(598\) 37.9353 56.7742i 0.0634370 0.0949401i
\(599\) −354.327 354.327i −0.591530 0.591530i 0.346514 0.938045i \(-0.387365\pi\)
−0.938045 + 0.346514i \(0.887365\pi\)
\(600\) 237.414 + 1193.56i 0.395691 + 1.98927i
\(601\) 316.537 + 473.731i 0.526684 + 0.788238i 0.995470 0.0950732i \(-0.0303085\pi\)
−0.468786 + 0.883312i \(0.655309\pi\)
\(602\) 4.90533 24.6607i 0.00814838 0.0409647i
\(603\) 194.812 80.6936i 0.323071 0.133820i
\(604\) −81.2510 196.157i −0.134521 0.324764i
\(605\) 552.829 + 109.964i 0.913767 + 0.181759i
\(606\) −739.213 + 493.926i −1.21982 + 0.815060i
\(607\) −177.894 + 35.3853i −0.293071 + 0.0582955i −0.339436 0.940629i \(-0.610236\pi\)
0.0463651 + 0.998925i \(0.485236\pi\)
\(608\) −241.474 + 241.474i −0.397162 + 0.397162i
\(609\) −165.405 110.520i −0.271600 0.181478i
\(610\) 894.455 + 370.495i 1.46632 + 0.607370i
\(611\) 15.0396i 0.0246147i
\(612\) 0 0
\(613\) −155.196 −0.253174 −0.126587 0.991956i \(-0.540402\pi\)
−0.126587 + 0.991956i \(0.540402\pi\)
\(614\) −175.407 + 423.470i −0.285679 + 0.689691i
\(615\) −588.269 + 880.407i −0.956535 + 1.43156i
\(616\) 173.125 + 173.125i 0.281047 + 0.281047i
\(617\) 91.1849 + 458.417i 0.147787 + 0.742978i 0.981603 + 0.190934i \(0.0611518\pi\)
−0.833815 + 0.552043i \(0.813848\pi\)
\(618\) −694.922 1040.02i −1.12447 1.68289i
\(619\) 74.8513 376.303i 0.120923 0.607921i −0.872034 0.489445i \(-0.837199\pi\)
0.992957 0.118475i \(-0.0378007\pi\)
\(620\) 238.952 98.9771i 0.385406 0.159640i
\(621\) −28.9565 69.9071i −0.0466288 0.112572i
\(622\) 976.757 + 194.289i 1.57035 + 0.312362i
\(623\) −136.295 + 91.0696i −0.218773 + 0.146179i
\(624\) 155.727 30.9760i 0.249562 0.0496410i
\(625\) −198.226 + 198.226i −0.317161 + 0.317161i
\(626\) 668.986 + 447.002i 1.06867 + 0.714061i
\(627\) 639.506 + 264.892i 1.01995 + 0.422475i
\(628\) 237.583i 0.378316i
\(629\) 0 0
\(630\) −412.403 −0.654608
\(631\) 127.804 308.547i 0.202542 0.488980i −0.789671 0.613531i \(-0.789749\pi\)
0.992213 + 0.124550i \(0.0397487\pi\)
\(632\) 102.797 153.846i 0.162653 0.243428i
\(633\) −103.471 103.471i −0.163462 0.163462i
\(634\) 114.322 + 574.734i 0.180318 + 0.906520i
\(635\) 176.575 + 264.263i 0.278070 + 0.416162i
\(636\) 21.4352 107.762i 0.0337032 0.169437i
\(637\) −100.049 + 41.4415i −0.157062 + 0.0650573i
\(638\) 56.3163 + 135.960i 0.0882701 + 0.213103i
\(639\) 248.643 + 49.4581i 0.389112 + 0.0773992i
\(640\) −452.168 + 302.129i −0.706513 + 0.472077i
\(641\) 942.185 187.412i 1.46987 0.292375i 0.605746 0.795658i \(-0.292875\pi\)
0.864121 + 0.503284i \(0.167875\pi\)
\(642\) 201.392 201.392i 0.313695 0.313695i
\(643\) −870.743 581.812i −1.35419 0.904840i −0.354643 0.935002i \(-0.615398\pi\)
−0.999545 + 0.0301622i \(0.990398\pi\)
\(644\) 38.4791 + 15.9385i 0.0597501 + 0.0247493i
\(645\) 108.991i 0.168978i
\(646\) 0 0
\(647\) 328.253 0.507346 0.253673 0.967290i \(-0.418361\pi\)
0.253673 + 0.967290i \(0.418361\pi\)
\(648\) 306.735 740.523i 0.473356 1.14278i
\(649\) −45.2848 + 67.7735i −0.0697763 + 0.104428i
\(650\) −146.196 146.196i −0.224917 0.224917i
\(651\) 122.228 + 614.484i 0.187755 + 0.943908i
\(652\) −19.0453 28.5033i −0.0292106 0.0437167i
\(653\) −9.72717 + 48.9018i −0.0148961 + 0.0748879i −0.987518 0.157504i \(-0.949655\pi\)
0.972622 + 0.232392i \(0.0746552\pi\)
\(654\) 302.477 125.290i 0.462504 0.191575i
\(655\) 570.005 + 1376.11i 0.870237 + 2.10094i
\(656\) −387.524 77.0833i −0.590738 0.117505i
\(657\) −574.572 + 383.917i −0.874539 + 0.584348i
\(658\) −31.7386 + 6.31321i −0.0482350 + 0.00959454i
\(659\) −61.2456 + 61.2456i −0.0929371 + 0.0929371i −0.752047 0.659110i \(-0.770933\pi\)
0.659110 + 0.752047i \(0.270933\pi\)
\(660\) −159.642 106.669i −0.241881 0.161620i
\(661\) −758.170 314.044i −1.14700 0.475105i −0.273476 0.961879i \(-0.588173\pi\)
−0.873528 + 0.486774i \(0.838173\pi\)
\(662\) 1040.69i 1.57205i
\(663\) 0 0
\(664\) 978.896 1.47424
\(665\) −298.692 + 721.107i −0.449161 + 1.08437i
\(666\) 233.468 349.410i 0.350553 0.524639i
\(667\) 97.8470 + 97.8470i 0.146697 + 0.146697i
\(668\) 6.20969 + 31.2182i 0.00929594 + 0.0467338i
\(669\) 906.294 + 1356.36i 1.35470 + 2.02745i
\(670\) 76.1801 382.983i 0.113702 0.571617i
\(671\) −454.381 + 188.211i −0.677170 + 0.280493i
\(672\) 87.8088 + 211.989i 0.130668 + 0.315460i
\(673\) 539.262 + 107.266i 0.801281 + 0.159385i 0.578712 0.815532i \(-0.303556\pi\)
0.222569 + 0.974917i \(0.428556\pi\)
\(674\) 480.852 321.295i 0.713430 0.476698i
\(675\) −224.712 + 44.6980i −0.332907 + 0.0662192i
\(676\) −98.5342 + 98.5342i −0.145761 + 0.145761i
\(677\) −450.499 301.014i −0.665434 0.444629i 0.176434 0.984313i \(-0.443544\pi\)
−0.841868 + 0.539684i \(0.818544\pi\)
\(678\) 1235.86 + 511.910i 1.82280 + 0.755030i
\(679\) 680.714i 1.00252i
\(680\) 0 0
\(681\) 510.884 0.750197
\(682\) 177.366 428.199i 0.260067 0.627857i
\(683\) 220.012 329.272i 0.322126 0.482096i −0.634699 0.772759i \(-0.718876\pi\)
0.956825 + 0.290663i \(0.0938760\pi\)
\(684\) 113.587 + 113.587i 0.166062 + 0.166062i
\(685\) −79.7648 401.005i −0.116445 0.585409i
\(686\) 326.123 + 488.078i 0.475398 + 0.711483i
\(687\) −97.0623 + 487.965i −0.141284 + 0.710284i
\(688\) −37.5745 + 15.5639i −0.0546142 + 0.0226219i
\(689\) 39.4861 + 95.3279i 0.0573093 + 0.138357i
\(690\) 624.618 + 124.244i 0.905244 + 0.180064i
\(691\) 776.300 518.707i 1.12344 0.750661i 0.152106 0.988364i \(-0.451395\pi\)
0.971338 + 0.237703i \(0.0763945\pi\)
\(692\) −167.249 + 33.2678i −0.241689 + 0.0480749i
\(693\) 148.139 148.139i 0.213764 0.213764i
\(694\) −355.313 237.412i −0.511978 0.342093i
\(695\) 375.164 + 155.398i 0.539804 + 0.223594i
\(696\) 419.081i 0.602128i
\(697\) 0 0
\(698\) −887.929 −1.27210
\(699\) −93.1416 + 224.864i −0.133250 + 0.321693i
\(700\) 70.0639 104.858i 0.100091 0.149797i
\(701\) 411.177 + 411.177i 0.586558 + 0.586558i 0.936697 0.350140i \(-0.113866\pi\)
−0.350140 + 0.936697i \(0.613866\pi\)
\(702\) 7.59550 + 38.1852i 0.0108198 + 0.0543948i
\(703\) −441.866 661.299i −0.628543 0.940681i
\(704\) 96.3981 484.626i 0.136929 0.688389i
\(705\) 129.595 53.6800i 0.183823 0.0761418i
\(706\) −220.980 533.494i −0.313003 0.755657i
\(707\) 499.475 + 99.3518i 0.706472 + 0.140526i
\(708\) −34.9165 + 23.3305i −0.0493171 + 0.0329526i
\(709\) −1140.89 + 226.937i −1.60915 + 0.320080i −0.916143 0.400851i \(-0.868715\pi\)
−0.693007 + 0.720931i \(0.743715\pi\)
\(710\) 331.966 331.966i 0.467557 0.467557i
\(711\) −131.643 87.9607i −0.185151 0.123714i
\(712\) 319.041 + 132.151i 0.448091 + 0.185605i
\(713\) 435.811i 0.611235i
\(714\) 0 0
\(715\) 180.307 0.252177
\(716\) 81.9532 197.853i 0.114460 0.276330i
\(717\) −642.836 + 962.072i −0.896563 + 1.34180i
\(718\) −663.338 663.338i −0.923869 0.923869i
\(719\) −2.89668 14.5626i −0.00402876 0.0202540i 0.978719 0.205207i \(-0.0657867\pi\)
−0.982747 + 0.184953i \(0.940787\pi\)
\(720\) 370.601 + 554.644i 0.514724 + 0.770339i
\(721\) −139.782 + 702.729i −0.193872 + 0.974659i
\(722\) −402.030 + 166.526i −0.556828 + 0.230646i
\(723\) −192.553 464.864i −0.266325 0.642966i
\(724\) −118.293 23.5300i −0.163389 0.0325000i
\(725\) 348.382 232.781i 0.480526 0.321077i
\(726\) 510.383 101.522i 0.703007 0.139837i
\(727\) 880.136 880.136i 1.21064 1.21064i 0.239825 0.970816i \(-0.422910\pi\)
0.970816 0.239825i \(-0.0770901\pi\)
\(728\) −98.4925 65.8106i −0.135292 0.0903992i
\(729\) −412.626 170.915i −0.566017 0.234452i
\(730\) 1279.69i 1.75300i
\(731\) 0 0
\(732\) −253.382 −0.346150
\(733\) −208.728 + 503.915i −0.284759 + 0.687469i −0.999934 0.0114762i \(-0.996347\pi\)
0.715175 + 0.698945i \(0.246347\pi\)
\(734\) 324.691 485.934i 0.442358 0.662036i
\(735\) −714.195 714.195i −0.971694 0.971694i
\(736\) −31.1383 156.543i −0.0423075 0.212694i
\(737\) 110.206 + 164.935i 0.149534 + 0.223793i
\(738\) −85.9054 + 431.876i −0.116403 + 0.585197i
\(739\) −152.427 + 63.1371i −0.206261 + 0.0854359i −0.483422 0.875387i \(-0.660606\pi\)
0.277161 + 0.960823i \(0.410606\pi\)
\(740\) 84.4231 + 203.815i 0.114085 + 0.275426i
\(741\) −328.463 65.3353i −0.443269 0.0881717i
\(742\) 184.599 123.345i 0.248785 0.166233i
\(743\) −2.26111 + 0.449762i −0.00304321 + 0.000605333i −0.196612 0.980481i \(-0.562994\pi\)
0.193568 + 0.981087i \(0.437994\pi\)
\(744\) 933.294 933.294i 1.25443 1.25443i
\(745\) 333.009 + 222.509i 0.446992 + 0.298670i
\(746\) −241.151 99.8879i −0.323258 0.133898i
\(747\) 837.618i 1.12131i
\(748\) 0 0
\(749\) −163.145 −0.217817
\(750\) 209.047 504.684i 0.278729 0.672912i
\(751\) −801.406 + 1199.39i −1.06712 + 1.59706i −0.301839 + 0.953359i \(0.597600\pi\)
−0.765280 + 0.643697i \(0.777400\pi\)
\(752\) 37.0123 + 37.0123i 0.0492184 + 0.0492184i
\(753\) −111.289 559.487i −0.147794 0.743010i
\(754\) −39.5564 59.2003i −0.0524620 0.0785150i
\(755\) −362.805 + 1823.94i −0.480536 + 2.41582i
\(756\) −21.9402 + 9.08793i −0.0290214 + 0.0120211i
\(757\) 115.414 + 278.634i 0.152463 + 0.368077i 0.981595 0.190975i \(-0.0611651\pi\)
−0.829132 + 0.559052i \(0.811165\pi\)
\(758\) 75.6365 + 15.0450i 0.0997843 + 0.0198483i
\(759\) −268.998 + 179.739i −0.354411 + 0.236810i
\(760\) 1612.70 320.787i 2.12198 0.422088i
\(761\) 811.549 811.549i 1.06642 1.06642i 0.0687929 0.997631i \(-0.478085\pi\)
0.997631 0.0687929i \(-0.0219148\pi\)
\(762\) 243.973 + 163.017i 0.320174 + 0.213934i
\(763\) −173.265 71.7685i −0.227083 0.0940610i
\(764\) 153.984i 0.201550i
\(765\) 0 0
\(766\) −348.859 −0.455429
\(767\) 15.0916 36.4344i 0.0196762 0.0475025i
\(768\) 361.401 540.875i 0.470574 0.704264i
\(769\) −870.130 870.130i −1.13151 1.13151i −0.989927 0.141582i \(-0.954781\pi\)
−0.141582 0.989927i \(-0.545219\pi\)
\(770\) −75.6877 380.508i −0.0982958 0.494166i
\(771\) 883.615 + 1322.42i 1.14606 + 1.71520i
\(772\) 32.3465 162.617i 0.0418996 0.210644i
\(773\) 1306.77 541.282i 1.69052 0.700235i 0.690779 0.723066i \(-0.257268\pi\)
0.999739 + 0.0228308i \(0.00726789\pi\)
\(774\) 17.3451 + 41.8749i 0.0224098 + 0.0541019i
\(775\) −1294.25 257.442i −1.67000 0.332184i
\(776\) 1192.36 796.710i 1.53655 1.02669i
\(777\) −524.128 + 104.256i −0.674553 + 0.134177i
\(778\) 26.8308 26.8308i 0.0344869 0.0344869i
\(779\) 692.937 + 463.005i 0.889521 + 0.594359i
\(780\) 85.8218 + 35.5486i 0.110028 + 0.0455751i
\(781\) 238.490i 0.305365i
\(782\) 0 0
\(783\) −78.9004 −0.100767
\(784\) 144.231 348.205i 0.183969 0.444139i
\(785\) 1156.12 1730.25i 1.47276 2.20414i
\(786\) 972.366 + 972.366i 1.23711 + 1.23711i
\(787\) 300.978 + 1513.12i 0.382437 + 1.92264i 0.385650 + 0.922645i \(0.373977\pi\)
−0.00321327 + 0.999995i \(0.501023\pi\)
\(788\) −140.935 210.924i −0.178851 0.267670i
\(789\) −230.117 + 1156.88i −0.291657 + 1.46626i
\(790\) −270.877 + 112.201i −0.342882 + 0.142026i
\(791\) −293.232 707.924i −0.370710 0.894973i
\(792\) −432.867 86.1025i −0.546549 0.108715i
\(793\) 197.849 132.199i 0.249495 0.166707i
\(794\) −61.4266 + 12.2185i −0.0773634 + 0.0153885i
\(795\) −680.496 + 680.496i −0.855970 + 0.855970i
\(796\) 67.2856 + 44.9588i 0.0845297 + 0.0564809i
\(797\) −1040.17 430.853i −1.30511 0.540593i −0.381654 0.924305i \(-0.624645\pi\)
−0.923453 + 0.383712i \(0.874645\pi\)
\(798\) 720.593i 0.902998i
\(799\) 0 0
\(800\) −483.288 −0.604110
\(801\) 113.079 272.996i 0.141172 0.340819i
\(802\) 146.691 219.538i 0.182906 0.273739i
\(803\) −459.675 459.675i −0.572448 0.572448i
\(804\) 19.9376 + 100.233i 0.0247981 + 0.124668i
\(805\) −202.673 303.322i −0.251768 0.376798i
\(806\) −43.7470 + 219.931i −0.0542767 + 0.272868i
\(807\) 380.953 157.796i 0.472061 0.195534i
\(808\) −410.560 991.179i −0.508119 1.22671i
\(809\) 322.319 + 64.1132i 0.398417 + 0.0792500i 0.390232 0.920717i \(-0.372395\pi\)
0.00818445 + 0.999967i \(0.497395\pi\)
\(810\) −1056.05 + 705.632i −1.30377 + 0.871150i
\(811\) 286.220 56.9327i 0.352922 0.0702006i −0.0154457 0.999881i \(-0.504917\pi\)
0.368368 + 0.929680i \(0.379917\pi\)
\(812\) 30.7091 30.7091i 0.0378191 0.0378191i
\(813\) −1282.20 856.736i −1.57712 1.05380i
\(814\) 365.235 + 151.285i 0.448692 + 0.185854i
\(815\) 300.260i 0.368417i
\(816\) 0 0
\(817\) 85.7829 0.104997
\(818\) −269.482 + 650.588i −0.329441 + 0.795340i
\(819\) −56.3126 + 84.2777i −0.0687577 + 0.102903i
\(820\) −163.457 163.457i −0.199337 0.199337i
\(821\) −210.765 1059.59i −0.256718 1.29061i −0.866954 0.498388i \(-0.833926\pi\)
0.610237 0.792219i \(-0.291074\pi\)
\(822\) −209.711 313.854i −0.255122 0.381818i
\(823\) 17.7059 89.0135i 0.0215138 0.108157i −0.968536 0.248872i \(-0.919940\pi\)
0.990050 + 0.140715i \(0.0449401\pi\)
\(824\) 1394.52 577.631i 1.69238 0.701008i
\(825\) 374.877 + 905.033i 0.454396 + 1.09701i
\(826\) −83.2240 16.5543i −0.100755 0.0200415i
\(827\) −404.167 + 270.056i −0.488715 + 0.326549i −0.775394 0.631478i \(-0.782449\pi\)
0.286679 + 0.958027i \(0.407449\pi\)
\(828\) −73.6358 + 14.6471i −0.0889322 + 0.0176897i
\(829\) −743.445 + 743.445i −0.896797 + 0.896797i −0.995151 0.0983544i \(-0.968642\pi\)
0.0983544 + 0.995151i \(0.468642\pi\)
\(830\) −1289.73 861.770i −1.55389 1.03828i
\(831\) −251.307 104.095i −0.302415 0.125264i
\(832\) 239.065i 0.287338i
\(833\) 0 0
\(834\) 374.896 0.449516
\(835\) 106.690 257.571i 0.127772 0.308469i
\(836\) −83.9554 + 125.648i −0.100425 + 0.150297i
\(837\) 175.711 + 175.711i 0.209930 + 0.209930i
\(838\) −12.8807 64.7556i −0.0153708 0.0772740i
\(839\) −254.822 381.369i −0.303721 0.454551i 0.647944 0.761688i \(-0.275629\pi\)
−0.951665 + 0.307137i \(0.900629\pi\)
\(840\) 215.540 1083.60i 0.256596 1.28999i
\(841\) −643.676 + 266.619i −0.765370 + 0.317027i
\(842\) 298.762 + 721.276i 0.354824 + 0.856622i
\(843\) 1496.57 + 297.687i 1.77529 + 0.353128i
\(844\) 26.5621 17.7482i 0.0314717 0.0210287i
\(845\) 1197.08 238.115i 1.41667 0.281793i
\(846\) 41.2482 41.2482i 0.0487568 0.0487568i
\(847\) −247.848 165.607i −0.292619 0.195522i
\(848\) −331.775 137.426i −0.391244 0.162059i
\(849\) 1201.22i 1.41486i
\(850\) 0 0
\(851\) 371.728 0.436813
\(852\) −47.0197 + 113.516i −0.0551875 + 0.133234i
\(853\) 4.18302 6.26033i 0.00490389 0.00733919i −0.829010 0.559234i \(-0.811095\pi\)
0.833913 + 0.551895i \(0.186095\pi\)
\(854\) −362.035 362.035i −0.423929 0.423929i
\(855\) −274.490 1379.95i −0.321041 1.61398i
\(856\) 190.946 + 285.770i 0.223067 + 0.333844i
\(857\) −9.89135 + 49.7272i −0.0115418 + 0.0580247i −0.986127 0.165993i \(-0.946917\pi\)
0.974585 + 0.224017i \(0.0719172\pi\)
\(858\) 153.792 63.7026i 0.179244 0.0742455i
\(859\) 192.547 + 464.849i 0.224152 + 0.541151i 0.995446 0.0953281i \(-0.0303900\pi\)
−0.771294 + 0.636479i \(0.780390\pi\)
\(860\) −23.3370 4.64202i −0.0271361 0.00539770i
\(861\) 465.592 311.099i 0.540758 0.361323i
\(862\) −600.631 + 119.473i −0.696787 + 0.138600i
\(863\) 98.9573 98.9573i 0.114667 0.114667i −0.647445 0.762112i \(-0.724163\pi\)
0.762112 + 0.647445i \(0.224163\pi\)
\(864\) 75.6697 + 50.5609i 0.0875807 + 0.0585196i
\(865\) 1379.92 + 571.580i 1.59528 + 0.660786i
\(866\) 94.8830i 0.109565i
\(867\) 0 0
\(868\) −136.778 −0.157579
\(869\) 56.9977 137.605i 0.0655900 0.158348i
\(870\) 368.937 552.154i 0.424066 0.634660i
\(871\) −67.8634 67.8634i −0.0779143 0.0779143i
\(872\) 77.0774 + 387.494i 0.0883915 + 0.444374i
\(873\) −681.726 1020.28i −0.780900 1.16870i
\(874\) 97.7883 491.615i 0.111886 0.562488i
\(875\) −289.092 + 119.746i −0.330391 + 0.136853i
\(876\) −128.167 309.423i −0.146309 0.353222i
\(877\) −931.342 185.255i −1.06196 0.211238i −0.366955 0.930239i \(-0.619600\pi\)
−0.695009 + 0.719001i \(0.744600\pi\)
\(878\) 357.065 238.583i 0.406680 0.271735i
\(879\) −560.455 + 111.481i −0.637605 + 0.126828i
\(880\) −443.732 + 443.732i −0.504241 + 0.504241i
\(881\) 869.803 + 581.184i 0.987290 + 0.659686i 0.940704 0.339228i \(-0.110166\pi\)
0.0465861 + 0.998914i \(0.485166\pi\)
\(882\) −388.057 160.738i −0.439974 0.182243i
\(883\) 1264.99i 1.43261i −0.697789 0.716303i \(-0.745833\pi\)
0.697789 0.716303i \(-0.254167\pi\)
\(884\) 0 0
\(885\) 367.818 0.415613
\(886\) −77.4157 + 186.898i −0.0873766 + 0.210946i
\(887\) 434.284 649.952i 0.489610 0.732753i −0.501593 0.865104i \(-0.667253\pi\)
0.991203 + 0.132351i \(0.0422525\pi\)
\(888\) 796.059 + 796.059i 0.896463 + 0.896463i
\(889\) −32.7905 164.849i −0.0368847 0.185432i
\(890\) −304.009 454.981i −0.341583 0.511215i
\(891\) 125.874 632.812i 0.141273 0.710227i
\(892\) −329.023 + 136.286i −0.368860 + 0.152787i
\(893\) −42.2496 102.000i −0.0473120 0.114221i
\(894\) 362.651 + 72.1358i 0.405650 + 0.0806888i
\(895\) −1559.63 + 1042.11i −1.74260 + 1.16437i
\(896\) 282.066 56.1063i 0.314805 0.0626187i
\(897\) 110.680 110.680i 0.123389 0.123389i
\(898\) 797.334 + 532.761i 0.887900 + 0.593276i
\(899\) −419.842 173.904i −0.467010 0.193442i
\(900\) 227.333i 0.252592i
\(901\) 0 0
\(902\) −414.241 −0.459247
\(903\) 22.0573 53.2511i 0.0244267 0.0589713i
\(904\) −896.823 + 1342.19i −0.992061 + 1.48472i
\(905\) 746.999 + 746.999i 0.825413 + 0.825413i
\(906\) 334.949 + 1683.90i 0.369701 + 1.85861i
\(907\) −207.645 310.763i −0.228936 0.342628i 0.699161 0.714964i \(-0.253557\pi\)
−0.928098 + 0.372336i \(0.878557\pi\)
\(908\) −21.7590 + 109.390i −0.0239637 + 0.120474i
\(909\) −848.129 + 351.306i −0.933035 + 0.386476i
\(910\) 71.8311 + 173.416i 0.0789352 + 0.190567i
\(911\) 119.565 + 23.7829i 0.131246 + 0.0261064i 0.260276 0.965534i \(-0.416186\pi\)
−0.129030 + 0.991641i \(0.541186\pi\)
\(912\) 969.131 647.553i 1.06264 0.710036i
\(913\) 772.838 153.727i 0.846482 0.168376i
\(914\) −280.276 + 280.276i −0.306647 + 0.306647i
\(915\) 1845.31 + 1233.00i 2.01674 + 1.34754i
\(916\) −100.349 41.5657i −0.109551 0.0453774i
\(917\) 787.702i 0.858999i
\(918\) 0 0
\(919\) 1592.00 1.73232 0.866158 0.499770i \(-0.166582\pi\)
0.866158 + 0.499770i \(0.166582\pi\)
\(920\) −294.099 + 710.018i −0.319673 + 0.771759i
\(921\) −583.751 + 873.645i −0.633823 + 0.948583i
\(922\) −314.913 314.913i −0.341555 0.341555i
\(923\) −22.5107 113.169i −0.0243886 0.122610i
\(924\) 56.4107 + 84.4245i 0.0610505 + 0.0913685i
\(925\) 219.587 1103.94i 0.237391 1.19345i
\(926\) −204.478 + 84.6976i −0.220819 + 0.0914661i
\(927\) −494.265 1193.26i −0.533188 1.28723i
\(928\) −163.232 32.4690i −0.175897 0.0349881i
\(929\) −564.616 + 377.264i −0.607767 + 0.406097i −0.821020 0.570900i \(-0.806594\pi\)
0.213252 + 0.976997i \(0.431594\pi\)
\(930\) −2051.27 + 408.023i −2.20567 + 0.438735i
\(931\) −562.118 + 562.118i −0.603778 + 0.603778i
\(932\) −44.1806 29.5205i −0.0474040 0.0316744i
\(933\) 2109.16 + 873.641i 2.26062 + 0.936378i
\(934\) 1223.18i 1.30961i
\(935\) 0 0
\(936\) 213.532 0.228133
\(937\) −112.652 + 271.967i −0.120227 + 0.290253i −0.972523 0.232806i \(-0.925209\pi\)
0.852296 + 0.523059i \(0.175209\pi\)
\(938\) −114.727 + 171.702i −0.122311 + 0.183051i
\(939\) 1304.18 + 1304.18i 1.38890 + 1.38890i
\(940\) 5.97433 + 30.0350i 0.00635567 + 0.0319521i
\(941\) 463.946 + 694.344i 0.493035 + 0.737879i 0.991652 0.128943i \(-0.0411585\pi\)
−0.498617 + 0.866822i \(0.666159\pi\)
\(942\) 374.804 1884.27i 0.397882 2.00029i
\(943\) −359.862 + 149.060i −0.381614 + 0.158070i
\(944\) 52.5243 + 126.805i 0.0556402 + 0.134327i
\(945\) 204.008 + 40.5798i 0.215882 + 0.0429416i
\(946\) −35.4530 + 23.6889i −0.0374767 + 0.0250412i
\(947\) −610.881 + 121.512i −0.645070 + 0.128312i −0.506775 0.862079i \(-0.669162\pi\)
−0.138295 + 0.990391i \(0.544162\pi\)
\(948\) 54.2592 54.2592i 0.0572355 0.0572355i
\(949\) 261.514 + 174.738i 0.275568 + 0.184129i
\(950\) −1402.21 580.814i −1.47601 0.611383i
\(951\) 1343.30i 1.41252i
\(952\) 0 0
\(953\) −373.214 −0.391620 −0.195810 0.980642i \(-0.562734\pi\)
−0.195810 + 0.980642i \(0.562734\pi\)
\(954\) −153.154 + 369.746i −0.160539 + 0.387575i
\(955\) −749.313 + 1121.43i −0.784621 + 1.17427i
\(956\) −178.619 178.619i −0.186840 0.186840i
\(957\) 65.8130 + 330.864i 0.0687701 + 0.345730i
\(958\) −469.496 702.650i −0.490079 0.733455i
\(959\) −42.1827 + 212.067i −0.0439861 + 0.221133i
\(960\) −2060.00 + 853.280i −2.14583 + 0.888833i
\(961\) 179.945 + 434.426i 0.187248 + 0.452056i
\(962\) −187.592 37.3143i −0.195002 0.0387883i
\(963\) 244.527 163.388i 0.253922 0.169665i
\(964\) 107.737 21.4303i 0.111761 0.0222306i
\(965\) −1026.89 + 1026.89i −1.06414 + 1.06414i
\(966\) −280.033 187.112i −0.289890 0.193698i
\(967\) −947.512 392.472i −0.979847 0.405866i −0.165478 0.986213i \(-0.552917\pi\)
−0.814369 + 0.580348i \(0.802917\pi\)
\(968\) 627.966i 0.648725i
\(969\) 0 0
\(970\) −2272.36 −2.34264
\(971\) −376.591 + 909.171i −0.387838 + 0.936325i 0.602559 + 0.798074i \(0.294148\pi\)
−0.990397 + 0.138250i \(0.955852\pi\)
\(972\) 155.660 232.961i 0.160144 0.239672i
\(973\) −151.849 151.849i −0.156063 0.156063i
\(974\) −139.713 702.385i −0.143443 0.721134i
\(975\) −263.312 394.074i −0.270064 0.404179i
\(976\) −161.565 + 812.243i −0.165538 + 0.832216i
\(977\) 525.837 217.809i 0.538216 0.222936i −0.0969814 0.995286i \(-0.530919\pi\)
0.635197 + 0.772350i \(0.280919\pi\)
\(978\) 106.082 + 256.105i 0.108469 + 0.261866i
\(979\) 272.636 + 54.2306i 0.278484 + 0.0553939i
\(980\) 183.341 122.504i 0.187082 0.125004i
\(981\) 331.570 65.9533i 0.337991 0.0672307i
\(982\) −77.4444 + 77.4444i −0.0788639 + 0.0788639i
\(983\) −1195.55 798.843i −1.21623 0.812658i −0.229228 0.973373i \(-0.573620\pi\)
−0.987001 + 0.160715i \(0.948620\pi\)
\(984\) −1089.86 451.436i −1.10758 0.458776i
\(985\) 2221.92i 2.25575i
\(986\) 0 0
\(987\) −74.1814 −0.0751585
\(988\) 27.9790 67.5473i 0.0283188 0.0683677i
\(989\) −22.2748 + 33.3365i −0.0225225 + 0.0337073i
\(990\) 494.517 + 494.517i 0.499512 + 0.499512i
\(991\) 16.3803 + 82.3495i 0.0165291 + 0.0830973i 0.988169 0.153367i \(-0.0490115\pi\)
−0.971640 + 0.236464i \(0.924012\pi\)
\(992\) 291.210 + 435.827i 0.293559 + 0.439342i
\(993\) 465.415 2339.80i 0.468696 2.35629i
\(994\) −229.375 + 95.0102i −0.230759 + 0.0955837i
\(995\) −271.246 654.847i −0.272609 0.658137i
\(996\) 398.161 + 79.1992i 0.399760 + 0.0795172i
\(997\) −626.361 + 418.521i −0.628246 + 0.419780i −0.828520 0.559959i \(-0.810817\pi\)
0.200274 + 0.979740i \(0.435817\pi\)
\(998\) −888.649 + 176.763i −0.890430 + 0.177118i
\(999\) −149.874 + 149.874i −0.150024 + 0.150024i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 289.3.e.n.75.1 8
17.2 even 8 289.3.e.h.249.1 8
17.3 odd 16 289.3.e.e.131.1 8
17.4 even 4 289.3.e.a.214.1 8
17.5 odd 16 inner 289.3.e.n.158.1 8
17.6 odd 16 289.3.e.f.65.1 8
17.7 odd 16 289.3.e.g.224.1 8
17.8 even 8 289.3.e.g.40.1 8
17.9 even 8 17.3.e.b.6.1 yes 8
17.10 odd 16 17.3.e.b.3.1 8
17.11 odd 16 289.3.e.h.65.1 8
17.12 odd 16 289.3.e.j.158.1 8
17.13 even 4 289.3.e.e.214.1 8
17.14 odd 16 289.3.e.a.131.1 8
17.15 even 8 289.3.e.f.249.1 8
17.16 even 2 289.3.e.j.75.1 8
51.26 odd 8 153.3.p.a.91.1 8
51.44 even 16 153.3.p.a.37.1 8
68.27 even 16 272.3.bh.b.241.1 8
68.43 odd 8 272.3.bh.b.193.1 8
85.9 even 8 425.3.u.a.176.1 8
85.27 even 16 425.3.t.b.224.1 8
85.43 odd 8 425.3.t.b.74.1 8
85.44 odd 16 425.3.u.a.326.1 8
85.77 odd 8 425.3.t.d.74.1 8
85.78 even 16 425.3.t.d.224.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.3.e.b.3.1 8 17.10 odd 16
17.3.e.b.6.1 yes 8 17.9 even 8
153.3.p.a.37.1 8 51.44 even 16
153.3.p.a.91.1 8 51.26 odd 8
272.3.bh.b.193.1 8 68.43 odd 8
272.3.bh.b.241.1 8 68.27 even 16
289.3.e.a.131.1 8 17.14 odd 16
289.3.e.a.214.1 8 17.4 even 4
289.3.e.e.131.1 8 17.3 odd 16
289.3.e.e.214.1 8 17.13 even 4
289.3.e.f.65.1 8 17.6 odd 16
289.3.e.f.249.1 8 17.15 even 8
289.3.e.g.40.1 8 17.8 even 8
289.3.e.g.224.1 8 17.7 odd 16
289.3.e.h.65.1 8 17.11 odd 16
289.3.e.h.249.1 8 17.2 even 8
289.3.e.j.75.1 8 17.16 even 2
289.3.e.j.158.1 8 17.12 odd 16
289.3.e.n.75.1 8 1.1 even 1 trivial
289.3.e.n.158.1 8 17.5 odd 16 inner
425.3.t.b.74.1 8 85.43 odd 8
425.3.t.b.224.1 8 85.27 even 16
425.3.t.d.74.1 8 85.77 odd 8
425.3.t.d.224.1 8 85.78 even 16
425.3.u.a.176.1 8 85.9 even 8
425.3.u.a.326.1 8 85.44 odd 16