L(s) = 1 | + (−0.675 + 1.63i)2-s + (0.789 + 3.96i)3-s + (0.624 + 0.624i)4-s + (−7.00 − 1.39i)6-s + (−3.40 + 2.27i)7-s + (−7.96 + 3.29i)8-s + (−6.81 + 2.82i)9-s + (1.35 − 6.80i)11-s + (−1.98 + 2.97i)12-s + (2.37 + 2.37i)13-s + (−1.40 − 7.08i)14-s − 11.6i·16-s + (−14.5 + 8.76i)17-s − 13.0i·18-s + (−22.7 − 9.43i)19-s + ⋯ |
L(s) = 1 | + (−0.337 + 0.815i)2-s + (0.263 + 1.32i)3-s + (0.156 + 0.156i)4-s + (−1.16 − 0.232i)6-s + (−0.486 + 0.324i)7-s + (−0.995 + 0.412i)8-s + (−0.757 + 0.313i)9-s + (0.123 − 0.618i)11-s + (−0.165 + 0.247i)12-s + (0.182 + 0.182i)13-s + (−0.100 − 0.506i)14-s − 0.730i·16-s + (−0.856 + 0.515i)17-s − 0.723i·18-s + (−1.19 − 0.496i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.351 + 0.936i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.351 + 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.534935 - 0.771929i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.534935 - 0.771929i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (14.5 - 8.76i)T \) |
good | 2 | \( 1 + (0.675 - 1.63i)T + (-2.82 - 2.82i)T^{2} \) |
| 3 | \( 1 + (-0.789 - 3.96i)T + (-8.31 + 3.44i)T^{2} \) |
| 7 | \( 1 + (3.40 - 2.27i)T + (18.7 - 45.2i)T^{2} \) |
| 11 | \( 1 + (-1.35 + 6.80i)T + (-111. - 46.3i)T^{2} \) |
| 13 | \( 1 + (-2.37 - 2.37i)T + 169iT^{2} \) |
| 19 | \( 1 + (22.7 + 9.43i)T + (255. + 255. i)T^{2} \) |
| 23 | \( 1 + (-2.24 + 11.2i)T + (-488. - 202. i)T^{2} \) |
| 29 | \( 1 + (9.98 + 6.67i)T + (321. + 776. i)T^{2} \) |
| 31 | \( 1 + (-7.38 - 37.1i)T + (-887. + 367. i)T^{2} \) |
| 37 | \( 1 + (-6.29 - 31.6i)T + (-1.26e3 + 523. i)T^{2} \) |
| 41 | \( 1 + (-18.7 - 28.1i)T + (-643. + 1.55e3i)T^{2} \) |
| 43 | \( 1 + (-1.33 - 3.21i)T + (-1.30e3 + 1.30e3i)T^{2} \) |
| 47 | \( 1 + (3.16 + 3.16i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-11.7 + 28.3i)T + (-1.98e3 - 1.98e3i)T^{2} \) |
| 59 | \( 1 + (-4.49 - 10.8i)T + (-2.46e3 + 2.46e3i)T^{2} \) |
| 61 | \( 1 + (-58.9 + 39.3i)T + (1.42e3 - 3.43e3i)T^{2} \) |
| 67 | \( 1 - 28.5T + 4.48e3T^{2} \) |
| 71 | \( 1 + (33.7 - 6.70i)T + (4.65e3 - 1.92e3i)T^{2} \) |
| 73 | \( 1 + (77.8 + 52.0i)T + (2.03e3 + 4.92e3i)T^{2} \) |
| 79 | \( 1 + (4.18 - 21.0i)T + (-5.76e3 - 2.38e3i)T^{2} \) |
| 83 | \( 1 + (-104. - 43.4i)T + (4.87e3 + 4.87e3i)T^{2} \) |
| 89 | \( 1 + (-28.3 - 28.3i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (92.4 - 138. i)T + (-3.60e3 - 8.69e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.27825819284177175814599108997, −10.61741442288718382928101560256, −9.513139053122266904488449740295, −8.784361749852645156392442568406, −8.276073908858038420482546937079, −6.76280327609385136646600943387, −6.14913354059508477743354222947, −4.84269278319889831637588048469, −3.72523083302433975606321376038, −2.65474811953527633567374649444,
0.40303329379820524729047492426, 1.76702258854957230669175053276, 2.57129609833347887981869702409, 4.02801910890211054377869966207, 5.87825481142189564427563932304, 6.73377457270257867947847156356, 7.42406466785865069795821705781, 8.607203092524353539626927133196, 9.526575456425139431677236671986, 10.41623802889141235166290094353