Properties

Label 420.2.bn.a.269.12
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.12
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.16448 - 1.28218i) q^{3} +(0.225553 + 2.22466i) q^{5} +(-2.08204 + 1.63251i) q^{7} +(-0.287951 - 2.98615i) q^{9} +(5.09034 + 2.93891i) q^{11} +3.54004 q^{13} +(3.11506 + 2.30139i) q^{15} +(2.69171 + 1.55406i) q^{17} +(3.58419 - 2.06933i) q^{19} +(-0.331334 + 4.57058i) q^{21} +(-3.57587 - 6.19358i) q^{23} +(-4.89825 + 1.00356i) q^{25} +(-4.16408 - 3.10812i) q^{27} +6.84761i q^{29} +(-3.90384 - 2.25388i) q^{31} +(9.69582 - 3.10439i) q^{33} +(-4.10141 - 4.26362i) q^{35} +(1.70926 - 0.986843i) q^{37} +(4.12233 - 4.53896i) q^{39} -6.33142 q^{41} -3.88979i q^{43} +(6.57823 - 1.31413i) q^{45} +(-1.58829 + 0.916997i) q^{47} +(1.66979 - 6.79793i) q^{49} +(5.12704 - 1.64157i) q^{51} +(-6.90391 + 11.9579i) q^{53} +(-5.38994 + 11.9872i) q^{55} +(1.52048 - 7.00526i) q^{57} +(2.32584 - 4.02848i) q^{59} +(0.702144 - 0.405383i) q^{61} +(5.47446 + 5.74720i) q^{63} +(0.798468 + 7.87540i) q^{65} +(8.84158 + 5.10469i) q^{67} +(-12.1053 - 2.62744i) q^{69} +1.18684i q^{71} +(-1.08522 + 1.87966i) q^{73} +(-4.41720 + 7.44905i) q^{75} +(-15.3961 + 2.19112i) q^{77} +(-5.05228 - 8.75081i) q^{79} +(-8.83417 + 1.71973i) q^{81} -5.31243i q^{83} +(-2.85014 + 6.33868i) q^{85} +(8.77984 + 7.97394i) q^{87} +(-6.28986 - 10.8944i) q^{89} +(-7.37052 + 5.77917i) q^{91} +(-7.43583 + 2.38080i) q^{93} +(5.41199 + 7.50686i) q^{95} +4.50686 q^{97} +(7.31025 - 16.0468i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.16448 1.28218i 0.672316 0.740265i
\(4\) 0 0
\(5\) 0.225553 + 2.22466i 0.100870 + 0.994900i
\(6\) 0 0
\(7\) −2.08204 + 1.63251i −0.786938 + 0.617033i
\(8\) 0 0
\(9\) −0.287951 2.98615i −0.0959835 0.995383i
\(10\) 0 0
\(11\) 5.09034 + 2.93891i 1.53479 + 0.886114i 0.999131 + 0.0416823i \(0.0132717\pi\)
0.535663 + 0.844432i \(0.320062\pi\)
\(12\) 0 0
\(13\) 3.54004 0.981831 0.490916 0.871207i \(-0.336662\pi\)
0.490916 + 0.871207i \(0.336662\pi\)
\(14\) 0 0
\(15\) 3.11506 + 2.30139i 0.804306 + 0.594216i
\(16\) 0 0
\(17\) 2.69171 + 1.55406i 0.652836 + 0.376915i 0.789542 0.613697i \(-0.210318\pi\)
−0.136706 + 0.990612i \(0.543652\pi\)
\(18\) 0 0
\(19\) 3.58419 2.06933i 0.822269 0.474737i −0.0289296 0.999581i \(-0.509210\pi\)
0.851198 + 0.524844i \(0.175877\pi\)
\(20\) 0 0
\(21\) −0.331334 + 4.57058i −0.0723030 + 0.997383i
\(22\) 0 0
\(23\) −3.57587 6.19358i −0.745620 1.29145i −0.949905 0.312539i \(-0.898820\pi\)
0.204285 0.978911i \(-0.434513\pi\)
\(24\) 0 0
\(25\) −4.89825 + 1.00356i −0.979650 + 0.200712i
\(26\) 0 0
\(27\) −4.16408 3.10812i −0.801378 0.598158i
\(28\) 0 0
\(29\) 6.84761i 1.27157i 0.771867 + 0.635785i \(0.219323\pi\)
−0.771867 + 0.635785i \(0.780677\pi\)
\(30\) 0 0
\(31\) −3.90384 2.25388i −0.701150 0.404809i 0.106626 0.994299i \(-0.465995\pi\)
−0.807776 + 0.589490i \(0.799329\pi\)
\(32\) 0 0
\(33\) 9.69582 3.10439i 1.68782 0.540406i
\(34\) 0 0
\(35\) −4.10141 4.26362i −0.693264 0.720684i
\(36\) 0 0
\(37\) 1.70926 0.986843i 0.281001 0.162236i −0.352875 0.935670i \(-0.614796\pi\)
0.633876 + 0.773434i \(0.281463\pi\)
\(38\) 0 0
\(39\) 4.12233 4.53896i 0.660100 0.726815i
\(40\) 0 0
\(41\) −6.33142 −0.988801 −0.494401 0.869234i \(-0.664612\pi\)
−0.494401 + 0.869234i \(0.664612\pi\)
\(42\) 0 0
\(43\) 3.88979i 0.593187i −0.955004 0.296594i \(-0.904149\pi\)
0.955004 0.296594i \(-0.0958507\pi\)
\(44\) 0 0
\(45\) 6.57823 1.31413i 0.980624 0.195899i
\(46\) 0 0
\(47\) −1.58829 + 0.916997i −0.231675 + 0.133758i −0.611345 0.791364i \(-0.709371\pi\)
0.379669 + 0.925122i \(0.376038\pi\)
\(48\) 0 0
\(49\) 1.66979 6.79793i 0.238541 0.971132i
\(50\) 0 0
\(51\) 5.12704 1.64157i 0.717929 0.229866i
\(52\) 0 0
\(53\) −6.90391 + 11.9579i −0.948325 + 1.64255i −0.199371 + 0.979924i \(0.563890\pi\)
−0.748954 + 0.662622i \(0.769443\pi\)
\(54\) 0 0
\(55\) −5.38994 + 11.9872i −0.726779 + 1.61635i
\(56\) 0 0
\(57\) 1.52048 7.00526i 0.201393 0.927869i
\(58\) 0 0
\(59\) 2.32584 4.02848i 0.302799 0.524463i −0.673970 0.738759i \(-0.735412\pi\)
0.976769 + 0.214296i \(0.0687456\pi\)
\(60\) 0 0
\(61\) 0.702144 0.405383i 0.0899003 0.0519040i −0.454376 0.890810i \(-0.650138\pi\)
0.544276 + 0.838906i \(0.316804\pi\)
\(62\) 0 0
\(63\) 5.47446 + 5.74720i 0.689717 + 0.724079i
\(64\) 0 0
\(65\) 0.798468 + 7.87540i 0.0990377 + 0.976824i
\(66\) 0 0
\(67\) 8.84158 + 5.10469i 1.08017 + 0.623637i 0.930942 0.365166i \(-0.118988\pi\)
0.149228 + 0.988803i \(0.452321\pi\)
\(68\) 0 0
\(69\) −12.1053 2.62744i −1.45731 0.316307i
\(70\) 0 0
\(71\) 1.18684i 0.140852i 0.997517 + 0.0704262i \(0.0224359\pi\)
−0.997517 + 0.0704262i \(0.977564\pi\)
\(72\) 0 0
\(73\) −1.08522 + 1.87966i −0.127016 + 0.219998i −0.922519 0.385951i \(-0.873873\pi\)
0.795503 + 0.605949i \(0.207207\pi\)
\(74\) 0 0
\(75\) −4.41720 + 7.44905i −0.510054 + 0.860142i
\(76\) 0 0
\(77\) −15.3961 + 2.19112i −1.75455 + 0.249702i
\(78\) 0 0
\(79\) −5.05228 8.75081i −0.568426 0.984543i −0.996722 0.0809043i \(-0.974219\pi\)
0.428296 0.903639i \(-0.359114\pi\)
\(80\) 0 0
\(81\) −8.83417 + 1.71973i −0.981574 + 0.191081i
\(82\) 0 0
\(83\) 5.31243i 0.583115i −0.956553 0.291558i \(-0.905826\pi\)
0.956553 0.291558i \(-0.0941735\pi\)
\(84\) 0 0
\(85\) −2.85014 + 6.33868i −0.309141 + 0.687526i
\(86\) 0 0
\(87\) 8.77984 + 7.97394i 0.941298 + 0.854896i
\(88\) 0 0
\(89\) −6.28986 10.8944i −0.666724 1.15480i −0.978815 0.204747i \(-0.934363\pi\)
0.312091 0.950052i \(-0.398971\pi\)
\(90\) 0 0
\(91\) −7.37052 + 5.77917i −0.772640 + 0.605822i
\(92\) 0 0
\(93\) −7.43583 + 2.38080i −0.771060 + 0.246877i
\(94\) 0 0
\(95\) 5.41199 + 7.50686i 0.555258 + 0.770188i
\(96\) 0 0
\(97\) 4.50686 0.457602 0.228801 0.973473i \(-0.426519\pi\)
0.228801 + 0.973473i \(0.426519\pi\)
\(98\) 0 0
\(99\) 7.31025 16.0468i 0.734708 1.61276i
\(100\) 0 0
\(101\) 0.896791 1.55329i 0.0892340 0.154558i −0.817954 0.575284i \(-0.804891\pi\)
0.907188 + 0.420726i \(0.138225\pi\)
\(102\) 0 0
\(103\) −6.30688 10.9238i −0.621436 1.07636i −0.989219 0.146446i \(-0.953216\pi\)
0.367783 0.929912i \(-0.380117\pi\)
\(104\) 0 0
\(105\) −10.2427 + 0.293803i −0.999589 + 0.0286722i
\(106\) 0 0
\(107\) −1.73976 3.01335i −0.168189 0.291311i 0.769594 0.638533i \(-0.220458\pi\)
−0.937783 + 0.347222i \(0.887125\pi\)
\(108\) 0 0
\(109\) 4.98802 8.63951i 0.477766 0.827515i −0.521909 0.853001i \(-0.674780\pi\)
0.999675 + 0.0254860i \(0.00811333\pi\)
\(110\) 0 0
\(111\) 0.725103 3.34074i 0.0688238 0.317089i
\(112\) 0 0
\(113\) −2.54532 −0.239444 −0.119722 0.992807i \(-0.538200\pi\)
−0.119722 + 0.992807i \(0.538200\pi\)
\(114\) 0 0
\(115\) 12.9721 9.35208i 1.20965 0.872086i
\(116\) 0 0
\(117\) −1.01936 10.5711i −0.0942396 0.977298i
\(118\) 0 0
\(119\) −8.14128 + 1.15864i −0.746310 + 0.106213i
\(120\) 0 0
\(121\) 11.7744 + 20.3938i 1.07040 + 1.85398i
\(122\) 0 0
\(123\) −7.37284 + 8.11799i −0.664787 + 0.731975i
\(124\) 0 0
\(125\) −3.33740 10.6706i −0.298506 0.954408i
\(126\) 0 0
\(127\) 12.6616i 1.12353i 0.827295 + 0.561767i \(0.189878\pi\)
−0.827295 + 0.561767i \(0.810122\pi\)
\(128\) 0 0
\(129\) −4.98739 4.52960i −0.439116 0.398809i
\(130\) 0 0
\(131\) −6.34770 10.9945i −0.554601 0.960597i −0.997934 0.0642406i \(-0.979537\pi\)
0.443333 0.896357i \(-0.353796\pi\)
\(132\) 0 0
\(133\) −4.08421 + 10.1597i −0.354146 + 0.880955i
\(134\) 0 0
\(135\) 5.97530 9.96473i 0.514272 0.857627i
\(136\) 0 0
\(137\) −2.62391 + 4.54475i −0.224176 + 0.388284i −0.956072 0.293132i \(-0.905302\pi\)
0.731896 + 0.681416i \(0.238636\pi\)
\(138\) 0 0
\(139\) 14.2842i 1.21157i −0.795627 0.605787i \(-0.792858\pi\)
0.795627 0.605787i \(-0.207142\pi\)
\(140\) 0 0
\(141\) −0.673782 + 3.10429i −0.0567427 + 0.261428i
\(142\) 0 0
\(143\) 18.0200 + 10.4039i 1.50691 + 0.870014i
\(144\) 0 0
\(145\) −15.2336 + 1.54450i −1.26508 + 0.128264i
\(146\) 0 0
\(147\) −6.77169 10.0570i −0.558520 0.829491i
\(148\) 0 0
\(149\) −13.0762 + 7.54956i −1.07125 + 0.618484i −0.928521 0.371279i \(-0.878919\pi\)
−0.142724 + 0.989763i \(0.545586\pi\)
\(150\) 0 0
\(151\) 4.16979 7.22229i 0.339333 0.587742i −0.644975 0.764204i \(-0.723132\pi\)
0.984307 + 0.176462i \(0.0564654\pi\)
\(152\) 0 0
\(153\) 3.86558 8.48535i 0.312513 0.686000i
\(154\) 0 0
\(155\) 4.13361 9.19310i 0.332019 0.738407i
\(156\) 0 0
\(157\) 0.480298 0.831900i 0.0383319 0.0663929i −0.846223 0.532829i \(-0.821129\pi\)
0.884555 + 0.466436i \(0.154462\pi\)
\(158\) 0 0
\(159\) 7.29266 + 22.7768i 0.578346 + 1.80632i
\(160\) 0 0
\(161\) 17.5562 + 7.05764i 1.38362 + 0.556220i
\(162\) 0 0
\(163\) −16.1698 + 9.33565i −1.26652 + 0.731224i −0.974327 0.225136i \(-0.927717\pi\)
−0.292190 + 0.956360i \(0.594384\pi\)
\(164\) 0 0
\(165\) 9.09315 + 20.8697i 0.707901 + 1.62471i
\(166\) 0 0
\(167\) 14.2212i 1.10047i −0.835011 0.550233i \(-0.814539\pi\)
0.835011 0.550233i \(-0.185461\pi\)
\(168\) 0 0
\(169\) −0.468096 −0.0360074
\(170\) 0 0
\(171\) −7.21140 10.1070i −0.551469 0.772905i
\(172\) 0 0
\(173\) 0.618569 0.357131i 0.0470289 0.0271522i −0.476301 0.879282i \(-0.658023\pi\)
0.523330 + 0.852130i \(0.324689\pi\)
\(174\) 0 0
\(175\) 8.56004 10.0859i 0.647078 0.762424i
\(176\) 0 0
\(177\) −2.45681 7.67324i −0.184665 0.576756i
\(178\) 0 0
\(179\) 9.68510 + 5.59169i 0.723898 + 0.417943i 0.816186 0.577790i \(-0.196085\pi\)
−0.0922876 + 0.995732i \(0.529418\pi\)
\(180\) 0 0
\(181\) 3.69700i 0.274796i 0.990516 + 0.137398i \(0.0438739\pi\)
−0.990516 + 0.137398i \(0.956126\pi\)
\(182\) 0 0
\(183\) 0.297864 1.37233i 0.0220187 0.101446i
\(184\) 0 0
\(185\) 2.58092 + 3.57995i 0.189753 + 0.263203i
\(186\) 0 0
\(187\) 9.13448 + 15.8214i 0.667979 + 1.15697i
\(188\) 0 0
\(189\) 13.7438 0.326689i 0.999718 0.0237632i
\(190\) 0 0
\(191\) −8.99652 + 5.19414i −0.650965 + 0.375835i −0.788826 0.614617i \(-0.789311\pi\)
0.137861 + 0.990452i \(0.455977\pi\)
\(192\) 0 0
\(193\) −5.12779 2.96053i −0.369106 0.213104i 0.303962 0.952684i \(-0.401691\pi\)
−0.673068 + 0.739581i \(0.735024\pi\)
\(194\) 0 0
\(195\) 11.0275 + 8.14701i 0.789693 + 0.583420i
\(196\) 0 0
\(197\) 11.1053 0.791221 0.395610 0.918418i \(-0.370533\pi\)
0.395610 + 0.918418i \(0.370533\pi\)
\(198\) 0 0
\(199\) 11.4667 + 6.62029i 0.812851 + 0.469300i 0.847945 0.530084i \(-0.177840\pi\)
−0.0350939 + 0.999384i \(0.511173\pi\)
\(200\) 0 0
\(201\) 16.8410 5.39213i 1.18787 0.380331i
\(202\) 0 0
\(203\) −11.1788 14.2570i −0.784600 1.00065i
\(204\) 0 0
\(205\) −1.42807 14.0853i −0.0997408 0.983758i
\(206\) 0 0
\(207\) −17.4653 + 12.4615i −1.21392 + 0.866135i
\(208\) 0 0
\(209\) 24.3263 1.68268
\(210\) 0 0
\(211\) −19.9122 −1.37082 −0.685408 0.728160i \(-0.740376\pi\)
−0.685408 + 0.728160i \(0.740376\pi\)
\(212\) 0 0
\(213\) 1.52174 + 1.38206i 0.104268 + 0.0946973i
\(214\) 0 0
\(215\) 8.65347 0.877354i 0.590162 0.0598350i
\(216\) 0 0
\(217\) 11.8074 1.68040i 0.801542 0.114073i
\(218\) 0 0
\(219\) 1.14633 + 3.58028i 0.0774619 + 0.241933i
\(220\) 0 0
\(221\) 9.52878 + 5.50144i 0.640975 + 0.370067i
\(222\) 0 0
\(223\) 10.4924 0.702623 0.351311 0.936259i \(-0.385736\pi\)
0.351311 + 0.936259i \(0.385736\pi\)
\(224\) 0 0
\(225\) 4.40723 + 14.3379i 0.293815 + 0.955862i
\(226\) 0 0
\(227\) 14.2249 + 8.21273i 0.944138 + 0.545098i 0.891255 0.453502i \(-0.149826\pi\)
0.0528829 + 0.998601i \(0.483159\pi\)
\(228\) 0 0
\(229\) −0.903838 + 0.521831i −0.0597273 + 0.0344836i −0.529566 0.848269i \(-0.677645\pi\)
0.469839 + 0.882752i \(0.344312\pi\)
\(230\) 0 0
\(231\) −15.1191 + 22.2920i −0.994765 + 1.46671i
\(232\) 0 0
\(233\) 14.4619 + 25.0488i 0.947431 + 1.64100i 0.750809 + 0.660519i \(0.229664\pi\)
0.196622 + 0.980479i \(0.437003\pi\)
\(234\) 0 0
\(235\) −2.39825 3.32657i −0.156445 0.217001i
\(236\) 0 0
\(237\) −17.1034 3.71227i −1.11098 0.241138i
\(238\) 0 0
\(239\) 5.69731i 0.368528i 0.982877 + 0.184264i \(0.0589902\pi\)
−0.982877 + 0.184264i \(0.941010\pi\)
\(240\) 0 0
\(241\) −6.10598 3.52529i −0.393321 0.227084i 0.290277 0.956943i \(-0.406253\pi\)
−0.683598 + 0.729859i \(0.739586\pi\)
\(242\) 0 0
\(243\) −8.08226 + 13.3296i −0.518477 + 0.855091i
\(244\) 0 0
\(245\) 15.4997 + 2.18143i 0.990241 + 0.139366i
\(246\) 0 0
\(247\) 12.6882 7.32552i 0.807329 0.466112i
\(248\) 0 0
\(249\) −6.81148 6.18625i −0.431660 0.392038i
\(250\) 0 0
\(251\) 3.93237 0.248209 0.124105 0.992269i \(-0.460394\pi\)
0.124105 + 0.992269i \(0.460394\pi\)
\(252\) 0 0
\(253\) 42.0366i 2.64282i
\(254\) 0 0
\(255\) 4.80836 + 11.0357i 0.301111 + 0.691080i
\(256\) 0 0
\(257\) 13.2552 7.65287i 0.826834 0.477373i −0.0259335 0.999664i \(-0.508256\pi\)
0.852767 + 0.522291i \(0.174922\pi\)
\(258\) 0 0
\(259\) −1.94772 + 4.84504i −0.121025 + 0.301056i
\(260\) 0 0
\(261\) 20.4480 1.97177i 1.26570 0.122050i
\(262\) 0 0
\(263\) 9.75977 16.9044i 0.601813 1.04237i −0.390733 0.920504i \(-0.627778\pi\)
0.992546 0.121867i \(-0.0388882\pi\)
\(264\) 0 0
\(265\) −28.1595 12.6617i −1.72983 0.777803i
\(266\) 0 0
\(267\) −21.2929 4.62161i −1.30311 0.282838i
\(268\) 0 0
\(269\) 4.91865 8.51935i 0.299895 0.519434i −0.676216 0.736703i \(-0.736382\pi\)
0.976112 + 0.217269i \(0.0697149\pi\)
\(270\) 0 0
\(271\) 18.0820 10.4397i 1.09841 0.634164i 0.162603 0.986691i \(-0.448011\pi\)
0.935802 + 0.352527i \(0.114678\pi\)
\(272\) 0 0
\(273\) −1.17294 + 16.1801i −0.0709893 + 0.979262i
\(274\) 0 0
\(275\) −27.8831 9.28705i −1.68142 0.560030i
\(276\) 0 0
\(277\) 7.36446 + 4.25187i 0.442487 + 0.255470i 0.704652 0.709553i \(-0.251103\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(278\) 0 0
\(279\) −5.60632 + 12.3064i −0.335641 + 0.736768i
\(280\) 0 0
\(281\) 7.63690i 0.455579i −0.973710 0.227790i \(-0.926850\pi\)
0.973710 0.227790i \(-0.0731499\pi\)
\(282\) 0 0
\(283\) −4.50375 + 7.80072i −0.267720 + 0.463705i −0.968273 0.249896i \(-0.919604\pi\)
0.700553 + 0.713601i \(0.252937\pi\)
\(284\) 0 0
\(285\) 15.9273 + 1.80251i 0.943451 + 0.106771i
\(286\) 0 0
\(287\) 13.1823 10.3361i 0.778125 0.610123i
\(288\) 0 0
\(289\) −3.66979 6.35626i −0.215870 0.373898i
\(290\) 0 0
\(291\) 5.24817 5.77858i 0.307653 0.338747i
\(292\) 0 0
\(293\) 27.6102i 1.61301i −0.591231 0.806503i \(-0.701358\pi\)
0.591231 0.806503i \(-0.298642\pi\)
\(294\) 0 0
\(295\) 9.48660 + 4.26558i 0.552331 + 0.248352i
\(296\) 0 0
\(297\) −12.0621 28.0592i −0.699914 1.62816i
\(298\) 0 0
\(299\) −12.6587 21.9255i −0.732073 1.26799i
\(300\) 0 0
\(301\) 6.35014 + 8.09870i 0.366016 + 0.466801i
\(302\) 0 0
\(303\) −0.947288 2.95862i −0.0544203 0.169968i
\(304\) 0 0
\(305\) 1.06021 + 1.47060i 0.0607075 + 0.0842062i
\(306\) 0 0
\(307\) −9.99609 −0.570507 −0.285253 0.958452i \(-0.592078\pi\)
−0.285253 + 0.958452i \(0.592078\pi\)
\(308\) 0 0
\(309\) −21.3506 4.63411i −1.21459 0.263625i
\(310\) 0 0
\(311\) −11.9336 + 20.6696i −0.676693 + 1.17207i 0.299278 + 0.954166i \(0.403254\pi\)
−0.975971 + 0.217901i \(0.930079\pi\)
\(312\) 0 0
\(313\) 2.79759 + 4.84558i 0.158129 + 0.273888i 0.934194 0.356765i \(-0.116120\pi\)
−0.776065 + 0.630653i \(0.782787\pi\)
\(314\) 0 0
\(315\) −11.5508 + 13.4751i −0.650814 + 0.759237i
\(316\) 0 0
\(317\) 5.86828 + 10.1642i 0.329596 + 0.570876i 0.982432 0.186623i \(-0.0597543\pi\)
−0.652836 + 0.757499i \(0.726421\pi\)
\(318\) 0 0
\(319\) −20.1245 + 34.8566i −1.12676 + 1.95160i
\(320\) 0 0
\(321\) −5.88956 1.27832i −0.328723 0.0713490i
\(322\) 0 0
\(323\) 12.8635 0.715742
\(324\) 0 0
\(325\) −17.3400 + 3.55264i −0.961851 + 0.197065i
\(326\) 0 0
\(327\) −5.26890 16.4561i −0.291371 0.910025i
\(328\) 0 0
\(329\) 1.80986 4.50212i 0.0997810 0.248210i
\(330\) 0 0
\(331\) −1.26453 2.19023i −0.0695050 0.120386i 0.829179 0.558984i \(-0.188809\pi\)
−0.898684 + 0.438598i \(0.855475\pi\)
\(332\) 0 0
\(333\) −3.43904 4.81995i −0.188458 0.264132i
\(334\) 0 0
\(335\) −9.36196 + 20.8209i −0.511499 + 1.13757i
\(336\) 0 0
\(337\) 34.3299i 1.87007i 0.354560 + 0.935033i \(0.384631\pi\)
−0.354560 + 0.935033i \(0.615369\pi\)
\(338\) 0 0
\(339\) −2.96399 + 3.26355i −0.160982 + 0.177252i
\(340\) 0 0
\(341\) −13.2479 22.9460i −0.717414 1.24260i
\(342\) 0 0
\(343\) 7.62114 + 16.8795i 0.411503 + 0.911408i
\(344\) 0 0
\(345\) 3.11478 27.5228i 0.167694 1.48178i
\(346\) 0 0
\(347\) −0.297864 + 0.515915i −0.0159902 + 0.0276958i −0.873910 0.486088i \(-0.838423\pi\)
0.857920 + 0.513784i \(0.171757\pi\)
\(348\) 0 0
\(349\) 23.0392i 1.23326i 0.787253 + 0.616630i \(0.211503\pi\)
−0.787253 + 0.616630i \(0.788497\pi\)
\(350\) 0 0
\(351\) −14.7410 11.0029i −0.786818 0.587290i
\(352\) 0 0
\(353\) −9.43718 5.44856i −0.502290 0.289997i 0.227369 0.973809i \(-0.426988\pi\)
−0.729659 + 0.683811i \(0.760321\pi\)
\(354\) 0 0
\(355\) −2.64033 + 0.267696i −0.140134 + 0.0142078i
\(356\) 0 0
\(357\) −7.99482 + 11.7878i −0.423131 + 0.623875i
\(358\) 0 0
\(359\) −9.03320 + 5.21532i −0.476754 + 0.275254i −0.719063 0.694945i \(-0.755429\pi\)
0.242309 + 0.970199i \(0.422095\pi\)
\(360\) 0 0
\(361\) −0.935743 + 1.62075i −0.0492496 + 0.0853028i
\(362\) 0 0
\(363\) 39.8595 + 8.65145i 2.09208 + 0.454083i
\(364\) 0 0
\(365\) −4.42639 1.99029i −0.231688 0.104177i
\(366\) 0 0
\(367\) 4.27471 7.40402i 0.223138 0.386486i −0.732621 0.680637i \(-0.761703\pi\)
0.955759 + 0.294150i \(0.0950366\pi\)
\(368\) 0 0
\(369\) 1.82314 + 18.9066i 0.0949086 + 0.984236i
\(370\) 0 0
\(371\) −5.14726 36.1676i −0.267232 1.87773i
\(372\) 0 0
\(373\) 5.74129 3.31473i 0.297273 0.171630i −0.343944 0.938990i \(-0.611763\pi\)
0.641217 + 0.767360i \(0.278430\pi\)
\(374\) 0 0
\(375\) −17.5679 8.14663i −0.907204 0.420690i
\(376\) 0 0
\(377\) 24.2408i 1.24847i
\(378\) 0 0
\(379\) 22.3165 1.14632 0.573162 0.819442i \(-0.305717\pi\)
0.573162 + 0.819442i \(0.305717\pi\)
\(380\) 0 0
\(381\) 16.2344 + 14.7442i 0.831713 + 0.755370i
\(382\) 0 0
\(383\) −24.4124 + 14.0945i −1.24742 + 0.720196i −0.970593 0.240725i \(-0.922615\pi\)
−0.276822 + 0.960921i \(0.589281\pi\)
\(384\) 0 0
\(385\) −8.34715 33.7569i −0.425410 1.72041i
\(386\) 0 0
\(387\) −11.6155 + 1.12007i −0.590448 + 0.0569362i
\(388\) 0 0
\(389\) 3.57909 + 2.06639i 0.181467 + 0.104770i 0.587982 0.808874i \(-0.299923\pi\)
−0.406515 + 0.913644i \(0.633256\pi\)
\(390\) 0 0
\(391\) 22.2284i 1.12414i
\(392\) 0 0
\(393\) −21.4887 4.66411i −1.08396 0.235273i
\(394\) 0 0
\(395\) 18.3280 13.2134i 0.922184 0.664838i
\(396\) 0 0
\(397\) 6.61890 + 11.4643i 0.332193 + 0.575375i 0.982942 0.183918i \(-0.0588781\pi\)
−0.650748 + 0.759293i \(0.725545\pi\)
\(398\) 0 0
\(399\) 8.27048 + 17.0675i 0.414042 + 0.854441i
\(400\) 0 0
\(401\) 0.671383 0.387623i 0.0335273 0.0193570i −0.483143 0.875542i \(-0.660505\pi\)
0.516670 + 0.856185i \(0.327171\pi\)
\(402\) 0 0
\(403\) −13.8198 7.97884i −0.688411 0.397454i
\(404\) 0 0
\(405\) −5.81839 19.2652i −0.289118 0.957294i
\(406\) 0 0
\(407\) 11.6010 0.575038
\(408\) 0 0
\(409\) 3.97093 + 2.29262i 0.196350 + 0.113363i 0.594952 0.803761i \(-0.297171\pi\)
−0.398602 + 0.917124i \(0.630504\pi\)
\(410\) 0 0
\(411\) 2.77166 + 8.65660i 0.136716 + 0.426999i
\(412\) 0 0
\(413\) 1.73405 + 12.1844i 0.0853270 + 0.599556i
\(414\) 0 0
\(415\) 11.8184 1.19824i 0.580141 0.0588191i
\(416\) 0 0
\(417\) −18.3149 16.6338i −0.896885 0.814560i
\(418\) 0 0
\(419\) −11.9761 −0.585070 −0.292535 0.956255i \(-0.594499\pi\)
−0.292535 + 0.956255i \(0.594499\pi\)
\(420\) 0 0
\(421\) 25.5487 1.24517 0.622584 0.782553i \(-0.286083\pi\)
0.622584 + 0.782553i \(0.286083\pi\)
\(422\) 0 0
\(423\) 3.19564 + 4.47881i 0.155377 + 0.217767i
\(424\) 0 0
\(425\) −14.7443 4.91089i −0.715202 0.238213i
\(426\) 0 0
\(427\) −0.800099 + 1.99028i −0.0387195 + 0.0963166i
\(428\) 0 0
\(429\) 34.3236 10.9897i 1.65716 0.530587i
\(430\) 0 0
\(431\) −12.5634 7.25351i −0.605160 0.349389i 0.165909 0.986141i \(-0.446944\pi\)
−0.771069 + 0.636752i \(0.780278\pi\)
\(432\) 0 0
\(433\) 40.0655 1.92543 0.962713 0.270524i \(-0.0871969\pi\)
0.962713 + 0.270524i \(0.0871969\pi\)
\(434\) 0 0
\(435\) −15.7590 + 21.3307i −0.755586 + 1.02273i
\(436\) 0 0
\(437\) −25.6331 14.7993i −1.22620 0.707946i
\(438\) 0 0
\(439\) −27.1838 + 15.6945i −1.29741 + 0.749060i −0.979956 0.199214i \(-0.936161\pi\)
−0.317454 + 0.948274i \(0.602828\pi\)
\(440\) 0 0
\(441\) −20.7804 3.02878i −0.989545 0.144227i
\(442\) 0 0
\(443\) 5.01776 + 8.69101i 0.238401 + 0.412923i 0.960256 0.279122i \(-0.0900434\pi\)
−0.721855 + 0.692045i \(0.756710\pi\)
\(444\) 0 0
\(445\) 22.8176 16.4501i 1.08166 0.779808i
\(446\) 0 0
\(447\) −5.54719 + 25.5574i −0.262373 + 1.20882i
\(448\) 0 0
\(449\) 16.7060i 0.788405i 0.919024 + 0.394203i \(0.128979\pi\)
−0.919024 + 0.394203i \(0.871021\pi\)
\(450\) 0 0
\(451\) −32.2291 18.6075i −1.51761 0.876191i
\(452\) 0 0
\(453\) −4.40459 13.7567i −0.206946 0.646344i
\(454\) 0 0
\(455\) −14.5192 15.0934i −0.680668 0.707590i
\(456\) 0 0
\(457\) −12.2526 + 7.07406i −0.573154 + 0.330910i −0.758408 0.651780i \(-0.774022\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(458\) 0 0
\(459\) −6.37830 14.8374i −0.297714 0.692551i
\(460\) 0 0
\(461\) 4.22519 0.196787 0.0983935 0.995148i \(-0.468630\pi\)
0.0983935 + 0.995148i \(0.468630\pi\)
\(462\) 0 0
\(463\) 33.2490i 1.54521i −0.634886 0.772606i \(-0.718953\pi\)
0.634886 0.772606i \(-0.281047\pi\)
\(464\) 0 0
\(465\) −6.97365 16.0052i −0.323395 0.742225i
\(466\) 0 0
\(467\) −31.9242 + 18.4314i −1.47727 + 0.852905i −0.999670 0.0256700i \(-0.991828\pi\)
−0.477604 + 0.878575i \(0.658495\pi\)
\(468\) 0 0
\(469\) −26.7420 + 3.80584i −1.23483 + 0.175737i
\(470\) 0 0
\(471\) −0.507343 1.58456i −0.0233771 0.0730128i
\(472\) 0 0
\(473\) 11.4317 19.8003i 0.525631 0.910420i
\(474\) 0 0
\(475\) −15.4795 + 13.7330i −0.710250 + 0.630115i
\(476\) 0 0
\(477\) 37.6961 + 17.1728i 1.72599 + 0.786289i
\(478\) 0 0
\(479\) −4.66797 + 8.08516i −0.213285 + 0.369420i −0.952741 0.303785i \(-0.901750\pi\)
0.739456 + 0.673205i \(0.235083\pi\)
\(480\) 0 0
\(481\) 6.05086 3.49347i 0.275896 0.159288i
\(482\) 0 0
\(483\) 29.4931 14.2916i 1.34198 0.650292i
\(484\) 0 0
\(485\) 1.01654 + 10.0262i 0.0461585 + 0.455268i
\(486\) 0 0
\(487\) 21.9442 + 12.6695i 0.994385 + 0.574109i 0.906582 0.422029i \(-0.138682\pi\)
0.0878031 + 0.996138i \(0.472015\pi\)
\(488\) 0 0
\(489\) −6.85956 + 31.6038i −0.310200 + 1.42917i
\(490\) 0 0
\(491\) 35.4614i 1.60035i 0.599765 + 0.800176i \(0.295261\pi\)
−0.599765 + 0.800176i \(0.704739\pi\)
\(492\) 0 0
\(493\) −10.6416 + 18.4318i −0.479274 + 0.830126i
\(494\) 0 0
\(495\) 37.3475 + 12.6434i 1.67864 + 0.568281i
\(496\) 0 0
\(497\) −1.93754 2.47106i −0.0869106 0.110842i
\(498\) 0 0
\(499\) 14.7087 + 25.4762i 0.658451 + 1.14047i 0.981017 + 0.193923i \(0.0621213\pi\)
−0.322566 + 0.946547i \(0.604545\pi\)
\(500\) 0 0
\(501\) −18.2340 16.5603i −0.814636 0.739860i
\(502\) 0 0
\(503\) 20.9709i 0.935046i 0.883981 + 0.467523i \(0.154853\pi\)
−0.883981 + 0.467523i \(0.845147\pi\)
\(504\) 0 0
\(505\) 3.65781 + 1.64471i 0.162771 + 0.0731886i
\(506\) 0 0
\(507\) −0.545091 + 0.600181i −0.0242083 + 0.0266550i
\(508\) 0 0
\(509\) 3.71821 + 6.44013i 0.164807 + 0.285454i 0.936587 0.350436i \(-0.113967\pi\)
−0.771780 + 0.635890i \(0.780633\pi\)
\(510\) 0 0
\(511\) −0.809096 5.68518i −0.0357923 0.251497i
\(512\) 0 0
\(513\) −21.3566 2.52322i −0.942916 0.111403i
\(514\) 0 0
\(515\) 22.8793 16.4946i 1.00818 0.726839i
\(516\) 0 0
\(517\) −10.7799 −0.474098
\(518\) 0 0
\(519\) 0.262409 1.20899i 0.0115185 0.0530687i
\(520\) 0 0
\(521\) 2.55125 4.41889i 0.111772 0.193595i −0.804713 0.593665i \(-0.797681\pi\)
0.916485 + 0.400069i \(0.131014\pi\)
\(522\) 0 0
\(523\) −8.24829 14.2865i −0.360673 0.624703i 0.627399 0.778698i \(-0.284119\pi\)
−0.988072 + 0.153995i \(0.950786\pi\)
\(524\) 0 0
\(525\) −2.96389 22.7204i −0.129355 0.991598i
\(526\) 0 0
\(527\) −7.00534 12.1336i −0.305157 0.528548i
\(528\) 0 0
\(529\) −14.0736 + 24.3762i −0.611897 + 1.05984i
\(530\) 0 0
\(531\) −12.6994 5.78531i −0.551105 0.251061i
\(532\) 0 0
\(533\) −22.4135 −0.970836
\(534\) 0 0
\(535\) 6.31128 4.55004i 0.272860 0.196716i
\(536\) 0 0
\(537\) 18.4477 5.90656i 0.796076 0.254887i
\(538\) 0 0
\(539\) 28.4783 29.6964i 1.22665 1.27911i
\(540\) 0 0
\(541\) −10.3077 17.8534i −0.443162 0.767578i 0.554760 0.832010i \(-0.312810\pi\)
−0.997922 + 0.0644316i \(0.979477\pi\)
\(542\) 0 0
\(543\) 4.74020 + 4.30510i 0.203422 + 0.184749i
\(544\) 0 0
\(545\) 20.3451 + 9.14800i 0.871487 + 0.391857i
\(546\) 0 0
\(547\) 25.6070i 1.09488i −0.836846 0.547438i \(-0.815603\pi\)
0.836846 0.547438i \(-0.184397\pi\)
\(548\) 0 0
\(549\) −1.41272 1.97998i −0.0602933 0.0845033i
\(550\) 0 0
\(551\) 14.1700 + 24.5431i 0.603661 + 1.04557i
\(552\) 0 0
\(553\) 24.8049 + 9.97162i 1.05481 + 0.424036i
\(554\) 0 0
\(555\) 7.59557 + 0.859597i 0.322414 + 0.0364879i
\(556\) 0 0
\(557\) 18.0986 31.3477i 0.766862 1.32824i −0.172394 0.985028i \(-0.555150\pi\)
0.939256 0.343216i \(-0.111516\pi\)
\(558\) 0 0
\(559\) 13.7700i 0.582410i
\(560\) 0 0
\(561\) 30.9228 + 6.71175i 1.30556 + 0.283370i
\(562\) 0 0
\(563\) −26.5408 15.3233i −1.11856 0.645801i −0.177527 0.984116i \(-0.556810\pi\)
−0.941033 + 0.338315i \(0.890143\pi\)
\(564\) 0 0
\(565\) −0.574105 5.66248i −0.0241528 0.238222i
\(566\) 0 0
\(567\) 15.5856 18.0025i 0.654535 0.756032i
\(568\) 0 0
\(569\) 13.2153 7.62988i 0.554016 0.319861i −0.196724 0.980459i \(-0.563030\pi\)
0.750740 + 0.660598i \(0.229697\pi\)
\(570\) 0 0
\(571\) 9.05228 15.6790i 0.378826 0.656146i −0.612066 0.790807i \(-0.709661\pi\)
0.990892 + 0.134661i \(0.0429945\pi\)
\(572\) 0 0
\(573\) −3.81650 + 17.5836i −0.159437 + 0.734566i
\(574\) 0 0
\(575\) 23.7311 + 26.7491i 0.989656 + 1.11552i
\(576\) 0 0
\(577\) −3.28336 + 5.68695i −0.136688 + 0.236751i −0.926241 0.376932i \(-0.876979\pi\)
0.789553 + 0.613682i \(0.210312\pi\)
\(578\) 0 0
\(579\) −9.76715 + 3.12723i −0.405909 + 0.129963i
\(580\) 0 0
\(581\) 8.67263 + 11.0607i 0.359801 + 0.458875i
\(582\) 0 0
\(583\) −70.2864 + 40.5799i −2.91097 + 1.68065i
\(584\) 0 0
\(585\) 23.2872 4.65207i 0.962807 0.192339i
\(586\) 0 0
\(587\) 9.35074i 0.385946i 0.981204 + 0.192973i \(0.0618130\pi\)
−0.981204 + 0.192973i \(0.938187\pi\)
\(588\) 0 0
\(589\) −18.6561 −0.768712
\(590\) 0 0
\(591\) 12.9320 14.2390i 0.531950 0.585713i
\(592\) 0 0
\(593\) 23.3806 13.4988i 0.960126 0.554329i 0.0639141 0.997955i \(-0.479642\pi\)
0.896212 + 0.443626i \(0.146308\pi\)
\(594\) 0 0
\(595\) −4.41388 17.8503i −0.180951 0.731790i
\(596\) 0 0
\(597\) 21.8411 6.99307i 0.893899 0.286207i
\(598\) 0 0
\(599\) 19.7216 + 11.3863i 0.805803 + 0.465231i 0.845496 0.533981i \(-0.179305\pi\)
−0.0396931 + 0.999212i \(0.512638\pi\)
\(600\) 0 0
\(601\) 5.26871i 0.214915i 0.994210 + 0.107458i \(0.0342710\pi\)
−0.994210 + 0.107458i \(0.965729\pi\)
\(602\) 0 0
\(603\) 12.6974 27.8722i 0.517079 1.13504i
\(604\) 0 0
\(605\) −42.7135 + 30.7938i −1.73655 + 1.25195i
\(606\) 0 0
\(607\) 4.67749 + 8.10166i 0.189854 + 0.328836i 0.945201 0.326488i \(-0.105865\pi\)
−0.755348 + 0.655324i \(0.772532\pi\)
\(608\) 0 0
\(609\) −31.2976 2.26884i −1.26824 0.0919382i
\(610\) 0 0
\(611\) −5.62260 + 3.24621i −0.227466 + 0.131328i
\(612\) 0 0
\(613\) −27.3310 15.7796i −1.10389 0.637330i −0.166649 0.986016i \(-0.553295\pi\)
−0.937240 + 0.348686i \(0.886628\pi\)
\(614\) 0 0
\(615\) −19.7228 14.5710i −0.795299 0.587561i
\(616\) 0 0
\(617\) −39.6450 −1.59605 −0.798023 0.602626i \(-0.794121\pi\)
−0.798023 + 0.602626i \(0.794121\pi\)
\(618\) 0 0
\(619\) 33.2406 + 19.1915i 1.33605 + 0.771370i 0.986219 0.165443i \(-0.0529052\pi\)
0.349832 + 0.936812i \(0.386239\pi\)
\(620\) 0 0
\(621\) −4.36020 + 36.9048i −0.174969 + 1.48094i
\(622\) 0 0
\(623\) 30.8810 + 12.4142i 1.23722 + 0.497365i
\(624\) 0 0
\(625\) 22.9857 9.83137i 0.919430 0.393255i
\(626\) 0 0
\(627\) 28.3276 31.1906i 1.13129 1.24563i
\(628\) 0 0
\(629\) 6.13446 0.244597
\(630\) 0 0
\(631\) 1.06381 0.0423495 0.0211748 0.999776i \(-0.493259\pi\)
0.0211748 + 0.999776i \(0.493259\pi\)
\(632\) 0 0
\(633\) −23.1875 + 25.5310i −0.921620 + 1.01477i
\(634\) 0 0
\(635\) −28.1678 + 2.85586i −1.11780 + 0.113331i
\(636\) 0 0
\(637\) 5.91113 24.0650i 0.234207 0.953488i
\(638\) 0 0
\(639\) 3.54409 0.341752i 0.140202 0.0135195i
\(640\) 0 0
\(641\) 25.9645 + 14.9906i 1.02553 + 0.592093i 0.915702 0.401858i \(-0.131635\pi\)
0.109832 + 0.993950i \(0.464969\pi\)
\(642\) 0 0
\(643\) 16.0861 0.634373 0.317187 0.948363i \(-0.397262\pi\)
0.317187 + 0.948363i \(0.397262\pi\)
\(644\) 0 0
\(645\) 8.95191 12.1169i 0.352481 0.477104i
\(646\) 0 0
\(647\) −21.6193 12.4819i −0.849944 0.490716i 0.0106878 0.999943i \(-0.496598\pi\)
−0.860632 + 0.509227i \(0.829931\pi\)
\(648\) 0 0
\(649\) 23.6786 13.6709i 0.929468 0.536629i
\(650\) 0 0
\(651\) 11.5950 17.0960i 0.454445 0.670046i
\(652\) 0 0
\(653\) 2.19607 + 3.80370i 0.0859387 + 0.148850i 0.905791 0.423725i \(-0.139278\pi\)
−0.819852 + 0.572575i \(0.805944\pi\)
\(654\) 0 0
\(655\) 23.0274 16.6013i 0.899755 0.648668i
\(656\) 0 0
\(657\) 5.92544 + 2.69939i 0.231173 + 0.105313i
\(658\) 0 0
\(659\) 1.93959i 0.0755557i 0.999286 + 0.0377778i \(0.0120279\pi\)
−0.999286 + 0.0377778i \(0.987972\pi\)
\(660\) 0 0
\(661\) 21.6034 + 12.4727i 0.840274 + 0.485132i 0.857357 0.514722i \(-0.172105\pi\)
−0.0170833 + 0.999854i \(0.505438\pi\)
\(662\) 0 0
\(663\) 18.1499 5.81122i 0.704885 0.225689i
\(664\) 0 0
\(665\) −23.5230 6.79444i −0.912184 0.263477i
\(666\) 0 0
\(667\) 42.4112 24.4861i 1.64217 0.948107i
\(668\) 0 0
\(669\) 12.2182 13.4531i 0.472384 0.520127i
\(670\) 0 0
\(671\) 4.76553 0.183971
\(672\) 0 0
\(673\) 6.21519i 0.239578i 0.992799 + 0.119789i \(0.0382218\pi\)
−0.992799 + 0.119789i \(0.961778\pi\)
\(674\) 0 0
\(675\) 23.5159 + 11.0455i 0.905128 + 0.425140i
\(676\) 0 0
\(677\) −14.4283 + 8.33017i −0.554524 + 0.320154i −0.750945 0.660365i \(-0.770401\pi\)
0.196421 + 0.980520i \(0.437068\pi\)
\(678\) 0 0
\(679\) −9.38346 + 7.35751i −0.360104 + 0.282355i
\(680\) 0 0
\(681\) 27.0948 8.67519i 1.03828 0.332434i
\(682\) 0 0
\(683\) −11.1339 + 19.2844i −0.426025 + 0.737898i −0.996516 0.0834067i \(-0.973420\pi\)
0.570490 + 0.821304i \(0.306753\pi\)
\(684\) 0 0
\(685\) −10.7024 4.81224i −0.408916 0.183866i
\(686\) 0 0
\(687\) −0.383426 + 1.76654i −0.0146286 + 0.0673979i
\(688\) 0 0
\(689\) −24.4401 + 42.3315i −0.931095 + 1.61270i
\(690\) 0 0
\(691\) −24.0492 + 13.8848i −0.914873 + 0.528202i −0.881996 0.471257i \(-0.843800\pi\)
−0.0328772 + 0.999459i \(0.510467\pi\)
\(692\) 0 0
\(693\) 10.9763 + 45.3441i 0.416957 + 1.72248i
\(694\) 0 0
\(695\) 31.7776 3.22185i 1.20539 0.122212i
\(696\) 0 0
\(697\) −17.0424 9.83941i −0.645525 0.372694i
\(698\) 0 0
\(699\) 48.9576 + 10.6262i 1.85175 + 0.401919i
\(700\) 0 0
\(701\) 0.789291i 0.0298111i 0.999889 + 0.0149056i \(0.00474476\pi\)
−0.999889 + 0.0149056i \(0.995255\pi\)
\(702\) 0 0
\(703\) 4.08421 7.07406i 0.154039 0.266803i
\(704\) 0 0
\(705\) −7.05797 0.798757i −0.265819 0.0300829i
\(706\) 0 0
\(707\) 0.668609 + 4.69803i 0.0251456 + 0.176688i
\(708\) 0 0
\(709\) −7.93432 13.7427i −0.297980 0.516116i 0.677694 0.735344i \(-0.262979\pi\)
−0.975674 + 0.219228i \(0.929646\pi\)
\(710\) 0 0
\(711\) −24.6764 + 17.6067i −0.925438 + 0.660301i
\(712\) 0 0
\(713\) 32.2383i 1.20733i
\(714\) 0 0
\(715\) −19.0806 + 42.4351i −0.713574 + 1.58698i
\(716\) 0 0
\(717\) 7.30496 + 6.63443i 0.272809 + 0.247767i
\(718\) 0 0
\(719\) 22.6303 + 39.1968i 0.843967 + 1.46179i 0.886516 + 0.462699i \(0.153119\pi\)
−0.0425492 + 0.999094i \(0.513548\pi\)
\(720\) 0 0
\(721\) 30.9645 + 12.4478i 1.15318 + 0.463581i
\(722\) 0 0
\(723\) −11.6304 + 3.72380i −0.432538 + 0.138489i
\(724\) 0 0
\(725\) −6.87198 33.5413i −0.255219 1.24569i
\(726\) 0 0
\(727\) 21.4724 0.796369 0.398185 0.917305i \(-0.369640\pi\)
0.398185 + 0.917305i \(0.369640\pi\)
\(728\) 0 0
\(729\) 7.67916 + 25.8849i 0.284413 + 0.958702i
\(730\) 0 0
\(731\) 6.04497 10.4702i 0.223581 0.387254i
\(732\) 0 0
\(733\) −7.38122 12.7846i −0.272631 0.472211i 0.696903 0.717165i \(-0.254561\pi\)
−0.969535 + 0.244954i \(0.921227\pi\)
\(734\) 0 0
\(735\) 20.8462 17.3331i 0.768922 0.639342i
\(736\) 0 0
\(737\) 30.0044 + 51.9691i 1.10523 + 1.91431i
\(738\) 0 0
\(739\) 1.22065 2.11423i 0.0449024 0.0777733i −0.842701 0.538382i \(-0.819036\pi\)
0.887603 + 0.460609i \(0.152369\pi\)
\(740\) 0 0
\(741\) 5.38258 24.7989i 0.197734 0.911011i
\(742\) 0 0
\(743\) −32.2677 −1.18379 −0.591894 0.806016i \(-0.701620\pi\)
−0.591894 + 0.806016i \(0.701620\pi\)
\(744\) 0 0
\(745\) −19.7446 27.3873i −0.723386 1.00339i
\(746\) 0 0
\(747\) −15.8637 + 1.52972i −0.580423 + 0.0559695i
\(748\) 0 0
\(749\) 8.54158 + 3.43373i 0.312103 + 0.125466i
\(750\) 0 0
\(751\) −7.00840 12.1389i −0.255740 0.442955i 0.709356 0.704850i \(-0.248986\pi\)
−0.965096 + 0.261895i \(0.915652\pi\)
\(752\) 0 0
\(753\) 4.57919 5.04199i 0.166875 0.183740i
\(754\) 0 0
\(755\) 17.0077 + 7.64737i 0.618972 + 0.278316i
\(756\) 0 0
\(757\) 41.4500i 1.50653i 0.657720 + 0.753263i \(0.271521\pi\)
−0.657720 + 0.753263i \(0.728479\pi\)
\(758\) 0 0
\(759\) −53.8983 48.9509i −1.95638 1.77681i
\(760\) 0 0
\(761\) −20.0586 34.7425i −0.727124 1.25942i −0.958094 0.286455i \(-0.907523\pi\)
0.230969 0.972961i \(-0.425810\pi\)
\(762\) 0 0
\(763\) 3.71886 + 26.1308i 0.134632 + 0.946000i
\(764\) 0 0
\(765\) 19.7489 + 6.68571i 0.714024 + 0.241722i
\(766\) 0 0
\(767\) 8.23358 14.2610i 0.297297 0.514934i
\(768\) 0 0
\(769\) 22.4441i 0.809355i −0.914459 0.404677i \(-0.867384\pi\)
0.914459 0.404677i \(-0.132616\pi\)
\(770\) 0 0
\(771\) 5.62310 25.9071i 0.202511 0.933021i
\(772\) 0 0
\(773\) −25.1951 14.5464i −0.906206 0.523198i −0.0269973 0.999636i \(-0.508595\pi\)
−0.879208 + 0.476437i \(0.841928\pi\)
\(774\) 0 0
\(775\) 21.3839 + 7.12235i 0.768132 + 0.255842i
\(776\) 0 0
\(777\) 3.94411 + 8.13930i 0.141494 + 0.291996i
\(778\) 0 0
\(779\) −22.6930 + 13.1018i −0.813060 + 0.469421i
\(780\) 0 0
\(781\) −3.48802 + 6.04143i −0.124811 + 0.216180i
\(782\) 0 0
\(783\) 21.2832 28.5140i 0.760600 1.01901i
\(784\) 0 0
\(785\) 1.95903 + 0.880863i 0.0699208 + 0.0314394i
\(786\) 0 0
\(787\) −16.9461 + 29.3516i −0.604064 + 1.04627i 0.388134 + 0.921603i \(0.373120\pi\)
−0.992199 + 0.124667i \(0.960214\pi\)
\(788\) 0 0
\(789\) −10.3093 32.1987i −0.367022 1.14630i
\(790\) 0 0
\(791\) 5.29946 4.15527i 0.188427 0.147745i
\(792\) 0 0
\(793\) 2.48562 1.43507i 0.0882669 0.0509609i
\(794\) 0 0
\(795\) −49.0259 + 21.3611i −1.73877 + 0.757600i
\(796\) 0 0
\(797\) 30.8362i 1.09227i −0.837696 0.546137i \(-0.816098\pi\)
0.837696 0.546137i \(-0.183902\pi\)
\(798\) 0 0
\(799\) −5.70028 −0.201661
\(800\) 0 0
\(801\) −30.7210 + 21.9195i −1.08547 + 0.774487i
\(802\) 0 0
\(803\) −11.0483 + 6.37874i −0.389886 + 0.225101i
\(804\) 0 0
\(805\) −11.7410 + 40.6485i −0.413816 + 1.43267i
\(806\) 0 0
\(807\) −5.19561 16.2272i −0.182894 0.571226i
\(808\) 0 0
\(809\) −32.1338 18.5524i −1.12976 0.652269i −0.185888 0.982571i \(-0.559516\pi\)
−0.943875 + 0.330302i \(0.892849\pi\)
\(810\) 0 0
\(811\) 33.9956i 1.19375i 0.802336 + 0.596873i \(0.203590\pi\)
−0.802336 + 0.596873i \(0.796410\pi\)
\(812\) 0 0
\(813\) 7.67076 35.3412i 0.269025 1.23947i
\(814\) 0 0
\(815\) −24.4158 33.8667i −0.855249 1.18630i
\(816\) 0 0
\(817\) −8.04926 13.9417i −0.281608 0.487759i
\(818\) 0 0
\(819\) 19.3798 + 20.3453i 0.677185 + 0.710924i
\(820\) 0 0
\(821\) −40.0563 + 23.1265i −1.39798 + 0.807122i −0.994180 0.107727i \(-0.965643\pi\)
−0.403796 + 0.914849i \(0.632309\pi\)
\(822\) 0 0
\(823\) −40.7593 23.5324i −1.42078 0.820288i −0.424414 0.905468i \(-0.639520\pi\)
−0.996366 + 0.0851803i \(0.972853\pi\)
\(824\) 0 0
\(825\) −44.3771 + 24.9364i −1.54501 + 0.868175i
\(826\) 0 0
\(827\) 14.6102 0.508046 0.254023 0.967198i \(-0.418246\pi\)
0.254023 + 0.967198i \(0.418246\pi\)
\(828\) 0 0
\(829\) 27.9876 + 16.1586i 0.972049 + 0.561213i 0.899860 0.436178i \(-0.143668\pi\)
0.0721885 + 0.997391i \(0.477002\pi\)
\(830\) 0 0
\(831\) 14.0275 4.49129i 0.486607 0.155801i
\(832\) 0 0
\(833\) 15.0590 15.7031i 0.521763 0.544080i
\(834\) 0 0
\(835\) 31.6373 3.20763i 1.09485 0.111004i
\(836\) 0 0
\(837\) 9.25056 + 21.5190i 0.319746 + 0.743804i
\(838\) 0 0
\(839\) −15.0113 −0.518249 −0.259124 0.965844i \(-0.583434\pi\)
−0.259124 + 0.965844i \(0.583434\pi\)
\(840\) 0 0
\(841\) −17.8898 −0.616888
\(842\) 0 0
\(843\) −9.79185 8.89305i −0.337249 0.306293i
\(844\) 0 0
\(845\) −0.105580 1.04136i −0.00363208 0.0358237i
\(846\) 0 0
\(847\) −57.8078 23.2389i −1.98630 0.798497i
\(848\) 0 0
\(849\) 4.75735 + 14.8584i 0.163272 + 0.509940i
\(850\) 0 0
\(851\) −12.2242 7.05764i −0.419040 0.241933i
\(852\) 0 0
\(853\) 43.2807 1.48190 0.740952 0.671558i \(-0.234374\pi\)
0.740952 + 0.671558i \(0.234374\pi\)
\(854\) 0 0
\(855\) 20.8582 18.3226i 0.713336 0.626620i
\(856\) 0 0
\(857\) 18.3255 + 10.5802i 0.625986 + 0.361413i 0.779196 0.626780i \(-0.215628\pi\)
−0.153210 + 0.988194i \(0.548961\pi\)
\(858\) 0 0
\(859\) 36.5871 21.1236i 1.24834 0.720728i 0.277560 0.960708i \(-0.410474\pi\)
0.970778 + 0.239981i \(0.0771411\pi\)
\(860\) 0 0
\(861\) 2.09781 28.9383i 0.0714933 0.986213i
\(862\) 0 0
\(863\) −17.8457 30.9097i −0.607475 1.05218i −0.991655 0.128919i \(-0.958849\pi\)
0.384181 0.923258i \(-0.374484\pi\)
\(864\) 0 0
\(865\) 0.934016 + 1.29556i 0.0317575 + 0.0440502i
\(866\) 0 0
\(867\) −12.4233 2.69645i −0.421916 0.0915764i
\(868\) 0 0
\(869\) 59.3927i 2.01476i
\(870\) 0 0
\(871\) 31.2996 + 18.0708i 1.06055 + 0.612306i
\(872\) 0 0
\(873\) −1.29775 13.4581i −0.0439222 0.455489i
\(874\) 0 0
\(875\) 24.3685 + 16.7683i 0.823806 + 0.566872i
\(876\) 0 0
\(877\) −1.90519 + 1.09996i −0.0643336 + 0.0371430i −0.531822 0.846856i \(-0.678492\pi\)
0.467488 + 0.883999i \(0.345159\pi\)
\(878\) 0 0
\(879\) −35.4011 32.1517i −1.19405 1.08445i
\(880\) 0 0
\(881\) 29.2075 0.984025 0.492013 0.870588i \(-0.336261\pi\)
0.492013 + 0.870588i \(0.336261\pi\)
\(882\) 0 0
\(883\) 2.21069i 0.0743956i 0.999308 + 0.0371978i \(0.0118432\pi\)
−0.999308 + 0.0371978i \(0.988157\pi\)
\(884\) 0 0
\(885\) 16.5162 7.19629i 0.555187 0.241901i
\(886\) 0 0
\(887\) −11.5724 + 6.68134i −0.388564 + 0.224337i −0.681538 0.731783i \(-0.738688\pi\)
0.292974 + 0.956120i \(0.405355\pi\)
\(888\) 0 0
\(889\) −20.6702 26.3620i −0.693258 0.884152i
\(890\) 0 0
\(891\) −50.0230 17.2088i −1.67583 0.576517i
\(892\) 0 0
\(893\) −3.79514 + 6.57337i −0.126999 + 0.219970i
\(894\) 0 0
\(895\) −10.2551 + 22.8073i −0.342791 + 0.762364i
\(896\) 0 0
\(897\) −42.8533 9.30126i −1.43083 0.310560i
\(898\) 0 0
\(899\) 15.4337 26.7320i 0.514743 0.891561i
\(900\) 0 0
\(901\) −37.1667 + 21.4582i −1.23820 + 0.714876i
\(902\) 0 0
\(903\) 17.7786 + 1.28882i 0.591635 + 0.0428892i
\(904\) 0 0
\(905\) −8.22458 + 0.833869i −0.273394 + 0.0277188i
\(906\) 0 0
\(907\) 3.62770 + 2.09445i 0.120456 + 0.0695451i 0.559017 0.829156i \(-0.311179\pi\)
−0.438562 + 0.898701i \(0.644512\pi\)
\(908\) 0 0
\(909\) −4.89658 2.23068i −0.162409 0.0739870i
\(910\) 0 0
\(911\) 22.5190i 0.746087i −0.927814 0.373043i \(-0.878314\pi\)
0.927814 0.373043i \(-0.121686\pi\)
\(912\) 0 0
\(913\) 15.6128 27.0421i 0.516707 0.894962i
\(914\) 0 0
\(915\) 3.12017 + 0.353112i 0.103149 + 0.0116735i
\(916\) 0 0
\(917\) 31.1649 + 12.5284i 1.02916 + 0.413723i
\(918\) 0 0
\(919\) −7.26453 12.5825i −0.239635 0.415060i 0.720975 0.692961i \(-0.243694\pi\)
−0.960610 + 0.277902i \(0.910361\pi\)
\(920\) 0 0
\(921\) −11.6403 + 12.8167i −0.383561 + 0.422326i
\(922\) 0 0
\(923\) 4.20148i 0.138293i
\(924\) 0 0
\(925\) −7.38204 + 6.54915i −0.242720 + 0.215335i
\(926\) 0 0
\(927\) −30.8041 + 21.9788i −1.01174 + 0.721879i
\(928\) 0 0
\(929\) −20.7788 35.9900i −0.681732 1.18079i −0.974452 0.224596i \(-0.927894\pi\)
0.292720 0.956198i \(-0.405440\pi\)
\(930\) 0 0
\(931\) −8.08232 27.8204i −0.264887 0.911776i
\(932\) 0 0
\(933\) 12.6056 + 39.3705i 0.412688 + 1.28893i
\(934\) 0 0
\(935\) −33.1369 + 23.8897i −1.08369 + 0.781277i
\(936\) 0 0
\(937\) −45.5010 −1.48645 −0.743226 0.669040i \(-0.766705\pi\)
−0.743226 + 0.669040i \(0.766705\pi\)
\(938\) 0 0
\(939\) 9.47064 + 2.05559i 0.309063 + 0.0670817i
\(940\) 0 0
\(941\) −10.0244 + 17.3627i −0.326785 + 0.566007i −0.981872 0.189546i \(-0.939298\pi\)
0.655087 + 0.755553i \(0.272632\pi\)
\(942\) 0 0
\(943\) 22.6403 + 39.2142i 0.737270 + 1.27699i
\(944\) 0 0
\(945\) 3.82674 + 30.5017i 0.124484 + 0.992222i
\(946\) 0 0
\(947\) −14.7490 25.5460i −0.479278 0.830133i 0.520440 0.853898i \(-0.325768\pi\)
−0.999718 + 0.0237652i \(0.992435\pi\)
\(948\) 0 0
\(949\) −3.84174 + 6.65408i −0.124708 + 0.216001i
\(950\) 0 0
\(951\) 19.8658 + 4.31184i 0.644192 + 0.139821i
\(952\) 0 0
\(953\) 1.26250 0.0408964 0.0204482 0.999791i \(-0.493491\pi\)
0.0204482 + 0.999791i \(0.493491\pi\)
\(954\) 0 0
\(955\) −13.5844 18.8427i −0.439581 0.609734i
\(956\) 0 0
\(957\) 21.2577 + 66.3932i 0.687163 + 2.14619i
\(958\) 0 0
\(959\) −1.95628 13.7459i −0.0631715 0.443879i
\(960\) 0 0
\(961\) −5.34003 9.24920i −0.172259 0.298361i
\(962\) 0 0
\(963\) −8.49734 + 6.06287i −0.273823 + 0.195373i
\(964\) 0 0
\(965\) 5.42959 12.0754i 0.174785 0.388719i
\(966\) 0 0
\(967\) 26.0942i 0.839132i −0.907725 0.419566i \(-0.862182\pi\)
0.907725 0.419566i \(-0.137818\pi\)
\(968\) 0 0
\(969\) 14.9793 16.4932i 0.481205 0.529839i
\(970\) 0 0
\(971\) 6.95317 + 12.0432i 0.223138 + 0.386486i 0.955759 0.294150i \(-0.0950367\pi\)
−0.732621 + 0.680636i \(0.761703\pi\)
\(972\) 0 0
\(973\) 23.3192 + 29.7404i 0.747580 + 0.953433i
\(974\) 0 0
\(975\) −15.6371 + 26.3700i −0.500787 + 0.844514i
\(976\) 0 0
\(977\) 1.41905 2.45787i 0.0453995 0.0786342i −0.842433 0.538802i \(-0.818877\pi\)
0.887832 + 0.460167i \(0.152211\pi\)
\(978\) 0 0
\(979\) 73.9413i 2.36317i
\(980\) 0 0
\(981\) −27.2352 12.4072i −0.869552 0.396132i
\(982\) 0 0
\(983\) 42.5573 + 24.5705i 1.35737 + 0.783677i 0.989268 0.146110i \(-0.0466753\pi\)
0.368099 + 0.929787i \(0.380009\pi\)
\(984\) 0 0
\(985\) 2.50484 + 24.7056i 0.0798108 + 0.787185i
\(986\) 0 0
\(987\) −3.66496 7.56322i −0.116657 0.240740i
\(988\) 0 0
\(989\) −24.0917 + 13.9094i −0.766072 + 0.442292i
\(990\) 0 0
\(991\) −10.3281 + 17.8887i −0.328081 + 0.568254i −0.982131 0.188198i \(-0.939735\pi\)
0.654050 + 0.756452i \(0.273069\pi\)
\(992\) 0 0
\(993\) −4.28080 0.929142i −0.135847 0.0294854i
\(994\) 0 0
\(995\) −12.1416 + 27.0027i −0.384914 + 0.856044i
\(996\) 0 0
\(997\) 20.8453 36.1051i 0.660177 1.14346i −0.320392 0.947285i \(-0.603814\pi\)
0.980569 0.196175i \(-0.0628522\pi\)
\(998\) 0 0
\(999\) −10.1847 1.20330i −0.322231 0.0380707i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.12 yes 32
3.2 odd 2 inner 420.2.bn.a.269.10 yes 32
5.2 odd 4 2100.2.bi.n.101.4 32
5.3 odd 4 2100.2.bi.n.101.13 32
5.4 even 2 inner 420.2.bn.a.269.5 yes 32
7.3 odd 6 2940.2.f.a.1469.32 32
7.4 even 3 2940.2.f.a.1469.1 32
7.5 odd 6 inner 420.2.bn.a.89.7 yes 32
15.2 even 4 2100.2.bi.n.101.2 32
15.8 even 4 2100.2.bi.n.101.15 32
15.14 odd 2 inner 420.2.bn.a.269.7 yes 32
21.5 even 6 inner 420.2.bn.a.89.5 32
21.11 odd 6 2940.2.f.a.1469.4 32
21.17 even 6 2940.2.f.a.1469.29 32
35.4 even 6 2940.2.f.a.1469.31 32
35.12 even 12 2100.2.bi.n.1601.2 32
35.19 odd 6 inner 420.2.bn.a.89.10 yes 32
35.24 odd 6 2940.2.f.a.1469.2 32
35.33 even 12 2100.2.bi.n.1601.15 32
105.47 odd 12 2100.2.bi.n.1601.4 32
105.59 even 6 2940.2.f.a.1469.3 32
105.68 odd 12 2100.2.bi.n.1601.13 32
105.74 odd 6 2940.2.f.a.1469.30 32
105.89 even 6 inner 420.2.bn.a.89.12 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.5 32 21.5 even 6 inner
420.2.bn.a.89.7 yes 32 7.5 odd 6 inner
420.2.bn.a.89.10 yes 32 35.19 odd 6 inner
420.2.bn.a.89.12 yes 32 105.89 even 6 inner
420.2.bn.a.269.5 yes 32 5.4 even 2 inner
420.2.bn.a.269.7 yes 32 15.14 odd 2 inner
420.2.bn.a.269.10 yes 32 3.2 odd 2 inner
420.2.bn.a.269.12 yes 32 1.1 even 1 trivial
2100.2.bi.n.101.2 32 15.2 even 4
2100.2.bi.n.101.4 32 5.2 odd 4
2100.2.bi.n.101.13 32 5.3 odd 4
2100.2.bi.n.101.15 32 15.8 even 4
2100.2.bi.n.1601.2 32 35.12 even 12
2100.2.bi.n.1601.4 32 105.47 odd 12
2100.2.bi.n.1601.13 32 105.68 odd 12
2100.2.bi.n.1601.15 32 35.33 even 12
2940.2.f.a.1469.1 32 7.4 even 3
2940.2.f.a.1469.2 32 35.24 odd 6
2940.2.f.a.1469.3 32 105.59 even 6
2940.2.f.a.1469.4 32 21.11 odd 6
2940.2.f.a.1469.29 32 21.17 even 6
2940.2.f.a.1469.30 32 105.74 odd 6
2940.2.f.a.1469.31 32 35.4 even 6
2940.2.f.a.1469.32 32 7.3 odd 6