L(s) = 1 | + (1.16 − 1.28i)3-s + (0.225 + 2.22i)5-s + (−2.08 + 1.63i)7-s + (−0.287 − 2.98i)9-s + (5.09 + 2.93i)11-s + 3.54·13-s + (3.11 + 2.30i)15-s + (2.69 + 1.55i)17-s + (3.58 − 2.06i)19-s + (−0.331 + 4.57i)21-s + (−3.57 − 6.19i)23-s + (−4.89 + 1.00i)25-s + (−4.16 − 3.10i)27-s + 6.84i·29-s + (−3.90 − 2.25i)31-s + ⋯ |
L(s) = 1 | + (0.672 − 0.740i)3-s + (0.100 + 0.994i)5-s + (−0.786 + 0.617i)7-s + (−0.0959 − 0.995i)9-s + (1.53 + 0.886i)11-s + 0.981·13-s + (0.804 + 0.594i)15-s + (0.652 + 0.376i)17-s + (0.822 − 0.474i)19-s + (−0.0723 + 0.997i)21-s + (−0.745 − 1.29i)23-s + (−0.979 + 0.200i)25-s + (−0.801 − 0.598i)27-s + 1.27i·29-s + (−0.701 − 0.404i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.987 - 0.154i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 420 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.987 - 0.154i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.75600 + 0.136739i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.75600 + 0.136739i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1.16 + 1.28i)T \) |
| 5 | \( 1 + (-0.225 - 2.22i)T \) |
| 7 | \( 1 + (2.08 - 1.63i)T \) |
good | 11 | \( 1 + (-5.09 - 2.93i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 3.54T + 13T^{2} \) |
| 17 | \( 1 + (-2.69 - 1.55i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-3.58 + 2.06i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (3.57 + 6.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6.84iT - 29T^{2} \) |
| 31 | \( 1 + (3.90 + 2.25i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.70 + 0.986i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 6.33T + 41T^{2} \) |
| 43 | \( 1 + 3.88iT - 43T^{2} \) |
| 47 | \( 1 + (1.58 - 0.916i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (6.90 - 11.9i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.32 + 4.02i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.702 + 0.405i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-8.84 - 5.10i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 1.18iT - 71T^{2} \) |
| 73 | \( 1 + (1.08 - 1.87i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (5.05 + 8.75i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 5.31iT - 83T^{2} \) |
| 89 | \( 1 + (6.28 + 10.8i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 4.50T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.39703659456749605845029430387, −10.12953009544964835640304262665, −9.334801813443675119503104703829, −8.574323512126266607204691730394, −7.29769613580820569728300729704, −6.62570415364764102581975248853, −5.94345990276759798501527325472, −3.87803331938751076664686843453, −3.03635230483297069331165627954, −1.71032073861025517093316760599,
1.31592045393034989713852939547, 3.53639647614405994197054476806, 3.86193865187211293674974301677, 5.34982473831162811732491531089, 6.32015828515426766812233458051, 7.77207839987574159843933747152, 8.574755166741636933735622931126, 9.564049938821823901887162752729, 9.788853690897727468821611212198, 11.21676103087370527158441792324