Properties

Label 420.2.bn.a.269.10
Level $420$
Weight $2$
Character 420.269
Analytic conductor $3.354$
Analytic rank $0$
Dimension $32$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [420,2,Mod(89,420)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("420.89"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(420, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 420 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 420.bn (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.35371688489\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(16\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.10
Character \(\chi\) \(=\) 420.269
Dual form 420.2.bn.a.89.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.528155 - 1.64956i) q^{3} +(-0.225553 - 2.22466i) q^{5} +(-2.08204 + 1.63251i) q^{7} +(-2.44211 - 1.74245i) q^{9} +(-5.09034 - 2.93891i) q^{11} +3.54004 q^{13} +(-3.78885 - 0.802902i) q^{15} +(-2.69171 - 1.55406i) q^{17} +(3.58419 - 2.06933i) q^{19} +(1.59329 + 4.29667i) q^{21} +(3.57587 + 6.19358i) q^{23} +(-4.89825 + 1.00356i) q^{25} +(-4.16408 + 3.10812i) q^{27} -6.84761i q^{29} +(-3.90384 - 2.25388i) q^{31} +(-7.53639 + 6.84463i) q^{33} +(4.10141 + 4.26362i) q^{35} +(1.70926 - 0.986843i) q^{37} +(1.86969 - 5.83952i) q^{39} +6.33142 q^{41} -3.88979i q^{43} +(-3.32553 + 5.82588i) q^{45} +(1.58829 - 0.916997i) q^{47} +(1.66979 - 6.79793i) q^{49} +(-3.98516 + 3.61936i) q^{51} +(6.90391 - 11.9579i) q^{53} +(-5.38994 + 11.9872i) q^{55} +(-1.52048 - 7.00526i) q^{57} +(-2.32584 + 4.02848i) q^{59} +(0.702144 - 0.405383i) q^{61} +(7.92913 - 0.358927i) q^{63} +(-0.798468 - 7.87540i) q^{65} +(8.84158 + 5.10469i) q^{67} +(12.1053 - 2.62744i) q^{69} -1.18684i q^{71} +(-1.08522 + 1.87966i) q^{73} +(-0.931602 + 8.61000i) q^{75} +(15.3961 - 2.19112i) q^{77} +(-5.05228 - 8.75081i) q^{79} +(2.92776 + 8.51048i) q^{81} +5.31243i q^{83} +(-2.85014 + 6.33868i) q^{85} +(-11.2956 - 3.61660i) q^{87} +(6.28986 + 10.8944i) q^{89} +(-7.37052 + 5.77917i) q^{91} +(-5.77975 + 5.24922i) q^{93} +(-5.41199 - 7.50686i) q^{95} +4.50686 q^{97} +(7.31025 + 16.0468i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 2 q^{15} + 12 q^{19} - 8 q^{21} + 6 q^{25} - 12 q^{31} + 24 q^{39} + 33 q^{45} - 44 q^{49} - 10 q^{51} - 24 q^{61} + 21 q^{75} - 28 q^{79} - 20 q^{81} - 4 q^{85} + 16 q^{91} - 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/420\mathbb{Z}\right)^\times\).

\(n\) \(211\) \(241\) \(281\) \(337\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.528155 1.64956i 0.304930 0.952375i
\(4\) 0 0
\(5\) −0.225553 2.22466i −0.100870 0.994900i
\(6\) 0 0
\(7\) −2.08204 + 1.63251i −0.786938 + 0.617033i
\(8\) 0 0
\(9\) −2.44211 1.74245i −0.814035 0.580816i
\(10\) 0 0
\(11\) −5.09034 2.93891i −1.53479 0.886114i −0.999131 0.0416823i \(-0.986728\pi\)
−0.535663 0.844432i \(-0.679938\pi\)
\(12\) 0 0
\(13\) 3.54004 0.981831 0.490916 0.871207i \(-0.336662\pi\)
0.490916 + 0.871207i \(0.336662\pi\)
\(14\) 0 0
\(15\) −3.78885 0.802902i −0.978276 0.207309i
\(16\) 0 0
\(17\) −2.69171 1.55406i −0.652836 0.376915i 0.136706 0.990612i \(-0.456348\pi\)
−0.789542 + 0.613697i \(0.789682\pi\)
\(18\) 0 0
\(19\) 3.58419 2.06933i 0.822269 0.474737i −0.0289296 0.999581i \(-0.509210\pi\)
0.851198 + 0.524844i \(0.175877\pi\)
\(20\) 0 0
\(21\) 1.59329 + 4.29667i 0.347685 + 0.937611i
\(22\) 0 0
\(23\) 3.57587 + 6.19358i 0.745620 + 1.29145i 0.949905 + 0.312539i \(0.101180\pi\)
−0.204285 + 0.978911i \(0.565487\pi\)
\(24\) 0 0
\(25\) −4.89825 + 1.00356i −0.979650 + 0.200712i
\(26\) 0 0
\(27\) −4.16408 + 3.10812i −0.801378 + 0.598158i
\(28\) 0 0
\(29\) 6.84761i 1.27157i −0.771867 0.635785i \(-0.780677\pi\)
0.771867 0.635785i \(-0.219323\pi\)
\(30\) 0 0
\(31\) −3.90384 2.25388i −0.701150 0.404809i 0.106626 0.994299i \(-0.465995\pi\)
−0.807776 + 0.589490i \(0.799329\pi\)
\(32\) 0 0
\(33\) −7.53639 + 6.84463i −1.31192 + 1.19150i
\(34\) 0 0
\(35\) 4.10141 + 4.26362i 0.693264 + 0.720684i
\(36\) 0 0
\(37\) 1.70926 0.986843i 0.281001 0.162236i −0.352875 0.935670i \(-0.614796\pi\)
0.633876 + 0.773434i \(0.281463\pi\)
\(38\) 0 0
\(39\) 1.86969 5.83952i 0.299390 0.935071i
\(40\) 0 0
\(41\) 6.33142 0.988801 0.494401 0.869234i \(-0.335388\pi\)
0.494401 + 0.869234i \(0.335388\pi\)
\(42\) 0 0
\(43\) 3.88979i 0.593187i −0.955004 0.296594i \(-0.904149\pi\)
0.955004 0.296594i \(-0.0958507\pi\)
\(44\) 0 0
\(45\) −3.32553 + 5.82588i −0.495741 + 0.868470i
\(46\) 0 0
\(47\) 1.58829 0.916997i 0.231675 0.133758i −0.379669 0.925122i \(-0.623962\pi\)
0.611345 + 0.791364i \(0.290629\pi\)
\(48\) 0 0
\(49\) 1.66979 6.79793i 0.238541 0.971132i
\(50\) 0 0
\(51\) −3.98516 + 3.61936i −0.558034 + 0.506812i
\(52\) 0 0
\(53\) 6.90391 11.9579i 0.948325 1.64255i 0.199371 0.979924i \(-0.436110\pi\)
0.748954 0.662622i \(-0.230557\pi\)
\(54\) 0 0
\(55\) −5.38994 + 11.9872i −0.726779 + 1.61635i
\(56\) 0 0
\(57\) −1.52048 7.00526i −0.201393 0.927869i
\(58\) 0 0
\(59\) −2.32584 + 4.02848i −0.302799 + 0.524463i −0.976769 0.214296i \(-0.931254\pi\)
0.673970 + 0.738759i \(0.264588\pi\)
\(60\) 0 0
\(61\) 0.702144 0.405383i 0.0899003 0.0519040i −0.454376 0.890810i \(-0.650138\pi\)
0.544276 + 0.838906i \(0.316804\pi\)
\(62\) 0 0
\(63\) 7.92913 0.358927i 0.998977 0.0452206i
\(64\) 0 0
\(65\) −0.798468 7.87540i −0.0990377 0.976824i
\(66\) 0 0
\(67\) 8.84158 + 5.10469i 1.08017 + 0.623637i 0.930942 0.365166i \(-0.118988\pi\)
0.149228 + 0.988803i \(0.452321\pi\)
\(68\) 0 0
\(69\) 12.1053 2.62744i 1.45731 0.316307i
\(70\) 0 0
\(71\) 1.18684i 0.140852i −0.997517 0.0704262i \(-0.977564\pi\)
0.997517 0.0704262i \(-0.0224359\pi\)
\(72\) 0 0
\(73\) −1.08522 + 1.87966i −0.127016 + 0.219998i −0.922519 0.385951i \(-0.873873\pi\)
0.795503 + 0.605949i \(0.207207\pi\)
\(74\) 0 0
\(75\) −0.931602 + 8.61000i −0.107572 + 0.994197i
\(76\) 0 0
\(77\) 15.3961 2.19112i 1.75455 0.249702i
\(78\) 0 0
\(79\) −5.05228 8.75081i −0.568426 0.984543i −0.996722 0.0809043i \(-0.974219\pi\)
0.428296 0.903639i \(-0.359114\pi\)
\(80\) 0 0
\(81\) 2.92776 + 8.51048i 0.325306 + 0.945609i
\(82\) 0 0
\(83\) 5.31243i 0.583115i 0.956553 + 0.291558i \(0.0941735\pi\)
−0.956553 + 0.291558i \(0.905826\pi\)
\(84\) 0 0
\(85\) −2.85014 + 6.33868i −0.309141 + 0.687526i
\(86\) 0 0
\(87\) −11.2956 3.61660i −1.21101 0.387740i
\(88\) 0 0
\(89\) 6.28986 + 10.8944i 0.666724 + 1.15480i 0.978815 + 0.204747i \(0.0656373\pi\)
−0.312091 + 0.950052i \(0.601029\pi\)
\(90\) 0 0
\(91\) −7.37052 + 5.77917i −0.772640 + 0.605822i
\(92\) 0 0
\(93\) −5.77975 + 5.24922i −0.599332 + 0.544319i
\(94\) 0 0
\(95\) −5.41199 7.50686i −0.555258 0.770188i
\(96\) 0 0
\(97\) 4.50686 0.457602 0.228801 0.973473i \(-0.426519\pi\)
0.228801 + 0.973473i \(0.426519\pi\)
\(98\) 0 0
\(99\) 7.31025 + 16.0468i 0.734708 + 1.61276i
\(100\) 0 0
\(101\) −0.896791 + 1.55329i −0.0892340 + 0.154558i −0.907188 0.420726i \(-0.861775\pi\)
0.817954 + 0.575284i \(0.195109\pi\)
\(102\) 0 0
\(103\) −6.30688 10.9238i −0.621436 1.07636i −0.989219 0.146446i \(-0.953216\pi\)
0.367783 0.929912i \(-0.380117\pi\)
\(104\) 0 0
\(105\) 9.19928 4.51367i 0.897758 0.440489i
\(106\) 0 0
\(107\) 1.73976 + 3.01335i 0.168189 + 0.291311i 0.937783 0.347222i \(-0.112875\pi\)
−0.769594 + 0.638533i \(0.779542\pi\)
\(108\) 0 0
\(109\) 4.98802 8.63951i 0.477766 0.827515i −0.521909 0.853001i \(-0.674780\pi\)
0.999675 + 0.0254860i \(0.00811333\pi\)
\(110\) 0 0
\(111\) −0.725103 3.34074i −0.0688238 0.317089i
\(112\) 0 0
\(113\) 2.54532 0.239444 0.119722 0.992807i \(-0.461800\pi\)
0.119722 + 0.992807i \(0.461800\pi\)
\(114\) 0 0
\(115\) 12.9721 9.35208i 1.20965 0.872086i
\(116\) 0 0
\(117\) −8.64516 6.16834i −0.799245 0.570263i
\(118\) 0 0
\(119\) 8.14128 1.15864i 0.746310 0.106213i
\(120\) 0 0
\(121\) 11.7744 + 20.3938i 1.07040 + 1.85398i
\(122\) 0 0
\(123\) 3.34397 10.4441i 0.301515 0.941709i
\(124\) 0 0
\(125\) 3.33740 + 10.6706i 0.298506 + 0.954408i
\(126\) 0 0
\(127\) 12.6616i 1.12353i 0.827295 + 0.561767i \(0.189878\pi\)
−0.827295 + 0.561767i \(0.810122\pi\)
\(128\) 0 0
\(129\) −6.41644 2.05441i −0.564936 0.180881i
\(130\) 0 0
\(131\) 6.34770 + 10.9945i 0.554601 + 0.960597i 0.997934 + 0.0642406i \(0.0204625\pi\)
−0.443333 + 0.896357i \(0.646204\pi\)
\(132\) 0 0
\(133\) −4.08421 + 10.1597i −0.354146 + 0.880955i
\(134\) 0 0
\(135\) 7.85374 + 8.56263i 0.675943 + 0.736954i
\(136\) 0 0
\(137\) 2.62391 4.54475i 0.224176 0.388284i −0.731896 0.681416i \(-0.761364\pi\)
0.956072 + 0.293132i \(0.0946977\pi\)
\(138\) 0 0
\(139\) 14.2842i 1.21157i −0.795627 0.605787i \(-0.792858\pi\)
0.795627 0.605787i \(-0.207142\pi\)
\(140\) 0 0
\(141\) −0.673782 3.10429i −0.0567427 0.261428i
\(142\) 0 0
\(143\) −18.0200 10.4039i −1.50691 0.870014i
\(144\) 0 0
\(145\) −15.2336 + 1.54450i −1.26508 + 0.128264i
\(146\) 0 0
\(147\) −10.3317 6.34478i −0.852143 0.523308i
\(148\) 0 0
\(149\) 13.0762 7.54956i 1.07125 0.618484i 0.142724 0.989763i \(-0.454414\pi\)
0.928521 + 0.371279i \(0.121081\pi\)
\(150\) 0 0
\(151\) 4.16979 7.22229i 0.339333 0.587742i −0.644975 0.764204i \(-0.723132\pi\)
0.984307 + 0.176462i \(0.0564654\pi\)
\(152\) 0 0
\(153\) 3.86558 + 8.48535i 0.312513 + 0.686000i
\(154\) 0 0
\(155\) −4.13361 + 9.19310i −0.332019 + 0.738407i
\(156\) 0 0
\(157\) 0.480298 0.831900i 0.0383319 0.0663929i −0.846223 0.532829i \(-0.821129\pi\)
0.884555 + 0.466436i \(0.154462\pi\)
\(158\) 0 0
\(159\) −16.0790 17.7040i −1.27515 1.40402i
\(160\) 0 0
\(161\) −17.5562 7.05764i −1.38362 0.556220i
\(162\) 0 0
\(163\) −16.1698 + 9.33565i −1.26652 + 0.731224i −0.974327 0.225136i \(-0.927717\pi\)
−0.292190 + 0.956360i \(0.594384\pi\)
\(164\) 0 0
\(165\) 16.9268 + 15.2221i 1.31775 + 1.18504i
\(166\) 0 0
\(167\) 14.2212i 1.10047i 0.835011 + 0.550233i \(0.185461\pi\)
−0.835011 + 0.550233i \(0.814539\pi\)
\(168\) 0 0
\(169\) −0.468096 −0.0360074
\(170\) 0 0
\(171\) −12.3587 1.19173i −0.945090 0.0911338i
\(172\) 0 0
\(173\) −0.618569 + 0.357131i −0.0470289 + 0.0271522i −0.523330 0.852130i \(-0.675311\pi\)
0.476301 + 0.879282i \(0.341977\pi\)
\(174\) 0 0
\(175\) 8.56004 10.0859i 0.647078 0.762424i
\(176\) 0 0
\(177\) 5.41682 + 5.96428i 0.407153 + 0.448303i
\(178\) 0 0
\(179\) −9.68510 5.59169i −0.723898 0.417943i 0.0922876 0.995732i \(-0.470582\pi\)
−0.816186 + 0.577790i \(0.803915\pi\)
\(180\) 0 0
\(181\) 3.69700i 0.274796i 0.990516 + 0.137398i \(0.0438739\pi\)
−0.990516 + 0.137398i \(0.956126\pi\)
\(182\) 0 0
\(183\) −0.297864 1.37233i −0.0220187 0.101446i
\(184\) 0 0
\(185\) −2.58092 3.57995i −0.189753 0.263203i
\(186\) 0 0
\(187\) 9.13448 + 15.8214i 0.667979 + 1.15697i
\(188\) 0 0
\(189\) 3.59574 13.2692i 0.261551 0.965190i
\(190\) 0 0
\(191\) 8.99652 5.19414i 0.650965 0.375835i −0.137861 0.990452i \(-0.544023\pi\)
0.788826 + 0.614617i \(0.210689\pi\)
\(192\) 0 0
\(193\) −5.12779 2.96053i −0.369106 0.213104i 0.303962 0.952684i \(-0.401691\pi\)
−0.673068 + 0.739581i \(0.735024\pi\)
\(194\) 0 0
\(195\) −13.4127 2.84231i −0.960502 0.203542i
\(196\) 0 0
\(197\) −11.1053 −0.791221 −0.395610 0.918418i \(-0.629467\pi\)
−0.395610 + 0.918418i \(0.629467\pi\)
\(198\) 0 0
\(199\) 11.4667 + 6.62029i 0.812851 + 0.469300i 0.847945 0.530084i \(-0.177840\pi\)
−0.0350939 + 0.999384i \(0.511173\pi\)
\(200\) 0 0
\(201\) 13.0902 11.8887i 0.923312 0.838561i
\(202\) 0 0
\(203\) 11.1788 + 14.2570i 0.784600 + 1.00065i
\(204\) 0 0
\(205\) −1.42807 14.0853i −0.0997408 0.983758i
\(206\) 0 0
\(207\) 2.05934 21.3561i 0.143134 1.48435i
\(208\) 0 0
\(209\) −24.3263 −1.68268
\(210\) 0 0
\(211\) −19.9122 −1.37082 −0.685408 0.728160i \(-0.740376\pi\)
−0.685408 + 0.728160i \(0.740376\pi\)
\(212\) 0 0
\(213\) −1.95777 0.626837i −0.134144 0.0429502i
\(214\) 0 0
\(215\) −8.65347 + 0.877354i −0.590162 + 0.0598350i
\(216\) 0 0
\(217\) 11.8074 1.68040i 0.801542 0.114073i
\(218\) 0 0
\(219\) 2.52745 + 2.78289i 0.170789 + 0.188051i
\(220\) 0 0
\(221\) −9.52878 5.50144i −0.640975 0.370067i
\(222\) 0 0
\(223\) 10.4924 0.702623 0.351311 0.936259i \(-0.385736\pi\)
0.351311 + 0.936259i \(0.385736\pi\)
\(224\) 0 0
\(225\) 13.7107 + 6.08415i 0.914046 + 0.405610i
\(226\) 0 0
\(227\) −14.2249 8.21273i −0.944138 0.545098i −0.0528829 0.998601i \(-0.516841\pi\)
−0.891255 + 0.453502i \(0.850174\pi\)
\(228\) 0 0
\(229\) −0.903838 + 0.521831i −0.0597273 + 0.0344836i −0.529566 0.848269i \(-0.677645\pi\)
0.469839 + 0.882752i \(0.344312\pi\)
\(230\) 0 0
\(231\) 4.51713 26.5541i 0.297205 1.74713i
\(232\) 0 0
\(233\) −14.4619 25.0488i −0.947431 1.64100i −0.750809 0.660519i \(-0.770336\pi\)
−0.196622 0.980479i \(-0.562997\pi\)
\(234\) 0 0
\(235\) −2.39825 3.32657i −0.156445 0.217001i
\(236\) 0 0
\(237\) −17.1034 + 3.71227i −1.11098 + 0.241138i
\(238\) 0 0
\(239\) 5.69731i 0.368528i −0.982877 0.184264i \(-0.941010\pi\)
0.982877 0.184264i \(-0.0589902\pi\)
\(240\) 0 0
\(241\) −6.10598 3.52529i −0.393321 0.227084i 0.290277 0.956943i \(-0.406253\pi\)
−0.683598 + 0.729859i \(0.739586\pi\)
\(242\) 0 0
\(243\) 15.5849 0.334668i 0.999770 0.0214690i
\(244\) 0 0
\(245\) −15.4997 2.18143i −0.990241 0.139366i
\(246\) 0 0
\(247\) 12.6882 7.32552i 0.807329 0.466112i
\(248\) 0 0
\(249\) 8.76319 + 2.80579i 0.555344 + 0.177809i
\(250\) 0 0
\(251\) −3.93237 −0.248209 −0.124105 0.992269i \(-0.539606\pi\)
−0.124105 + 0.992269i \(0.539606\pi\)
\(252\) 0 0
\(253\) 42.0366i 2.64282i
\(254\) 0 0
\(255\) 8.95072 + 8.04928i 0.560516 + 0.504065i
\(256\) 0 0
\(257\) −13.2552 + 7.65287i −0.826834 + 0.477373i −0.852767 0.522291i \(-0.825078\pi\)
0.0259335 + 0.999664i \(0.491744\pi\)
\(258\) 0 0
\(259\) −1.94772 + 4.84504i −0.121025 + 0.301056i
\(260\) 0 0
\(261\) −11.9316 + 16.7226i −0.738547 + 1.03510i
\(262\) 0 0
\(263\) −9.75977 + 16.9044i −0.601813 + 1.04237i 0.390733 + 0.920504i \(0.372222\pi\)
−0.992546 + 0.121867i \(0.961112\pi\)
\(264\) 0 0
\(265\) −28.1595 12.6617i −1.72983 0.777803i
\(266\) 0 0
\(267\) 21.2929 4.62161i 1.30311 0.282838i
\(268\) 0 0
\(269\) −4.91865 + 8.51935i −0.299895 + 0.519434i −0.976112 0.217269i \(-0.930285\pi\)
0.676216 + 0.736703i \(0.263618\pi\)
\(270\) 0 0
\(271\) 18.0820 10.4397i 1.09841 0.634164i 0.162603 0.986691i \(-0.448011\pi\)
0.935802 + 0.352527i \(0.114678\pi\)
\(272\) 0 0
\(273\) 5.64033 + 15.2104i 0.341368 + 0.920576i
\(274\) 0 0
\(275\) 27.8831 + 9.28705i 1.68142 + 0.560030i
\(276\) 0 0
\(277\) 7.36446 + 4.25187i 0.442487 + 0.255470i 0.704652 0.709553i \(-0.251103\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(278\) 0 0
\(279\) 5.60632 + 12.3064i 0.335641 + 0.736768i
\(280\) 0 0
\(281\) 7.63690i 0.455579i 0.973710 + 0.227790i \(0.0731499\pi\)
−0.973710 + 0.227790i \(0.926850\pi\)
\(282\) 0 0
\(283\) −4.50375 + 7.80072i −0.267720 + 0.463705i −0.968273 0.249896i \(-0.919604\pi\)
0.700553 + 0.713601i \(0.252937\pi\)
\(284\) 0 0
\(285\) −15.2414 + 4.96262i −0.902822 + 0.293960i
\(286\) 0 0
\(287\) −13.1823 + 10.3361i −0.778125 + 0.610123i
\(288\) 0 0
\(289\) −3.66979 6.35626i −0.215870 0.373898i
\(290\) 0 0
\(291\) 2.38032 7.43434i 0.139537 0.435809i
\(292\) 0 0
\(293\) 27.6102i 1.61301i 0.591231 + 0.806503i \(0.298642\pi\)
−0.591231 + 0.806503i \(0.701358\pi\)
\(294\) 0 0
\(295\) 9.48660 + 4.26558i 0.552331 + 0.248352i
\(296\) 0 0
\(297\) 30.3311 3.58353i 1.75999 0.207938i
\(298\) 0 0
\(299\) 12.6587 + 21.9255i 0.732073 + 1.26799i
\(300\) 0 0
\(301\) 6.35014 + 8.09870i 0.366016 + 0.466801i
\(302\) 0 0
\(303\) 2.08860 + 2.29969i 0.119987 + 0.132114i
\(304\) 0 0
\(305\) −1.06021 1.47060i −0.0607075 0.0842062i
\(306\) 0 0
\(307\) −9.99609 −0.570507 −0.285253 0.958452i \(-0.592078\pi\)
−0.285253 + 0.958452i \(0.592078\pi\)
\(308\) 0 0
\(309\) −21.3506 + 4.63411i −1.21459 + 0.263625i
\(310\) 0 0
\(311\) 11.9336 20.6696i 0.676693 1.17207i −0.299278 0.954166i \(-0.596746\pi\)
0.975971 0.217901i \(-0.0699210\pi\)
\(312\) 0 0
\(313\) 2.79759 + 4.84558i 0.158129 + 0.273888i 0.934194 0.356765i \(-0.116120\pi\)
−0.776065 + 0.630653i \(0.782787\pi\)
\(314\) 0 0
\(315\) −2.58693 17.5587i −0.145757 0.989320i
\(316\) 0 0
\(317\) −5.86828 10.1642i −0.329596 0.570876i 0.652836 0.757499i \(-0.273579\pi\)
−0.982432 + 0.186623i \(0.940246\pi\)
\(318\) 0 0
\(319\) −20.1245 + 34.8566i −1.12676 + 1.95160i
\(320\) 0 0
\(321\) 5.88956 1.27832i 0.328723 0.0713490i
\(322\) 0 0
\(323\) −12.8635 −0.715742
\(324\) 0 0
\(325\) −17.3400 + 3.55264i −0.961851 + 0.197065i
\(326\) 0 0
\(327\) −11.6170 12.7910i −0.642419 0.707347i
\(328\) 0 0
\(329\) −1.80986 + 4.50212i −0.0997810 + 0.248210i
\(330\) 0 0
\(331\) −1.26453 2.19023i −0.0695050 0.120386i 0.829179 0.558984i \(-0.188809\pi\)
−0.898684 + 0.438598i \(0.855475\pi\)
\(332\) 0 0
\(333\) −5.89372 0.568324i −0.322974 0.0311440i
\(334\) 0 0
\(335\) 9.36196 20.8209i 0.511499 1.13757i
\(336\) 0 0
\(337\) 34.3299i 1.87007i 0.354560 + 0.935033i \(0.384631\pi\)
−0.354560 + 0.935033i \(0.615369\pi\)
\(338\) 0 0
\(339\) 1.34432 4.19866i 0.0730136 0.228040i
\(340\) 0 0
\(341\) 13.2479 + 22.9460i 0.717414 + 1.24260i
\(342\) 0 0
\(343\) 7.62114 + 16.8795i 0.411503 + 0.911408i
\(344\) 0 0
\(345\) −8.57556 26.3376i −0.461693 1.41797i
\(346\) 0 0
\(347\) 0.297864 0.515915i 0.0159902 0.0276958i −0.857920 0.513784i \(-0.828243\pi\)
0.873910 + 0.486088i \(0.161577\pi\)
\(348\) 0 0
\(349\) 23.0392i 1.23326i 0.787253 + 0.616630i \(0.211503\pi\)
−0.787253 + 0.616630i \(0.788497\pi\)
\(350\) 0 0
\(351\) −14.7410 + 11.0029i −0.786818 + 0.587290i
\(352\) 0 0
\(353\) 9.43718 + 5.44856i 0.502290 + 0.289997i 0.729659 0.683811i \(-0.239679\pi\)
−0.227369 + 0.973809i \(0.573012\pi\)
\(354\) 0 0
\(355\) −2.64033 + 0.267696i −0.140134 + 0.0142078i
\(356\) 0 0
\(357\) 2.38861 14.0415i 0.126418 0.743154i
\(358\) 0 0
\(359\) 9.03320 5.21532i 0.476754 0.275254i −0.242309 0.970199i \(-0.577905\pi\)
0.719063 + 0.694945i \(0.244571\pi\)
\(360\) 0 0
\(361\) −0.935743 + 1.62075i −0.0492496 + 0.0853028i
\(362\) 0 0
\(363\) 39.8595 8.65145i 2.09208 0.454083i
\(364\) 0 0
\(365\) 4.42639 + 1.99029i 0.231688 + 0.104177i
\(366\) 0 0
\(367\) 4.27471 7.40402i 0.223138 0.386486i −0.732621 0.680637i \(-0.761703\pi\)
0.955759 + 0.294150i \(0.0950366\pi\)
\(368\) 0 0
\(369\) −15.4620 11.0322i −0.804919 0.574311i
\(370\) 0 0
\(371\) 5.14726 + 36.1676i 0.267232 + 1.87773i
\(372\) 0 0
\(373\) 5.74129 3.31473i 0.297273 0.171630i −0.343944 0.938990i \(-0.611763\pi\)
0.641217 + 0.767360i \(0.278430\pi\)
\(374\) 0 0
\(375\) 19.3645 + 0.130488i 0.999977 + 0.00673837i
\(376\) 0 0
\(377\) 24.2408i 1.24847i
\(378\) 0 0
\(379\) 22.3165 1.14632 0.573162 0.819442i \(-0.305717\pi\)
0.573162 + 0.819442i \(0.305717\pi\)
\(380\) 0 0
\(381\) 20.8861 + 6.68728i 1.07003 + 0.342600i
\(382\) 0 0
\(383\) 24.4124 14.0945i 1.24742 0.720196i 0.276822 0.960921i \(-0.410719\pi\)
0.970593 + 0.240725i \(0.0773853\pi\)
\(384\) 0 0
\(385\) −8.34715 33.7569i −0.425410 1.72041i
\(386\) 0 0
\(387\) −6.77775 + 9.49927i −0.344532 + 0.482875i
\(388\) 0 0
\(389\) −3.57909 2.06639i −0.181467 0.104770i 0.406515 0.913644i \(-0.366744\pi\)
−0.587982 + 0.808874i \(0.700077\pi\)
\(390\) 0 0
\(391\) 22.2284i 1.12414i
\(392\) 0 0
\(393\) 21.4887 4.66411i 1.08396 0.235273i
\(394\) 0 0
\(395\) −18.3280 + 13.2134i −0.922184 + 0.664838i
\(396\) 0 0
\(397\) 6.61890 + 11.4643i 0.332193 + 0.575375i 0.982942 0.183918i \(-0.0588781\pi\)
−0.650748 + 0.759293i \(0.725545\pi\)
\(398\) 0 0
\(399\) 14.6019 + 12.1030i 0.731009 + 0.605909i
\(400\) 0 0
\(401\) −0.671383 + 0.387623i −0.0335273 + 0.0193570i −0.516670 0.856185i \(-0.672829\pi\)
0.483143 + 0.875542i \(0.339495\pi\)
\(402\) 0 0
\(403\) −13.8198 7.97884i −0.688411 0.397454i
\(404\) 0 0
\(405\) 18.2726 8.43284i 0.907972 0.419031i
\(406\) 0 0
\(407\) −11.6010 −0.575038
\(408\) 0 0
\(409\) 3.97093 + 2.29262i 0.196350 + 0.113363i 0.594952 0.803761i \(-0.297171\pi\)
−0.398602 + 0.917124i \(0.630504\pi\)
\(410\) 0 0
\(411\) −6.11101 6.72863i −0.301434 0.331899i
\(412\) 0 0
\(413\) −1.73405 12.1844i −0.0853270 0.599556i
\(414\) 0 0
\(415\) 11.8184 1.19824i 0.580141 0.0588191i
\(416\) 0 0
\(417\) −23.5627 7.54429i −1.15387 0.369445i
\(418\) 0 0
\(419\) 11.9761 0.585070 0.292535 0.956255i \(-0.405501\pi\)
0.292535 + 0.956255i \(0.405501\pi\)
\(420\) 0 0
\(421\) 25.5487 1.24517 0.622584 0.782553i \(-0.286083\pi\)
0.622584 + 0.782553i \(0.286083\pi\)
\(422\) 0 0
\(423\) −5.47658 0.528099i −0.266280 0.0256771i
\(424\) 0 0
\(425\) 14.7443 + 4.91089i 0.715202 + 0.238213i
\(426\) 0 0
\(427\) −0.800099 + 1.99028i −0.0387195 + 0.0963166i
\(428\) 0 0
\(429\) −26.6792 + 24.2303i −1.28808 + 1.16985i
\(430\) 0 0
\(431\) 12.5634 + 7.25351i 0.605160 + 0.349389i 0.771069 0.636752i \(-0.219722\pi\)
−0.165909 + 0.986141i \(0.553056\pi\)
\(432\) 0 0
\(433\) 40.0655 1.92543 0.962713 0.270524i \(-0.0871969\pi\)
0.962713 + 0.270524i \(0.0871969\pi\)
\(434\) 0 0
\(435\) −5.49796 + 25.9445i −0.263607 + 1.24395i
\(436\) 0 0
\(437\) 25.6331 + 14.7993i 1.22620 + 0.707946i
\(438\) 0 0
\(439\) −27.1838 + 15.6945i −1.29741 + 0.749060i −0.979956 0.199214i \(-0.936161\pi\)
−0.317454 + 0.948274i \(0.602828\pi\)
\(440\) 0 0
\(441\) −15.9228 + 13.6917i −0.758230 + 0.651987i
\(442\) 0 0
\(443\) −5.01776 8.69101i −0.238401 0.412923i 0.721855 0.692045i \(-0.243290\pi\)
−0.960256 + 0.279122i \(0.909957\pi\)
\(444\) 0 0
\(445\) 22.8176 16.4501i 1.08166 0.779808i
\(446\) 0 0
\(447\) −5.54719 25.5574i −0.262373 1.20882i
\(448\) 0 0
\(449\) 16.7060i 0.788405i −0.919024 0.394203i \(-0.871021\pi\)
0.919024 0.394203i \(-0.128979\pi\)
\(450\) 0 0
\(451\) −32.2291 18.6075i −1.51761 0.876191i
\(452\) 0 0
\(453\) −9.71131 10.6928i −0.456277 0.502392i
\(454\) 0 0
\(455\) 14.5192 + 15.0934i 0.680668 + 0.707590i
\(456\) 0 0
\(457\) −12.2526 + 7.07406i −0.573154 + 0.330910i −0.758408 0.651780i \(-0.774022\pi\)
0.185254 + 0.982691i \(0.440689\pi\)
\(458\) 0 0
\(459\) 16.0387 1.89493i 0.748623 0.0884478i
\(460\) 0 0
\(461\) −4.22519 −0.196787 −0.0983935 0.995148i \(-0.531370\pi\)
−0.0983935 + 0.995148i \(0.531370\pi\)
\(462\) 0 0
\(463\) 33.2490i 1.54521i −0.634886 0.772606i \(-0.718953\pi\)
0.634886 0.772606i \(-0.281047\pi\)
\(464\) 0 0
\(465\) 12.9814 + 11.6740i 0.601998 + 0.541369i
\(466\) 0 0
\(467\) 31.9242 18.4314i 1.47727 0.852905i 0.477604 0.878575i \(-0.341505\pi\)
0.999670 + 0.0256700i \(0.00817193\pi\)
\(468\) 0 0
\(469\) −26.7420 + 3.80584i −1.23483 + 0.175737i
\(470\) 0 0
\(471\) −1.11860 1.23165i −0.0515423 0.0567516i
\(472\) 0 0
\(473\) −11.4317 + 19.8003i −0.525631 + 0.910420i
\(474\) 0 0
\(475\) −15.4795 + 13.7330i −0.710250 + 0.630115i
\(476\) 0 0
\(477\) −37.6961 + 17.1728i −1.72599 + 0.786289i
\(478\) 0 0
\(479\) 4.66797 8.08516i 0.213285 0.369420i −0.739456 0.673205i \(-0.764917\pi\)
0.952741 + 0.303785i \(0.0982504\pi\)
\(480\) 0 0
\(481\) 6.05086 3.49347i 0.275896 0.159288i
\(482\) 0 0
\(483\) −20.9144 + 25.2325i −0.951638 + 1.14812i
\(484\) 0 0
\(485\) −1.01654 10.0262i −0.0461585 0.455268i
\(486\) 0 0
\(487\) 21.9442 + 12.6695i 0.994385 + 0.574109i 0.906582 0.422029i \(-0.138682\pi\)
0.0878031 + 0.996138i \(0.472015\pi\)
\(488\) 0 0
\(489\) 6.85956 + 31.6038i 0.310200 + 1.42917i
\(490\) 0 0
\(491\) 35.4614i 1.60035i −0.599765 0.800176i \(-0.704739\pi\)
0.599765 0.800176i \(-0.295261\pi\)
\(492\) 0 0
\(493\) −10.6416 + 18.4318i −0.479274 + 0.830126i
\(494\) 0 0
\(495\) 34.0498 19.8822i 1.53042 0.893640i
\(496\) 0 0
\(497\) 1.93754 + 2.47106i 0.0869106 + 0.110842i
\(498\) 0 0
\(499\) 14.7087 + 25.4762i 0.658451 + 1.14047i 0.981017 + 0.193923i \(0.0621213\pi\)
−0.322566 + 0.946547i \(0.604545\pi\)
\(500\) 0 0
\(501\) 23.4587 + 7.51097i 1.04806 + 0.335565i
\(502\) 0 0
\(503\) 20.9709i 0.935046i −0.883981 0.467523i \(-0.845147\pi\)
0.883981 0.467523i \(-0.154853\pi\)
\(504\) 0 0
\(505\) 3.65781 + 1.64471i 0.162771 + 0.0731886i
\(506\) 0 0
\(507\) −0.247227 + 0.772153i −0.0109797 + 0.0342925i
\(508\) 0 0
\(509\) −3.71821 6.44013i −0.164807 0.285454i 0.771780 0.635890i \(-0.219367\pi\)
−0.936587 + 0.350436i \(0.886033\pi\)
\(510\) 0 0
\(511\) −0.809096 5.68518i −0.0357923 0.251497i
\(512\) 0 0
\(513\) −8.49311 + 19.7569i −0.374980 + 0.872290i
\(514\) 0 0
\(515\) −22.8793 + 16.4946i −1.00818 + 0.726839i
\(516\) 0 0
\(517\) −10.7799 −0.474098
\(518\) 0 0
\(519\) 0.262409 + 1.20899i 0.0115185 + 0.0530687i
\(520\) 0 0
\(521\) −2.55125 + 4.41889i −0.111772 + 0.193595i −0.916485 0.400069i \(-0.868986\pi\)
0.804713 + 0.593665i \(0.202319\pi\)
\(522\) 0 0
\(523\) −8.24829 14.2865i −0.360673 0.624703i 0.627399 0.778698i \(-0.284119\pi\)
−0.988072 + 0.153995i \(0.950786\pi\)
\(524\) 0 0
\(525\) −12.1163 19.4472i −0.528800 0.848747i
\(526\) 0 0
\(527\) 7.00534 + 12.1336i 0.305157 + 0.528548i
\(528\) 0 0
\(529\) −14.0736 + 24.3762i −0.611897 + 1.05984i
\(530\) 0 0
\(531\) 12.6994 5.78531i 0.551105 0.251061i
\(532\) 0 0
\(533\) 22.4135 0.970836
\(534\) 0 0
\(535\) 6.31128 4.55004i 0.272860 0.196716i
\(536\) 0 0
\(537\) −14.3391 + 13.0229i −0.618777 + 0.561979i
\(538\) 0 0
\(539\) −28.4783 + 29.6964i −1.22665 + 1.27911i
\(540\) 0 0
\(541\) −10.3077 17.8534i −0.443162 0.767578i 0.554760 0.832010i \(-0.312810\pi\)
−0.997922 + 0.0644316i \(0.979477\pi\)
\(542\) 0 0
\(543\) 6.09843 + 1.95259i 0.261709 + 0.0837935i
\(544\) 0 0
\(545\) −20.3451 9.14800i −0.871487 0.391857i
\(546\) 0 0
\(547\) 25.6070i 1.09488i −0.836846 0.547438i \(-0.815603\pi\)
0.836846 0.547438i \(-0.184397\pi\)
\(548\) 0 0
\(549\) −2.42107 0.233460i −0.103329 0.00996385i
\(550\) 0 0
\(551\) −14.1700 24.5431i −0.603661 1.04557i
\(552\) 0 0
\(553\) 24.8049 + 9.97162i 1.05481 + 0.424036i
\(554\) 0 0
\(555\) −7.26847 + 2.36662i −0.308529 + 0.100458i
\(556\) 0 0
\(557\) −18.0986 + 31.3477i −0.766862 + 1.32824i 0.172394 + 0.985028i \(0.444850\pi\)
−0.939256 + 0.343216i \(0.888484\pi\)
\(558\) 0 0
\(559\) 13.7700i 0.582410i
\(560\) 0 0
\(561\) 30.9228 6.71175i 1.30556 0.283370i
\(562\) 0 0
\(563\) 26.5408 + 15.3233i 1.11856 + 0.645801i 0.941033 0.338315i \(-0.109857\pi\)
0.177527 + 0.984116i \(0.443190\pi\)
\(564\) 0 0
\(565\) −0.574105 5.66248i −0.0241528 0.238222i
\(566\) 0 0
\(567\) −19.9892 12.9396i −0.839467 0.543410i
\(568\) 0 0
\(569\) −13.2153 + 7.62988i −0.554016 + 0.319861i −0.750740 0.660598i \(-0.770303\pi\)
0.196724 + 0.980459i \(0.436970\pi\)
\(570\) 0 0
\(571\) 9.05228 15.6790i 0.378826 0.656146i −0.612066 0.790807i \(-0.709661\pi\)
0.990892 + 0.134661i \(0.0429945\pi\)
\(572\) 0 0
\(573\) −3.81650 17.5836i −0.159437 0.734566i
\(574\) 0 0
\(575\) −23.7311 26.7491i −0.989656 1.11552i
\(576\) 0 0
\(577\) −3.28336 + 5.68695i −0.136688 + 0.236751i −0.926241 0.376932i \(-0.876979\pi\)
0.789553 + 0.613682i \(0.210312\pi\)
\(578\) 0 0
\(579\) −7.59184 + 6.89498i −0.315506 + 0.286546i
\(580\) 0 0
\(581\) −8.67263 11.0607i −0.359801 0.458875i
\(582\) 0 0
\(583\) −70.2864 + 40.5799i −2.91097 + 1.68065i
\(584\) 0 0
\(585\) −11.7725 + 20.6239i −0.486734 + 0.852691i
\(586\) 0 0
\(587\) 9.35074i 0.385946i −0.981204 0.192973i \(-0.938187\pi\)
0.981204 0.192973i \(-0.0618130\pi\)
\(588\) 0 0
\(589\) −18.6561 −0.768712
\(590\) 0 0
\(591\) −5.86532 + 18.3189i −0.241267 + 0.753539i
\(592\) 0 0
\(593\) −23.3806 + 13.4988i −0.960126 + 0.554329i −0.896212 0.443626i \(-0.853692\pi\)
−0.0639141 + 0.997955i \(0.520358\pi\)
\(594\) 0 0
\(595\) −4.41388 17.8503i −0.180951 0.731790i
\(596\) 0 0
\(597\) 16.9768 15.4185i 0.694812 0.631035i
\(598\) 0 0
\(599\) −19.7216 11.3863i −0.805803 0.465231i 0.0396931 0.999212i \(-0.487362\pi\)
−0.845496 + 0.533981i \(0.820695\pi\)
\(600\) 0 0
\(601\) 5.26871i 0.214915i 0.994210 + 0.107458i \(0.0342710\pi\)
−0.994210 + 0.107458i \(0.965729\pi\)
\(602\) 0 0
\(603\) −12.6974 27.8722i −0.517079 1.13504i
\(604\) 0 0
\(605\) 42.7135 30.7938i 1.73655 1.25195i
\(606\) 0 0
\(607\) 4.67749 + 8.10166i 0.189854 + 0.328836i 0.945201 0.326488i \(-0.105865\pi\)
−0.755348 + 0.655324i \(0.772532\pi\)
\(608\) 0 0
\(609\) 29.4220 10.9103i 1.19224 0.442106i
\(610\) 0 0
\(611\) 5.62260 3.24621i 0.227466 0.131328i
\(612\) 0 0
\(613\) −27.3310 15.7796i −1.10389 0.637330i −0.166649 0.986016i \(-0.553295\pi\)
−0.937240 + 0.348686i \(0.886628\pi\)
\(614\) 0 0
\(615\) −23.9888 5.08351i −0.967320 0.204987i
\(616\) 0 0
\(617\) 39.6450 1.59605 0.798023 0.602626i \(-0.205879\pi\)
0.798023 + 0.602626i \(0.205879\pi\)
\(618\) 0 0
\(619\) 33.2406 + 19.1915i 1.33605 + 0.771370i 0.986219 0.165443i \(-0.0529052\pi\)
0.349832 + 0.936812i \(0.386239\pi\)
\(620\) 0 0
\(621\) −34.1406 14.6764i −1.37002 0.588942i
\(622\) 0 0
\(623\) −30.8810 12.4142i −1.23722 0.497365i
\(624\) 0 0
\(625\) 22.9857 9.83137i 0.919430 0.393255i
\(626\) 0 0
\(627\) −12.8480 + 40.1277i −0.513101 + 1.60255i
\(628\) 0 0
\(629\) −6.13446 −0.244597
\(630\) 0 0
\(631\) 1.06381 0.0423495 0.0211748 0.999776i \(-0.493259\pi\)
0.0211748 + 0.999776i \(0.493259\pi\)
\(632\) 0 0
\(633\) −10.5167 + 32.8465i −0.418003 + 1.30553i
\(634\) 0 0
\(635\) 28.1678 2.85586i 1.11780 0.113331i
\(636\) 0 0
\(637\) 5.91113 24.0650i 0.234207 0.953488i
\(638\) 0 0
\(639\) −2.06801 + 2.89840i −0.0818093 + 0.114659i
\(640\) 0 0
\(641\) −25.9645 14.9906i −1.02553 0.592093i −0.109832 0.993950i \(-0.535031\pi\)
−0.915702 + 0.401858i \(0.868365\pi\)
\(642\) 0 0
\(643\) 16.0861 0.634373 0.317187 0.948363i \(-0.397262\pi\)
0.317187 + 0.948363i \(0.397262\pi\)
\(644\) 0 0
\(645\) −3.12312 + 14.7378i −0.122973 + 0.580301i
\(646\) 0 0
\(647\) 21.6193 + 12.4819i 0.849944 + 0.490716i 0.860632 0.509227i \(-0.170069\pi\)
−0.0106878 + 0.999943i \(0.503402\pi\)
\(648\) 0 0
\(649\) 23.6786 13.6709i 0.929468 0.536629i
\(650\) 0 0
\(651\) 3.46424 20.3646i 0.135774 0.798152i
\(652\) 0 0
\(653\) −2.19607 3.80370i −0.0859387 0.148850i 0.819852 0.572575i \(-0.194056\pi\)
−0.905791 + 0.423725i \(0.860722\pi\)
\(654\) 0 0
\(655\) 23.0274 16.6013i 0.899755 0.648668i
\(656\) 0 0
\(657\) 5.92544 2.69939i 0.231173 0.105313i
\(658\) 0 0
\(659\) 1.93959i 0.0755557i −0.999286 0.0377778i \(-0.987972\pi\)
0.999286 0.0377778i \(-0.0120279\pi\)
\(660\) 0 0
\(661\) 21.6034 + 12.4727i 0.840274 + 0.485132i 0.857357 0.514722i \(-0.172105\pi\)
−0.0170833 + 0.999854i \(0.505438\pi\)
\(662\) 0 0
\(663\) −14.1076 + 12.8127i −0.547895 + 0.497604i
\(664\) 0 0
\(665\) 23.5230 + 6.79444i 0.912184 + 0.263477i
\(666\) 0 0
\(667\) 42.4112 24.4861i 1.64217 0.948107i
\(668\) 0 0
\(669\) 5.54161 17.3078i 0.214251 0.669160i
\(670\) 0 0
\(671\) −4.76553 −0.183971
\(672\) 0 0
\(673\) 6.21519i 0.239578i 0.992799 + 0.119789i \(0.0382218\pi\)
−0.992799 + 0.119789i \(0.961778\pi\)
\(674\) 0 0
\(675\) 17.2775 19.4033i 0.665013 0.746832i
\(676\) 0 0
\(677\) 14.4283 8.33017i 0.554524 0.320154i −0.196421 0.980520i \(-0.562932\pi\)
0.750945 + 0.660365i \(0.229599\pi\)
\(678\) 0 0
\(679\) −9.38346 + 7.35751i −0.360104 + 0.282355i
\(680\) 0 0
\(681\) −21.0603 + 19.1272i −0.807034 + 0.732956i
\(682\) 0 0
\(683\) 11.1339 19.2844i 0.426025 0.737898i −0.570490 0.821304i \(-0.693247\pi\)
0.996516 + 0.0834067i \(0.0265800\pi\)
\(684\) 0 0
\(685\) −10.7024 4.81224i −0.408916 0.183866i
\(686\) 0 0
\(687\) 0.383426 + 1.76654i 0.0146286 + 0.0673979i
\(688\) 0 0
\(689\) 24.4401 42.3315i 0.931095 1.61270i
\(690\) 0 0
\(691\) −24.0492 + 13.8848i −0.914873 + 0.528202i −0.881996 0.471257i \(-0.843800\pi\)
−0.0328772 + 0.999459i \(0.510467\pi\)
\(692\) 0 0
\(693\) −41.4168 21.4759i −1.57329 0.815803i
\(694\) 0 0
\(695\) −31.7776 + 3.22185i −1.20539 + 0.122212i
\(696\) 0 0
\(697\) −17.0424 9.83941i −0.645525 0.372694i
\(698\) 0 0
\(699\) −48.9576 + 10.6262i −1.85175 + 0.401919i
\(700\) 0 0
\(701\) 0.789291i 0.0298111i −0.999889 0.0149056i \(-0.995255\pi\)
0.999889 0.0149056i \(-0.00474476\pi\)
\(702\) 0 0
\(703\) 4.08421 7.07406i 0.154039 0.266803i
\(704\) 0 0
\(705\) −6.75403 + 2.19912i −0.254371 + 0.0828237i
\(706\) 0 0
\(707\) −0.668609 4.69803i −0.0251456 0.176688i
\(708\) 0 0
\(709\) −7.93432 13.7427i −0.297980 0.516116i 0.677694 0.735344i \(-0.262979\pi\)
−0.975674 + 0.219228i \(0.929646\pi\)
\(710\) 0 0
\(711\) −2.90961 + 30.1737i −0.109119 + 1.13160i
\(712\) 0 0
\(713\) 32.2383i 1.20733i
\(714\) 0 0
\(715\) −19.0806 + 42.4351i −0.713574 + 1.58698i
\(716\) 0 0
\(717\) −9.39806 3.00906i −0.350977 0.112375i
\(718\) 0 0
\(719\) −22.6303 39.1968i −0.843967 1.46179i −0.886516 0.462699i \(-0.846881\pi\)
0.0425492 0.999094i \(-0.486452\pi\)
\(720\) 0 0
\(721\) 30.9645 + 12.4478i 1.15318 + 0.463581i
\(722\) 0 0
\(723\) −9.04009 + 8.21029i −0.336204 + 0.305344i
\(724\) 0 0
\(725\) 6.87198 + 33.5413i 0.255219 + 1.24569i
\(726\) 0 0
\(727\) 21.4724 0.796369 0.398185 0.917305i \(-0.369640\pi\)
0.398185 + 0.917305i \(0.369640\pi\)
\(728\) 0 0
\(729\) 7.67916 25.8849i 0.284413 0.958702i
\(730\) 0 0
\(731\) −6.04497 + 10.4702i −0.223581 + 0.387254i
\(732\) 0 0
\(733\) −7.38122 12.7846i −0.272631 0.472211i 0.696903 0.717165i \(-0.254561\pi\)
−0.969535 + 0.244954i \(0.921227\pi\)
\(734\) 0 0
\(735\) −11.7846 + 24.4156i −0.434683 + 0.900583i
\(736\) 0 0
\(737\) −30.0044 51.9691i −1.10523 1.91431i
\(738\) 0 0
\(739\) 1.22065 2.11423i 0.0449024 0.0777733i −0.842701 0.538382i \(-0.819036\pi\)
0.887603 + 0.460609i \(0.152369\pi\)
\(740\) 0 0
\(741\) −5.38258 24.7989i −0.197734 0.911011i
\(742\) 0 0
\(743\) 32.2677 1.18379 0.591894 0.806016i \(-0.298380\pi\)
0.591894 + 0.806016i \(0.298380\pi\)
\(744\) 0 0
\(745\) −19.7446 27.3873i −0.723386 1.00339i
\(746\) 0 0
\(747\) 9.25663 12.9735i 0.338683 0.474676i
\(748\) 0 0
\(749\) −8.54158 3.43373i −0.312103 0.125466i
\(750\) 0 0
\(751\) −7.00840 12.1389i −0.255740 0.442955i 0.709356 0.704850i \(-0.248986\pi\)
−0.965096 + 0.261895i \(0.915652\pi\)
\(752\) 0 0
\(753\) −2.07690 + 6.48669i −0.0756864 + 0.236388i
\(754\) 0 0
\(755\) −17.0077 7.64737i −0.618972 0.278316i
\(756\) 0 0
\(757\) 41.4500i 1.50653i 0.657720 + 0.753263i \(0.271521\pi\)
−0.657720 + 0.753263i \(0.728479\pi\)
\(758\) 0 0
\(759\) −69.3419 22.2018i −2.51695 0.805874i
\(760\) 0 0
\(761\) 20.0586 + 34.7425i 0.727124 + 1.25942i 0.958094 + 0.286455i \(0.0924769\pi\)
−0.230969 + 0.972961i \(0.574190\pi\)
\(762\) 0 0
\(763\) 3.71886 + 26.1308i 0.134632 + 0.946000i
\(764\) 0 0
\(765\) 18.0051 10.5135i 0.650977 0.380116i
\(766\) 0 0
\(767\) −8.23358 + 14.2610i −0.297297 + 0.514934i
\(768\) 0 0
\(769\) 22.4441i 0.809355i −0.914459 0.404677i \(-0.867384\pi\)
0.914459 0.404677i \(-0.132616\pi\)
\(770\) 0 0
\(771\) 5.62310 + 25.9071i 0.202511 + 0.933021i
\(772\) 0 0
\(773\) 25.1951 + 14.5464i 0.906206 + 0.523198i 0.879208 0.476437i \(-0.158072\pi\)
0.0269973 + 0.999636i \(0.491405\pi\)
\(774\) 0 0
\(775\) 21.3839 + 7.12235i 0.768132 + 0.255842i
\(776\) 0 0
\(777\) 6.96350 + 5.77181i 0.249814 + 0.207063i
\(778\) 0 0
\(779\) 22.6930 13.1018i 0.813060 0.469421i
\(780\) 0 0
\(781\) −3.48802 + 6.04143i −0.124811 + 0.216180i
\(782\) 0 0
\(783\) 21.2832 + 28.5140i 0.760600 + 1.01901i
\(784\) 0 0
\(785\) −1.95903 0.880863i −0.0699208 0.0314394i
\(786\) 0 0
\(787\) −16.9461 + 29.3516i −0.604064 + 1.04627i 0.388134 + 0.921603i \(0.373120\pi\)
−0.992199 + 0.124667i \(0.960214\pi\)
\(788\) 0 0
\(789\) 22.7302 + 25.0275i 0.809217 + 0.891002i
\(790\) 0 0
\(791\) −5.29946 + 4.15527i −0.188427 + 0.147745i
\(792\) 0 0
\(793\) 2.48562 1.43507i 0.0882669 0.0509609i
\(794\) 0 0
\(795\) −35.7589 + 39.7635i −1.26824 + 1.41027i
\(796\) 0 0
\(797\) 30.8362i 1.09227i 0.837696 + 0.546137i \(0.183902\pi\)
−0.837696 + 0.546137i \(0.816098\pi\)
\(798\) 0 0
\(799\) −5.70028 −0.201661
\(800\) 0 0
\(801\) 3.62234 37.5649i 0.127989 1.32729i
\(802\) 0 0
\(803\) 11.0483 6.37874i 0.389886 0.225101i
\(804\) 0 0
\(805\) −11.7410 + 40.6485i −0.413816 + 1.43267i
\(806\) 0 0
\(807\) 11.4554 + 12.6131i 0.403249 + 0.444004i
\(808\) 0 0
\(809\) 32.1338 + 18.5524i 1.12976 + 0.652269i 0.943875 0.330302i \(-0.107151\pi\)
0.185888 + 0.982571i \(0.440484\pi\)
\(810\) 0 0
\(811\) 33.9956i 1.19375i 0.802336 + 0.596873i \(0.203590\pi\)
−0.802336 + 0.596873i \(0.796410\pi\)
\(812\) 0 0
\(813\) −7.67076 35.3412i −0.269025 1.23947i
\(814\) 0 0
\(815\) 24.4158 + 33.8667i 0.855249 + 1.18630i
\(816\) 0 0
\(817\) −8.04926 13.9417i −0.281608 0.487759i
\(818\) 0 0
\(819\) 28.0695 1.27062i 0.980827 0.0443990i
\(820\) 0 0
\(821\) 40.0563 23.1265i 1.39798 0.807122i 0.403796 0.914849i \(-0.367691\pi\)
0.994180 + 0.107727i \(0.0343573\pi\)
\(822\) 0 0
\(823\) −40.7593 23.5324i −1.42078 0.820288i −0.424414 0.905468i \(-0.639520\pi\)
−0.996366 + 0.0851803i \(0.972853\pi\)
\(824\) 0 0
\(825\) 30.0462 41.0899i 1.04607 1.43057i
\(826\) 0 0
\(827\) −14.6102 −0.508046 −0.254023 0.967198i \(-0.581754\pi\)
−0.254023 + 0.967198i \(0.581754\pi\)
\(828\) 0 0
\(829\) 27.9876 + 16.1586i 0.972049 + 0.561213i 0.899860 0.436178i \(-0.143668\pi\)
0.0721885 + 0.997391i \(0.477002\pi\)
\(830\) 0 0
\(831\) 10.9033 9.90248i 0.378231 0.343513i
\(832\) 0 0
\(833\) −15.0590 + 15.7031i −0.521763 + 0.544080i
\(834\) 0 0
\(835\) 31.6373 3.20763i 1.09485 0.111004i
\(836\) 0 0
\(837\) 23.2612 2.74825i 0.804026 0.0949935i
\(838\) 0 0
\(839\) 15.0113 0.518249 0.259124 0.965844i \(-0.416566\pi\)
0.259124 + 0.965844i \(0.416566\pi\)
\(840\) 0 0
\(841\) −17.8898 −0.616888
\(842\) 0 0
\(843\) 12.5975 + 4.03346i 0.433882 + 0.138920i
\(844\) 0 0
\(845\) 0.105580 + 1.04136i 0.00363208 + 0.0358237i
\(846\) 0 0
\(847\) −57.8078 23.2389i −1.98630 0.798497i
\(848\) 0 0
\(849\) 10.4891 + 11.5492i 0.359985 + 0.396367i
\(850\) 0 0
\(851\) 12.2242 + 7.05764i 0.419040 + 0.241933i
\(852\) 0 0
\(853\) 43.2807 1.48190 0.740952 0.671558i \(-0.234374\pi\)
0.740952 + 0.671558i \(0.234374\pi\)
\(854\) 0 0
\(855\) 0.136336 + 27.7626i 0.00466260 + 0.949463i
\(856\) 0 0
\(857\) −18.3255 10.5802i −0.625986 0.361413i 0.153210 0.988194i \(-0.451039\pi\)
−0.779196 + 0.626780i \(0.784372\pi\)
\(858\) 0 0
\(859\) 36.5871 21.1236i 1.24834 0.720728i 0.277560 0.960708i \(-0.410474\pi\)
0.970778 + 0.239981i \(0.0771411\pi\)
\(860\) 0 0
\(861\) 10.0878 + 27.2040i 0.343792 + 0.927111i
\(862\) 0 0
\(863\) 17.8457 + 30.9097i 0.607475 + 1.05218i 0.991655 + 0.128919i \(0.0411507\pi\)
−0.384181 + 0.923258i \(0.625516\pi\)
\(864\) 0 0
\(865\) 0.934016 + 1.29556i 0.0317575 + 0.0440502i
\(866\) 0 0
\(867\) −12.4233 + 2.69645i −0.421916 + 0.0915764i
\(868\) 0 0
\(869\) 59.3927i 2.01476i
\(870\) 0 0
\(871\) 31.2996 + 18.0708i 1.06055 + 0.612306i
\(872\) 0 0
\(873\) −11.0062 7.85296i −0.372504 0.265782i
\(874\) 0 0
\(875\) −24.3685 16.7683i −0.823806 0.566872i
\(876\) 0 0
\(877\) −1.90519 + 1.09996i −0.0643336 + 0.0371430i −0.531822 0.846856i \(-0.678492\pi\)
0.467488 + 0.883999i \(0.345159\pi\)
\(878\) 0 0
\(879\) 45.5447 + 14.5825i 1.53619 + 0.491854i
\(880\) 0 0
\(881\) −29.2075 −0.984025 −0.492013 0.870588i \(-0.663739\pi\)
−0.492013 + 0.870588i \(0.663739\pi\)
\(882\) 0 0
\(883\) 2.21069i 0.0743956i 0.999308 + 0.0371978i \(0.0118432\pi\)
−0.999308 + 0.0371978i \(0.988157\pi\)
\(884\) 0 0
\(885\) 12.0467 13.3959i 0.404946 0.450297i
\(886\) 0 0
\(887\) 11.5724 6.68134i 0.388564 0.224337i −0.292974 0.956120i \(-0.594645\pi\)
0.681538 + 0.731783i \(0.261312\pi\)
\(888\) 0 0
\(889\) −20.6702 26.3620i −0.693258 0.884152i
\(890\) 0 0
\(891\) 10.1082 51.9256i 0.338639 1.73957i
\(892\) 0 0
\(893\) 3.79514 6.57337i 0.126999 0.219970i
\(894\) 0 0
\(895\) −10.2551 + 22.8073i −0.342791 + 0.762364i
\(896\) 0 0
\(897\) 42.8533 9.30126i 1.43083 0.310560i
\(898\) 0 0
\(899\) −15.4337 + 26.7320i −0.514743 + 0.891561i
\(900\) 0 0
\(901\) −37.1667 + 21.4582i −1.23820 + 0.714876i
\(902\) 0 0
\(903\) 16.7132 6.19758i 0.556179 0.206242i
\(904\) 0 0
\(905\) 8.22458 0.833869i 0.273394 0.0277188i
\(906\) 0 0
\(907\) 3.62770 + 2.09445i 0.120456 + 0.0695451i 0.559017 0.829156i \(-0.311179\pi\)
−0.438562 + 0.898701i \(0.644512\pi\)
\(908\) 0 0
\(909\) 4.89658 2.23068i 0.162409 0.0739870i
\(910\) 0 0
\(911\) 22.5190i 0.746087i 0.927814 + 0.373043i \(0.121686\pi\)
−0.927814 + 0.373043i \(0.878314\pi\)
\(912\) 0 0
\(913\) 15.6128 27.0421i 0.516707 0.894962i
\(914\) 0 0
\(915\) −2.98580 + 0.972180i −0.0987074 + 0.0321393i
\(916\) 0 0
\(917\) −31.1649 12.5284i −1.02916 0.413723i
\(918\) 0 0
\(919\) −7.26453 12.5825i −0.239635 0.415060i 0.720975 0.692961i \(-0.243694\pi\)
−0.960610 + 0.277902i \(0.910361\pi\)
\(920\) 0 0
\(921\) −5.27948 + 16.4892i −0.173965 + 0.543336i
\(922\) 0 0
\(923\) 4.20148i 0.138293i
\(924\) 0 0
\(925\) −7.38204 + 6.54915i −0.242720 + 0.215335i
\(926\) 0 0
\(927\) −3.63214 + 37.6666i −0.119295 + 1.23713i
\(928\) 0 0
\(929\) 20.7788 + 35.9900i 0.681732 + 1.18079i 0.974452 + 0.224596i \(0.0721062\pi\)
−0.292720 + 0.956198i \(0.594560\pi\)
\(930\) 0 0
\(931\) −8.08232 27.8204i −0.264887 0.911776i
\(932\) 0 0
\(933\) −27.7930 30.6020i −0.909903 1.00186i
\(934\) 0 0
\(935\) 33.1369 23.8897i 1.08369 0.781277i
\(936\) 0 0
\(937\) −45.5010 −1.48645 −0.743226 0.669040i \(-0.766705\pi\)
−0.743226 + 0.669040i \(0.766705\pi\)
\(938\) 0 0
\(939\) 9.47064 2.05559i 0.309063 0.0670817i
\(940\) 0 0
\(941\) 10.0244 17.3627i 0.326785 0.566007i −0.655087 0.755553i \(-0.727368\pi\)
0.981872 + 0.189546i \(0.0607015\pi\)
\(942\) 0 0
\(943\) 22.6403 + 39.2142i 0.737270 + 1.27699i
\(944\) 0 0
\(945\) −30.3304 5.00640i −0.986649 0.162858i
\(946\) 0 0
\(947\) 14.7490 + 25.5460i 0.479278 + 0.830133i 0.999718 0.0237652i \(-0.00756541\pi\)
−0.520440 + 0.853898i \(0.674232\pi\)
\(948\) 0 0
\(949\) −3.84174 + 6.65408i −0.124708 + 0.216001i
\(950\) 0 0
\(951\) −19.8658 + 4.31184i −0.644192 + 0.139821i
\(952\) 0 0
\(953\) −1.26250 −0.0408964 −0.0204482 0.999791i \(-0.506509\pi\)
−0.0204482 + 0.999791i \(0.506509\pi\)
\(954\) 0 0
\(955\) −13.5844 18.8427i −0.439581 0.609734i
\(956\) 0 0
\(957\) 46.8693 + 51.6063i 1.51507 + 1.66819i
\(958\) 0 0
\(959\) 1.95628 + 13.7459i 0.0631715 + 0.443879i
\(960\) 0 0
\(961\) −5.34003 9.24920i −0.172259 0.298361i
\(962\) 0 0
\(963\) 1.00193 10.3903i 0.0322867 0.334824i
\(964\) 0 0
\(965\) −5.42959 + 12.0754i −0.174785 + 0.388719i
\(966\) 0 0
\(967\) 26.0942i 0.839132i −0.907725 0.419566i \(-0.862182\pi\)
0.907725 0.419566i \(-0.137818\pi\)
\(968\) 0 0
\(969\) −6.79390 + 21.2191i −0.218251 + 0.681655i
\(970\) 0 0
\(971\) −6.95317 12.0432i −0.223138 0.386486i 0.732621 0.680636i \(-0.238297\pi\)
−0.955759 + 0.294150i \(0.904963\pi\)
\(972\) 0 0
\(973\) 23.3192 + 29.7404i 0.747580 + 0.953433i
\(974\) 0 0
\(975\) −3.29791 + 30.4798i −0.105618 + 0.976134i
\(976\) 0 0
\(977\) −1.41905 + 2.45787i −0.0453995 + 0.0786342i −0.887832 0.460167i \(-0.847789\pi\)
0.842433 + 0.538802i \(0.181123\pi\)
\(978\) 0 0
\(979\) 73.9413i 2.36317i
\(980\) 0 0
\(981\) −27.2352 + 12.4072i −0.869552 + 0.396132i
\(982\) 0 0
\(983\) −42.5573 24.5705i −1.35737 0.783677i −0.368099 0.929787i \(-0.619991\pi\)
−0.989268 + 0.146110i \(0.953325\pi\)
\(984\) 0 0
\(985\) 2.50484 + 24.7056i 0.0798108 + 0.787185i
\(986\) 0 0
\(987\) 6.47064 + 5.36330i 0.205963 + 0.170716i
\(988\) 0 0
\(989\) 24.0917 13.9094i 0.766072 0.442292i
\(990\) 0 0
\(991\) −10.3281 + 17.8887i −0.328081 + 0.568254i −0.982131 0.188198i \(-0.939735\pi\)
0.654050 + 0.756452i \(0.273069\pi\)
\(992\) 0 0
\(993\) −4.28080 + 0.929142i −0.135847 + 0.0294854i
\(994\) 0 0
\(995\) 12.1416 27.0027i 0.384914 0.856044i
\(996\) 0 0
\(997\) 20.8453 36.1051i 0.660177 1.14346i −0.320392 0.947285i \(-0.603814\pi\)
0.980569 0.196175i \(-0.0628522\pi\)
\(998\) 0 0
\(999\) −4.05028 + 9.42189i −0.128145 + 0.298095i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 420.2.bn.a.269.10 yes 32
3.2 odd 2 inner 420.2.bn.a.269.12 yes 32
5.2 odd 4 2100.2.bi.n.101.2 32
5.3 odd 4 2100.2.bi.n.101.15 32
5.4 even 2 inner 420.2.bn.a.269.7 yes 32
7.3 odd 6 2940.2.f.a.1469.29 32
7.4 even 3 2940.2.f.a.1469.4 32
7.5 odd 6 inner 420.2.bn.a.89.5 32
15.2 even 4 2100.2.bi.n.101.4 32
15.8 even 4 2100.2.bi.n.101.13 32
15.14 odd 2 inner 420.2.bn.a.269.5 yes 32
21.5 even 6 inner 420.2.bn.a.89.7 yes 32
21.11 odd 6 2940.2.f.a.1469.1 32
21.17 even 6 2940.2.f.a.1469.32 32
35.4 even 6 2940.2.f.a.1469.30 32
35.12 even 12 2100.2.bi.n.1601.4 32
35.19 odd 6 inner 420.2.bn.a.89.12 yes 32
35.24 odd 6 2940.2.f.a.1469.3 32
35.33 even 12 2100.2.bi.n.1601.13 32
105.47 odd 12 2100.2.bi.n.1601.2 32
105.59 even 6 2940.2.f.a.1469.2 32
105.68 odd 12 2100.2.bi.n.1601.15 32
105.74 odd 6 2940.2.f.a.1469.31 32
105.89 even 6 inner 420.2.bn.a.89.10 yes 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
420.2.bn.a.89.5 32 7.5 odd 6 inner
420.2.bn.a.89.7 yes 32 21.5 even 6 inner
420.2.bn.a.89.10 yes 32 105.89 even 6 inner
420.2.bn.a.89.12 yes 32 35.19 odd 6 inner
420.2.bn.a.269.5 yes 32 15.14 odd 2 inner
420.2.bn.a.269.7 yes 32 5.4 even 2 inner
420.2.bn.a.269.10 yes 32 1.1 even 1 trivial
420.2.bn.a.269.12 yes 32 3.2 odd 2 inner
2100.2.bi.n.101.2 32 5.2 odd 4
2100.2.bi.n.101.4 32 15.2 even 4
2100.2.bi.n.101.13 32 15.8 even 4
2100.2.bi.n.101.15 32 5.3 odd 4
2100.2.bi.n.1601.2 32 105.47 odd 12
2100.2.bi.n.1601.4 32 35.12 even 12
2100.2.bi.n.1601.13 32 35.33 even 12
2100.2.bi.n.1601.15 32 105.68 odd 12
2940.2.f.a.1469.1 32 21.11 odd 6
2940.2.f.a.1469.2 32 105.59 even 6
2940.2.f.a.1469.3 32 35.24 odd 6
2940.2.f.a.1469.4 32 7.4 even 3
2940.2.f.a.1469.29 32 7.3 odd 6
2940.2.f.a.1469.30 32 35.4 even 6
2940.2.f.a.1469.31 32 105.74 odd 6
2940.2.f.a.1469.32 32 21.17 even 6