Properties

Label 42.12.a.g
Level $42$
Weight $12$
Character orbit 42.a
Self dual yes
Analytic conductor $32.270$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,12,Mod(1,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,64,-486,2048,-1032] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.2704135835\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1140720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 6\sqrt{4562881}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 32 q^{2} - 243 q^{3} + 1024 q^{4} + ( - \beta - 516) q^{5} - 7776 q^{6} + 16807 q^{7} + 32768 q^{8} + 59049 q^{9} + ( - 32 \beta - 16512) q^{10} + ( - 23 \beta - 647394) q^{11} - 248832 q^{12} + ( - 24 \beta + 1272590) q^{13}+ \cdots + ( - 1358127 \beta - 38227968306) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} - 486 q^{3} + 2048 q^{4} - 1032 q^{5} - 15552 q^{6} + 33614 q^{7} + 65536 q^{8} + 118098 q^{9} - 33024 q^{10} - 1294788 q^{11} - 497664 q^{12} + 2545180 q^{13} + 1075648 q^{14} + 250776 q^{15}+ \cdots - 76455936612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1068.55
−1067.55
32.0000 −243.000 1024.00 −13332.5 −7776.00 16807.0 32768.0 59049.0 −426641.
1.2 32.0000 −243.000 1024.00 12300.5 −7776.00 16807.0 32768.0 59049.0 393617.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.12.a.g 2
3.b odd 2 1 126.12.a.k 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.12.a.g 2 1.a even 1 1 trivial
126.12.a.k 2 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{2} + 1032T_{5} - 163997460 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(42))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 32)^{2} \) Copy content Toggle raw display
$3$ \( (T + 243)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1032 T - 163997460 \) Copy content Toggle raw display
$7$ \( (T - 16807)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + \cdots + 332223485472 \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 1524869407684 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots - 11733927758676 \) Copy content Toggle raw display
$19$ \( T^{2} + \cdots - 183790073317712 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots - 367363738994400 \) Copy content Toggle raw display
$29$ \( T^{2} + \cdots - 20\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( T^{2} + \cdots - 36\!\cdots\!28 \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 55\!\cdots\!96 \) Copy content Toggle raw display
$41$ \( T^{2} + \cdots + 13\!\cdots\!72 \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 32\!\cdots\!36 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 51\!\cdots\!92 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 81\!\cdots\!88 \) Copy content Toggle raw display
$59$ \( T^{2} + \cdots + 31\!\cdots\!28 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots - 93\!\cdots\!20 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 74\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 10\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 22\!\cdots\!60 \) Copy content Toggle raw display
$79$ \( T^{2} + \cdots - 10\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots - 84\!\cdots\!72 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 50\!\cdots\!20 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 41\!\cdots\!00 \) Copy content Toggle raw display
show more
show less