Properties

Label 42.12.a.g.1.2
Level $42$
Weight $12$
Character 42.1
Self dual yes
Analytic conductor $32.270$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,12,Mod(1,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,64,-486,2048,-1032] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.2704135835\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1140720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1067.55\) of defining polynomial
Character \(\chi\) \(=\) 42.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} -243.000 q^{3} +1024.00 q^{4} +12300.5 q^{5} -7776.00 q^{6} +16807.0 q^{7} +32768.0 q^{8} +59049.0 q^{9} +393617. q^{10} -352614. q^{11} -248832. q^{12} +1.58019e6 q^{13} +537824. q^{14} -2.98903e6 q^{15} +1.04858e6 q^{16} -2.48947e6 q^{17} +1.88957e6 q^{18} -1.61491e7 q^{19} +1.25958e7 q^{20} -4.08410e6 q^{21} -1.12836e7 q^{22} +4.52807e7 q^{23} -7.96262e6 q^{24} +1.02475e8 q^{25} +5.05660e7 q^{26} -1.43489e7 q^{27} +1.72104e7 q^{28} +1.70228e8 q^{29} -9.56490e7 q^{30} -1.42185e7 q^{31} +3.35544e7 q^{32} +8.56851e7 q^{33} -7.96630e7 q^{34} +2.06735e8 q^{35} +6.04662e7 q^{36} +1.89882e8 q^{37} -5.16772e8 q^{38} -3.83985e8 q^{39} +4.03064e8 q^{40} +2.36187e8 q^{41} -1.30691e8 q^{42} -2.90280e8 q^{43} -3.61076e8 q^{44} +7.26335e8 q^{45} +1.44898e9 q^{46} +2.17855e9 q^{47} -2.54804e8 q^{48} +2.82475e8 q^{49} +3.27921e9 q^{50} +6.04941e8 q^{51} +1.61811e9 q^{52} -6.05457e9 q^{53} -4.59165e8 q^{54} -4.33734e9 q^{55} +5.50732e8 q^{56} +3.92424e9 q^{57} +5.44731e9 q^{58} +3.82911e9 q^{59} -3.06077e9 q^{60} +1.02849e10 q^{61} -4.54992e8 q^{62} +9.92437e8 q^{63} +1.07374e9 q^{64} +1.94372e10 q^{65} +2.74192e9 q^{66} -1.64714e10 q^{67} -2.54922e9 q^{68} -1.10032e10 q^{69} +6.61553e9 q^{70} +6.23066e9 q^{71} +1.93492e9 q^{72} -1.55471e10 q^{73} +6.07621e9 q^{74} -2.49015e10 q^{75} -1.65367e10 q^{76} -5.92638e9 q^{77} -1.22875e10 q^{78} -3.48390e10 q^{79} +1.28981e10 q^{80} +3.48678e9 q^{81} +7.55798e9 q^{82} -4.20883e10 q^{83} -4.18212e9 q^{84} -3.06218e10 q^{85} -9.28897e9 q^{86} -4.13655e10 q^{87} -1.15544e10 q^{88} +2.22750e10 q^{89} +2.32427e10 q^{90} +2.65582e10 q^{91} +4.63674e10 q^{92} +3.45509e9 q^{93} +6.97136e10 q^{94} -1.98643e11 q^{95} -8.15373e9 q^{96} +8.88715e10 q^{97} +9.03921e9 q^{98} -2.08215e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} - 486 q^{3} + 2048 q^{4} - 1032 q^{5} - 15552 q^{6} + 33614 q^{7} + 65536 q^{8} + 118098 q^{9} - 33024 q^{10} - 1294788 q^{11} - 497664 q^{12} + 2545180 q^{13} + 1075648 q^{14} + 250776 q^{15}+ \cdots - 76455936612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) −243.000 −0.577350
\(4\) 1024.00 0.500000
\(5\) 12300.5 1.76031 0.880155 0.474686i \(-0.157438\pi\)
0.880155 + 0.474686i \(0.157438\pi\)
\(6\) −7776.00 −0.408248
\(7\) 16807.0 0.377964
\(8\) 32768.0 0.353553
\(9\) 59049.0 0.333333
\(10\) 393617. 1.24473
\(11\) −352614. −0.660145 −0.330072 0.943956i \(-0.607073\pi\)
−0.330072 + 0.943956i \(0.607073\pi\)
\(12\) −248832. −0.288675
\(13\) 1.58019e6 1.18038 0.590188 0.807266i \(-0.299054\pi\)
0.590188 + 0.807266i \(0.299054\pi\)
\(14\) 537824. 0.267261
\(15\) −2.98903e6 −1.01632
\(16\) 1.04858e6 0.250000
\(17\) −2.48947e6 −0.425243 −0.212622 0.977135i \(-0.568200\pi\)
−0.212622 + 0.977135i \(0.568200\pi\)
\(18\) 1.88957e6 0.235702
\(19\) −1.61491e7 −1.49625 −0.748125 0.663558i \(-0.769046\pi\)
−0.748125 + 0.663558i \(0.769046\pi\)
\(20\) 1.25958e7 0.880155
\(21\) −4.08410e6 −0.218218
\(22\) −1.12836e7 −0.466793
\(23\) 4.52807e7 1.46693 0.733466 0.679727i \(-0.237902\pi\)
0.733466 + 0.679727i \(0.237902\pi\)
\(24\) −7.96262e6 −0.204124
\(25\) 1.02475e8 2.09869
\(26\) 5.05660e7 0.834651
\(27\) −1.43489e7 −0.192450
\(28\) 1.72104e7 0.188982
\(29\) 1.70228e8 1.54114 0.770572 0.637353i \(-0.219971\pi\)
0.770572 + 0.637353i \(0.219971\pi\)
\(30\) −9.56490e7 −0.718644
\(31\) −1.42185e7 −0.0891999 −0.0445999 0.999005i \(-0.514201\pi\)
−0.0445999 + 0.999005i \(0.514201\pi\)
\(32\) 3.35544e7 0.176777
\(33\) 8.56851e7 0.381135
\(34\) −7.96630e7 −0.300692
\(35\) 2.06735e8 0.665335
\(36\) 6.04662e7 0.166667
\(37\) 1.89882e8 0.450167 0.225083 0.974340i \(-0.427735\pi\)
0.225083 + 0.974340i \(0.427735\pi\)
\(38\) −5.16772e8 −1.05801
\(39\) −3.83985e8 −0.681490
\(40\) 4.03064e8 0.622364
\(41\) 2.36187e8 0.318379 0.159190 0.987248i \(-0.449112\pi\)
0.159190 + 0.987248i \(0.449112\pi\)
\(42\) −1.30691e8 −0.154303
\(43\) −2.90280e8 −0.301121 −0.150560 0.988601i \(-0.548108\pi\)
−0.150560 + 0.988601i \(0.548108\pi\)
\(44\) −3.61076e8 −0.330072
\(45\) 7.26335e8 0.586770
\(46\) 1.44898e9 1.03728
\(47\) 2.17855e9 1.38557 0.692786 0.721143i \(-0.256383\pi\)
0.692786 + 0.721143i \(0.256383\pi\)
\(48\) −2.54804e8 −0.144338
\(49\) 2.82475e8 0.142857
\(50\) 3.27921e9 1.48400
\(51\) 6.04941e8 0.245514
\(52\) 1.61811e9 0.590188
\(53\) −6.05457e9 −1.98868 −0.994342 0.106224i \(-0.966124\pi\)
−0.994342 + 0.106224i \(0.966124\pi\)
\(54\) −4.59165e8 −0.136083
\(55\) −4.33734e9 −1.16206
\(56\) 5.50732e8 0.133631
\(57\) 3.92424e9 0.863860
\(58\) 5.44731e9 1.08975
\(59\) 3.82911e9 0.697287 0.348643 0.937256i \(-0.386642\pi\)
0.348643 + 0.937256i \(0.386642\pi\)
\(60\) −3.06077e9 −0.508158
\(61\) 1.02849e10 1.55914 0.779571 0.626314i \(-0.215437\pi\)
0.779571 + 0.626314i \(0.215437\pi\)
\(62\) −4.54992e8 −0.0630738
\(63\) 9.92437e8 0.125988
\(64\) 1.07374e9 0.125000
\(65\) 1.94372e10 2.07783
\(66\) 2.74192e9 0.269503
\(67\) −1.64714e10 −1.49045 −0.745227 0.666811i \(-0.767659\pi\)
−0.745227 + 0.666811i \(0.767659\pi\)
\(68\) −2.54922e9 −0.212622
\(69\) −1.10032e10 −0.846933
\(70\) 6.61553e9 0.470463
\(71\) 6.23066e9 0.409839 0.204919 0.978779i \(-0.434307\pi\)
0.204919 + 0.978779i \(0.434307\pi\)
\(72\) 1.93492e9 0.117851
\(73\) −1.55471e10 −0.877756 −0.438878 0.898547i \(-0.644624\pi\)
−0.438878 + 0.898547i \(0.644624\pi\)
\(74\) 6.07621e9 0.318316
\(75\) −2.49015e10 −1.21168
\(76\) −1.65367e10 −0.748125
\(77\) −5.92638e9 −0.249511
\(78\) −1.22875e10 −0.481886
\(79\) −3.48390e10 −1.27385 −0.636923 0.770927i \(-0.719793\pi\)
−0.636923 + 0.770927i \(0.719793\pi\)
\(80\) 1.28981e10 0.440078
\(81\) 3.48678e9 0.111111
\(82\) 7.55798e9 0.225128
\(83\) −4.20883e10 −1.17282 −0.586410 0.810014i \(-0.699459\pi\)
−0.586410 + 0.810014i \(0.699459\pi\)
\(84\) −4.18212e9 −0.109109
\(85\) −3.06218e10 −0.748560
\(86\) −9.28897e9 −0.212925
\(87\) −4.13655e10 −0.889779
\(88\) −1.15544e10 −0.233396
\(89\) 2.22750e10 0.422837 0.211419 0.977396i \(-0.432192\pi\)
0.211419 + 0.977396i \(0.432192\pi\)
\(90\) 2.32427e10 0.414909
\(91\) 2.65582e10 0.446140
\(92\) 4.63674e10 0.733466
\(93\) 3.45509e9 0.0514996
\(94\) 6.97136e10 0.979748
\(95\) −1.98643e11 −2.63386
\(96\) −8.15373e9 −0.102062
\(97\) 8.88715e10 1.05079 0.525397 0.850857i \(-0.323917\pi\)
0.525397 + 0.850857i \(0.323917\pi\)
\(98\) 9.03921e9 0.101015
\(99\) −2.08215e10 −0.220048
\(100\) 1.04935e11 1.04935
\(101\) −8.59718e10 −0.813933 −0.406966 0.913443i \(-0.633413\pi\)
−0.406966 + 0.913443i \(0.633413\pi\)
\(102\) 1.93581e10 0.173605
\(103\) 3.94424e10 0.335242 0.167621 0.985851i \(-0.446391\pi\)
0.167621 + 0.985851i \(0.446391\pi\)
\(104\) 5.17796e10 0.417326
\(105\) −5.02367e10 −0.384131
\(106\) −1.93746e11 −1.40621
\(107\) −9.39997e10 −0.647912 −0.323956 0.946072i \(-0.605013\pi\)
−0.323956 + 0.946072i \(0.605013\pi\)
\(108\) −1.46933e10 −0.0962250
\(109\) 1.66863e11 1.03876 0.519378 0.854544i \(-0.326164\pi\)
0.519378 + 0.854544i \(0.326164\pi\)
\(110\) −1.38795e11 −0.821700
\(111\) −4.61412e10 −0.259904
\(112\) 1.76234e10 0.0944911
\(113\) −2.38994e11 −1.22027 −0.610136 0.792297i \(-0.708885\pi\)
−0.610136 + 0.792297i \(0.708885\pi\)
\(114\) 1.25576e11 0.610841
\(115\) 5.56977e11 2.58225
\(116\) 1.74314e11 0.770572
\(117\) 9.33085e10 0.393458
\(118\) 1.22531e11 0.493056
\(119\) −4.18405e10 −0.160727
\(120\) −9.79446e10 −0.359322
\(121\) −1.60975e11 −0.564209
\(122\) 3.29116e11 1.10248
\(123\) −5.73934e10 −0.183816
\(124\) −1.45597e10 −0.0445999
\(125\) 6.59888e11 1.93404
\(126\) 3.17580e10 0.0890871
\(127\) 5.85931e10 0.157371 0.0786857 0.996899i \(-0.474928\pi\)
0.0786857 + 0.996899i \(0.474928\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) 7.05381e10 0.173852
\(130\) 6.21989e11 1.46925
\(131\) 3.06164e11 0.693366 0.346683 0.937982i \(-0.387308\pi\)
0.346683 + 0.937982i \(0.387308\pi\)
\(132\) 8.77415e10 0.190567
\(133\) −2.71418e11 −0.565529
\(134\) −5.27084e11 −1.05391
\(135\) −1.76499e11 −0.338772
\(136\) −8.15749e10 −0.150346
\(137\) −9.61170e11 −1.70152 −0.850760 0.525554i \(-0.823858\pi\)
−0.850760 + 0.525554i \(0.823858\pi\)
\(138\) −3.52103e11 −0.598872
\(139\) −6.50219e10 −0.106287 −0.0531433 0.998587i \(-0.516924\pi\)
−0.0531433 + 0.998587i \(0.516924\pi\)
\(140\) 2.11697e11 0.332667
\(141\) −5.29387e11 −0.799960
\(142\) 1.99381e11 0.289800
\(143\) −5.57195e11 −0.779219
\(144\) 6.19174e10 0.0833333
\(145\) 2.09390e12 2.71289
\(146\) −4.97507e11 −0.620667
\(147\) −6.86415e10 −0.0824786
\(148\) 1.94439e11 0.225083
\(149\) 1.48114e11 0.165223 0.0826116 0.996582i \(-0.473674\pi\)
0.0826116 + 0.996582i \(0.473674\pi\)
\(150\) −7.96847e11 −0.856787
\(151\) 9.65401e11 1.00077 0.500385 0.865803i \(-0.333192\pi\)
0.500385 + 0.865803i \(0.333192\pi\)
\(152\) −5.29174e11 −0.529004
\(153\) −1.47001e11 −0.141748
\(154\) −1.89644e11 −0.176431
\(155\) −1.74895e11 −0.157019
\(156\) −3.93201e11 −0.340745
\(157\) −2.17938e12 −1.82341 −0.911704 0.410847i \(-0.865233\pi\)
−0.911704 + 0.410847i \(0.865233\pi\)
\(158\) −1.11485e12 −0.900746
\(159\) 1.47126e12 1.14817
\(160\) 4.12738e11 0.311182
\(161\) 7.61032e11 0.554448
\(162\) 1.11577e11 0.0785674
\(163\) 1.99515e12 1.35814 0.679069 0.734074i \(-0.262384\pi\)
0.679069 + 0.734074i \(0.262384\pi\)
\(164\) 2.41855e11 0.159190
\(165\) 1.05397e12 0.670915
\(166\) −1.34682e12 −0.829309
\(167\) −9.20263e11 −0.548241 −0.274121 0.961695i \(-0.588387\pi\)
−0.274121 + 0.961695i \(0.588387\pi\)
\(168\) −1.33828e11 −0.0771517
\(169\) 7.04830e11 0.393285
\(170\) −9.79898e11 −0.529312
\(171\) −9.53589e11 −0.498750
\(172\) −2.97247e11 −0.150560
\(173\) −6.31837e11 −0.309993 −0.154996 0.987915i \(-0.549537\pi\)
−0.154996 + 0.987915i \(0.549537\pi\)
\(174\) −1.32370e12 −0.629169
\(175\) 1.72230e12 0.793231
\(176\) −3.69742e11 −0.165036
\(177\) −9.30473e11 −0.402579
\(178\) 7.12801e11 0.298991
\(179\) −4.39711e12 −1.78845 −0.894223 0.447622i \(-0.852271\pi\)
−0.894223 + 0.447622i \(0.852271\pi\)
\(180\) 7.43767e11 0.293385
\(181\) −1.65348e12 −0.632654 −0.316327 0.948650i \(-0.602450\pi\)
−0.316327 + 0.948650i \(0.602450\pi\)
\(182\) 8.49862e11 0.315469
\(183\) −2.49923e12 −0.900170
\(184\) 1.48376e12 0.518639
\(185\) 2.33565e12 0.792433
\(186\) 1.10563e11 0.0364157
\(187\) 8.77820e11 0.280722
\(188\) 2.23083e12 0.692786
\(189\) −2.41162e11 −0.0727393
\(190\) −6.35657e12 −1.86242
\(191\) −2.48628e12 −0.707727 −0.353864 0.935297i \(-0.615132\pi\)
−0.353864 + 0.935297i \(0.615132\pi\)
\(192\) −2.60919e11 −0.0721688
\(193\) 1.42880e12 0.384067 0.192034 0.981388i \(-0.438492\pi\)
0.192034 + 0.981388i \(0.438492\pi\)
\(194\) 2.84389e12 0.743024
\(195\) −4.72323e12 −1.19963
\(196\) 2.89255e11 0.0714286
\(197\) 5.05550e12 1.21395 0.606974 0.794722i \(-0.292383\pi\)
0.606974 + 0.794722i \(0.292383\pi\)
\(198\) −6.66287e11 −0.155598
\(199\) −1.59942e12 −0.363304 −0.181652 0.983363i \(-0.558144\pi\)
−0.181652 + 0.983363i \(0.558144\pi\)
\(200\) 3.35791e12 0.742000
\(201\) 4.00254e12 0.860514
\(202\) −2.75110e12 −0.575538
\(203\) 2.86103e12 0.582497
\(204\) 6.19459e11 0.122757
\(205\) 2.90523e12 0.560446
\(206\) 1.26216e12 0.237052
\(207\) 2.67378e12 0.488977
\(208\) 1.65695e12 0.295094
\(209\) 5.69440e12 0.987741
\(210\) −1.60757e12 −0.271622
\(211\) −4.36281e12 −0.718146 −0.359073 0.933309i \(-0.616907\pi\)
−0.359073 + 0.933309i \(0.616907\pi\)
\(212\) −6.19988e12 −0.994342
\(213\) −1.51405e12 −0.236621
\(214\) −3.00799e12 −0.458143
\(215\) −3.57060e12 −0.530066
\(216\) −4.70185e11 −0.0680414
\(217\) −2.38970e11 −0.0337144
\(218\) 5.33961e12 0.734512
\(219\) 3.77795e12 0.506773
\(220\) −4.44143e12 −0.581030
\(221\) −3.93382e12 −0.501947
\(222\) −1.47652e12 −0.183780
\(223\) 3.03894e12 0.369016 0.184508 0.982831i \(-0.440931\pi\)
0.184508 + 0.982831i \(0.440931\pi\)
\(224\) 5.63949e11 0.0668153
\(225\) 6.05106e12 0.699564
\(226\) −7.64782e12 −0.862862
\(227\) 1.01313e13 1.11564 0.557819 0.829963i \(-0.311638\pi\)
0.557819 + 0.829963i \(0.311638\pi\)
\(228\) 4.01842e12 0.431930
\(229\) −6.06368e12 −0.636270 −0.318135 0.948045i \(-0.603056\pi\)
−0.318135 + 0.948045i \(0.603056\pi\)
\(230\) 1.78233e13 1.82593
\(231\) 1.44011e12 0.144055
\(232\) 5.57804e12 0.544876
\(233\) −1.45930e13 −1.39215 −0.696074 0.717970i \(-0.745072\pi\)
−0.696074 + 0.717970i \(0.745072\pi\)
\(234\) 2.98587e12 0.278217
\(235\) 2.67973e13 2.43904
\(236\) 3.92100e12 0.348643
\(237\) 8.46589e12 0.735456
\(238\) −1.33890e12 −0.113651
\(239\) −1.33839e13 −1.11019 −0.555093 0.831788i \(-0.687317\pi\)
−0.555093 + 0.831788i \(0.687317\pi\)
\(240\) −3.13423e12 −0.254079
\(241\) 1.06473e13 0.843615 0.421807 0.906686i \(-0.361396\pi\)
0.421807 + 0.906686i \(0.361396\pi\)
\(242\) −5.15121e12 −0.398956
\(243\) −8.47289e11 −0.0641500
\(244\) 1.05317e13 0.779571
\(245\) 3.47460e12 0.251473
\(246\) −1.83659e12 −0.129978
\(247\) −2.55186e13 −1.76614
\(248\) −4.65912e11 −0.0315369
\(249\) 1.02274e13 0.677128
\(250\) 2.11164e13 1.36757
\(251\) −3.33900e12 −0.211549 −0.105775 0.994390i \(-0.533732\pi\)
−0.105775 + 0.994390i \(0.533732\pi\)
\(252\) 1.01626e12 0.0629941
\(253\) −1.59666e13 −0.968387
\(254\) 1.87498e12 0.111278
\(255\) 7.44110e12 0.432181
\(256\) 1.09951e12 0.0625000
\(257\) −1.69762e12 −0.0944511 −0.0472256 0.998884i \(-0.515038\pi\)
−0.0472256 + 0.998884i \(0.515038\pi\)
\(258\) 2.25722e12 0.122932
\(259\) 3.19134e12 0.170147
\(260\) 1.99036e13 1.03891
\(261\) 1.00518e13 0.513714
\(262\) 9.79726e12 0.490284
\(263\) −2.71445e13 −1.33022 −0.665112 0.746744i \(-0.731616\pi\)
−0.665112 + 0.746744i \(0.731616\pi\)
\(264\) 2.80773e12 0.134752
\(265\) −7.44745e13 −3.50070
\(266\) −8.68538e12 −0.399889
\(267\) −5.41283e12 −0.244125
\(268\) −1.68667e13 −0.745227
\(269\) −1.75965e12 −0.0761707 −0.0380853 0.999274i \(-0.512126\pi\)
−0.0380853 + 0.999274i \(0.512126\pi\)
\(270\) −5.64798e12 −0.239548
\(271\) −4.05461e13 −1.68507 −0.842535 0.538641i \(-0.818938\pi\)
−0.842535 + 0.538641i \(0.818938\pi\)
\(272\) −2.61040e12 −0.106311
\(273\) −6.45364e12 −0.257579
\(274\) −3.07575e13 −1.20316
\(275\) −3.61341e13 −1.38544
\(276\) −1.12673e13 −0.423467
\(277\) 9.72793e11 0.0358411 0.0179206 0.999839i \(-0.494295\pi\)
0.0179206 + 0.999839i \(0.494295\pi\)
\(278\) −2.08070e12 −0.0751559
\(279\) −8.39588e11 −0.0297333
\(280\) 6.77430e12 0.235231
\(281\) −1.71930e13 −0.585420 −0.292710 0.956201i \(-0.594557\pi\)
−0.292710 + 0.956201i \(0.594557\pi\)
\(282\) −1.69404e13 −0.565657
\(283\) 4.73764e13 1.55145 0.775723 0.631073i \(-0.217385\pi\)
0.775723 + 0.631073i \(0.217385\pi\)
\(284\) 6.38020e12 0.204919
\(285\) 4.82702e13 1.52066
\(286\) −1.78303e13 −0.550991
\(287\) 3.96959e12 0.120336
\(288\) 1.98136e12 0.0589256
\(289\) −2.80744e13 −0.819168
\(290\) 6.70048e13 1.91830
\(291\) −2.15958e13 −0.606677
\(292\) −1.59202e13 −0.438878
\(293\) −3.38242e13 −0.915072 −0.457536 0.889191i \(-0.651268\pi\)
−0.457536 + 0.889191i \(0.651268\pi\)
\(294\) −2.19653e12 −0.0583212
\(295\) 4.71001e13 1.22744
\(296\) 6.22204e12 0.159158
\(297\) 5.05962e12 0.127045
\(298\) 4.73964e12 0.116830
\(299\) 7.15519e13 1.73153
\(300\) −2.54991e13 −0.605840
\(301\) −4.87874e12 −0.113813
\(302\) 3.08928e13 0.707652
\(303\) 2.08912e13 0.469924
\(304\) −1.69336e13 −0.374062
\(305\) 1.26510e14 2.74457
\(306\) −4.70402e12 −0.100231
\(307\) −5.70211e13 −1.19337 −0.596684 0.802476i \(-0.703515\pi\)
−0.596684 + 0.802476i \(0.703515\pi\)
\(308\) −6.06861e12 −0.124756
\(309\) −9.58451e12 −0.193552
\(310\) −5.59665e12 −0.111030
\(311\) −8.45075e13 −1.64707 −0.823537 0.567262i \(-0.808003\pi\)
−0.823537 + 0.567262i \(0.808003\pi\)
\(312\) −1.25824e13 −0.240943
\(313\) 7.84140e13 1.47537 0.737683 0.675148i \(-0.235920\pi\)
0.737683 + 0.675148i \(0.235920\pi\)
\(314\) −6.97400e13 −1.28934
\(315\) 1.22075e13 0.221778
\(316\) −3.56752e13 −0.636923
\(317\) −3.21958e13 −0.564901 −0.282451 0.959282i \(-0.591147\pi\)
−0.282451 + 0.959282i \(0.591147\pi\)
\(318\) 4.70803e13 0.811877
\(319\) −6.00248e13 −1.01738
\(320\) 1.32076e13 0.220039
\(321\) 2.28419e13 0.374072
\(322\) 2.43530e13 0.392054
\(323\) 4.02027e13 0.636270
\(324\) 3.57047e12 0.0555556
\(325\) 1.61930e14 2.47724
\(326\) 6.38448e13 0.960349
\(327\) −4.05477e13 −0.599726
\(328\) 7.73937e12 0.112564
\(329\) 3.66149e13 0.523697
\(330\) 3.37271e13 0.474409
\(331\) −2.34609e13 −0.324557 −0.162278 0.986745i \(-0.551884\pi\)
−0.162278 + 0.986745i \(0.551884\pi\)
\(332\) −4.30984e13 −0.586410
\(333\) 1.12123e13 0.150056
\(334\) −2.94484e13 −0.387665
\(335\) −2.02607e14 −2.62366
\(336\) −4.28249e12 −0.0545545
\(337\) 1.56302e14 1.95884 0.979422 0.201822i \(-0.0646863\pi\)
0.979422 + 0.201822i \(0.0646863\pi\)
\(338\) 2.25546e13 0.278095
\(339\) 5.80757e13 0.704524
\(340\) −3.13567e13 −0.374280
\(341\) 5.01363e12 0.0588849
\(342\) −3.05149e13 −0.352669
\(343\) 4.74756e12 0.0539949
\(344\) −9.51190e12 −0.106462
\(345\) −1.35345e14 −1.49087
\(346\) −2.02188e13 −0.219198
\(347\) 9.55696e13 1.01978 0.509892 0.860239i \(-0.329686\pi\)
0.509892 + 0.860239i \(0.329686\pi\)
\(348\) −4.23583e13 −0.444890
\(349\) 1.66681e14 1.72325 0.861623 0.507548i \(-0.169448\pi\)
0.861623 + 0.507548i \(0.169448\pi\)
\(350\) 5.51136e13 0.560899
\(351\) −2.26740e13 −0.227163
\(352\) −1.18317e13 −0.116698
\(353\) 1.56526e14 1.51994 0.759968 0.649960i \(-0.225214\pi\)
0.759968 + 0.649960i \(0.225214\pi\)
\(354\) −2.97751e13 −0.284666
\(355\) 7.66405e13 0.721444
\(356\) 2.28096e13 0.211419
\(357\) 1.01672e13 0.0927957
\(358\) −1.40708e14 −1.26462
\(359\) −1.20856e14 −1.06967 −0.534834 0.844957i \(-0.679626\pi\)
−0.534834 + 0.844957i \(0.679626\pi\)
\(360\) 2.38005e13 0.207455
\(361\) 1.44304e14 1.23876
\(362\) −5.29113e13 −0.447354
\(363\) 3.91170e13 0.325746
\(364\) 2.71956e13 0.223070
\(365\) −1.91238e14 −1.54512
\(366\) −7.99753e13 −0.636517
\(367\) −7.27031e13 −0.570020 −0.285010 0.958525i \(-0.591997\pi\)
−0.285010 + 0.958525i \(0.591997\pi\)
\(368\) 4.74802e13 0.366733
\(369\) 1.39466e13 0.106126
\(370\) 7.47407e13 0.560335
\(371\) −1.01759e14 −0.751652
\(372\) 3.53802e12 0.0257498
\(373\) −4.65924e13 −0.334131 −0.167065 0.985946i \(-0.553429\pi\)
−0.167065 + 0.985946i \(0.553429\pi\)
\(374\) 2.80902e13 0.198501
\(375\) −1.60353e14 −1.11662
\(376\) 7.13867e13 0.489874
\(377\) 2.68993e14 1.81913
\(378\) −7.71719e12 −0.0514344
\(379\) −1.00792e14 −0.662081 −0.331041 0.943616i \(-0.607400\pi\)
−0.331041 + 0.943616i \(0.607400\pi\)
\(380\) −2.03410e14 −1.31693
\(381\) −1.42381e13 −0.0908584
\(382\) −7.95609e13 −0.500439
\(383\) 2.84945e14 1.76672 0.883360 0.468694i \(-0.155275\pi\)
0.883360 + 0.468694i \(0.155275\pi\)
\(384\) −8.34942e12 −0.0510310
\(385\) −7.28976e13 −0.439217
\(386\) 4.57217e13 0.271577
\(387\) −1.71408e13 −0.100374
\(388\) 9.10044e13 0.525397
\(389\) 7.33825e13 0.417705 0.208852 0.977947i \(-0.433027\pi\)
0.208852 + 0.977947i \(0.433027\pi\)
\(390\) −1.51143e14 −0.848269
\(391\) −1.12725e14 −0.623803
\(392\) 9.25615e12 0.0505076
\(393\) −7.43979e13 −0.400315
\(394\) 1.61776e14 0.858391
\(395\) −4.28539e14 −2.24237
\(396\) −2.13212e13 −0.110024
\(397\) −6.07382e13 −0.309111 −0.154555 0.987984i \(-0.549395\pi\)
−0.154555 + 0.987984i \(0.549395\pi\)
\(398\) −5.11813e13 −0.256894
\(399\) 6.59546e13 0.326508
\(400\) 1.07453e14 0.524673
\(401\) −4.03753e14 −1.94456 −0.972281 0.233816i \(-0.924879\pi\)
−0.972281 + 0.233816i \(0.924879\pi\)
\(402\) 1.28081e14 0.608475
\(403\) −2.24679e13 −0.105289
\(404\) −8.80352e13 −0.406966
\(405\) 4.28893e13 0.195590
\(406\) 9.15529e13 0.411888
\(407\) −6.69548e13 −0.297175
\(408\) 1.98227e13 0.0868024
\(409\) 4.28688e14 1.85210 0.926048 0.377406i \(-0.123184\pi\)
0.926048 + 0.377406i \(0.123184\pi\)
\(410\) 9.29672e13 0.396295
\(411\) 2.33564e14 0.982373
\(412\) 4.03890e13 0.167621
\(413\) 6.43558e13 0.263550
\(414\) 8.55609e13 0.345759
\(415\) −5.17708e14 −2.06453
\(416\) 5.30223e13 0.208663
\(417\) 1.58003e13 0.0613646
\(418\) 1.82221e14 0.698439
\(419\) −2.15064e14 −0.813564 −0.406782 0.913525i \(-0.633349\pi\)
−0.406782 + 0.913525i \(0.633349\pi\)
\(420\) −5.14423e13 −0.192066
\(421\) −4.34512e13 −0.160122 −0.0800608 0.996790i \(-0.525511\pi\)
−0.0800608 + 0.996790i \(0.525511\pi\)
\(422\) −1.39610e14 −0.507806
\(423\) 1.28641e14 0.461857
\(424\) −1.98396e14 −0.703106
\(425\) −2.55109e14 −0.892455
\(426\) −4.84496e13 −0.167316
\(427\) 1.72858e14 0.589300
\(428\) −9.62557e13 −0.323956
\(429\) 1.35398e14 0.449882
\(430\) −1.14259e14 −0.374813
\(431\) 3.93813e14 1.27546 0.637728 0.770262i \(-0.279875\pi\)
0.637728 + 0.770262i \(0.279875\pi\)
\(432\) −1.50459e13 −0.0481125
\(433\) 3.41565e13 0.107842 0.0539212 0.998545i \(-0.482828\pi\)
0.0539212 + 0.998545i \(0.482828\pi\)
\(434\) −7.64705e12 −0.0238397
\(435\) −5.08818e14 −1.56629
\(436\) 1.70867e14 0.519378
\(437\) −7.31243e14 −2.19489
\(438\) 1.20894e14 0.358342
\(439\) 4.05695e13 0.118753 0.0593766 0.998236i \(-0.481089\pi\)
0.0593766 + 0.998236i \(0.481089\pi\)
\(440\) −1.42126e14 −0.410850
\(441\) 1.66799e13 0.0476190
\(442\) −1.25882e14 −0.354930
\(443\) 3.75177e14 1.04476 0.522379 0.852713i \(-0.325045\pi\)
0.522379 + 0.852713i \(0.325045\pi\)
\(444\) −4.72486e13 −0.129952
\(445\) 2.73995e14 0.744325
\(446\) 9.72460e13 0.260934
\(447\) −3.59917e13 −0.0953917
\(448\) 1.80464e13 0.0472456
\(449\) −1.23670e14 −0.319824 −0.159912 0.987131i \(-0.551121\pi\)
−0.159912 + 0.987131i \(0.551121\pi\)
\(450\) 1.93634e14 0.494666
\(451\) −8.32827e13 −0.210176
\(452\) −2.44730e14 −0.610136
\(453\) −2.34592e14 −0.577795
\(454\) 3.24202e14 0.788875
\(455\) 3.26680e14 0.785344
\(456\) 1.28589e14 0.305421
\(457\) 5.07330e13 0.119056 0.0595280 0.998227i \(-0.481040\pi\)
0.0595280 + 0.998227i \(0.481040\pi\)
\(458\) −1.94038e14 −0.449911
\(459\) 3.57211e13 0.0818381
\(460\) 5.70344e14 1.29113
\(461\) 7.12205e14 1.59313 0.796563 0.604556i \(-0.206649\pi\)
0.796563 + 0.604556i \(0.206649\pi\)
\(462\) 4.60835e13 0.101863
\(463\) 5.87785e14 1.28388 0.641938 0.766757i \(-0.278131\pi\)
0.641938 + 0.766757i \(0.278131\pi\)
\(464\) 1.78497e14 0.385286
\(465\) 4.24995e13 0.0906552
\(466\) −4.66975e14 −0.984398
\(467\) −1.30452e14 −0.271775 −0.135887 0.990724i \(-0.543389\pi\)
−0.135887 + 0.990724i \(0.543389\pi\)
\(468\) 9.55479e13 0.196729
\(469\) −2.76834e14 −0.563338
\(470\) 8.57515e14 1.72466
\(471\) 5.29588e14 1.05275
\(472\) 1.25472e14 0.246528
\(473\) 1.02357e14 0.198783
\(474\) 2.70908e14 0.520046
\(475\) −1.65488e15 −3.14017
\(476\) −4.28447e13 −0.0803634
\(477\) −3.57516e14 −0.662895
\(478\) −4.28286e14 −0.785020
\(479\) 3.81190e14 0.690711 0.345356 0.938472i \(-0.387758\pi\)
0.345356 + 0.938472i \(0.387758\pi\)
\(480\) −1.00295e14 −0.179661
\(481\) 3.00048e14 0.531366
\(482\) 3.40712e14 0.596526
\(483\) −1.84931e14 −0.320111
\(484\) −1.64839e14 −0.282104
\(485\) 1.09317e15 1.84972
\(486\) −2.71132e13 −0.0453609
\(487\) −4.47699e14 −0.740588 −0.370294 0.928915i \(-0.620743\pi\)
−0.370294 + 0.928915i \(0.620743\pi\)
\(488\) 3.37015e14 0.551240
\(489\) −4.84822e14 −0.784122
\(490\) 1.11187e14 0.177818
\(491\) −3.06675e14 −0.484987 −0.242494 0.970153i \(-0.577965\pi\)
−0.242494 + 0.970153i \(0.577965\pi\)
\(492\) −5.87708e13 −0.0919081
\(493\) −4.23778e14 −0.655361
\(494\) −8.16596e14 −1.24885
\(495\) −2.56115e14 −0.387353
\(496\) −1.49092e13 −0.0223000
\(497\) 1.04719e14 0.154905
\(498\) 3.27278e14 0.478802
\(499\) 1.19798e15 1.73338 0.866692 0.498843i \(-0.166242\pi\)
0.866692 + 0.498843i \(0.166242\pi\)
\(500\) 6.75725e14 0.967019
\(501\) 2.23624e14 0.316527
\(502\) −1.06848e14 −0.149588
\(503\) 2.27154e14 0.314556 0.157278 0.987554i \(-0.449728\pi\)
0.157278 + 0.987554i \(0.449728\pi\)
\(504\) 3.25202e13 0.0445435
\(505\) −1.05750e15 −1.43277
\(506\) −5.10931e14 −0.684753
\(507\) −1.71274e14 −0.227063
\(508\) 5.99993e13 0.0786857
\(509\) 8.08801e14 1.04929 0.524643 0.851322i \(-0.324199\pi\)
0.524643 + 0.851322i \(0.324199\pi\)
\(510\) 2.38115e14 0.305598
\(511\) −2.61300e14 −0.331761
\(512\) 3.51844e13 0.0441942
\(513\) 2.31722e14 0.287953
\(514\) −5.43237e13 −0.0667870
\(515\) 4.85163e14 0.590131
\(516\) 7.22310e13 0.0869261
\(517\) −7.68186e14 −0.914678
\(518\) 1.02123e14 0.120312
\(519\) 1.53536e14 0.178974
\(520\) 6.36917e14 0.734623
\(521\) 8.85649e14 1.01077 0.505387 0.862893i \(-0.331350\pi\)
0.505387 + 0.862893i \(0.331350\pi\)
\(522\) 3.21658e14 0.363251
\(523\) 4.08540e14 0.456537 0.228268 0.973598i \(-0.426694\pi\)
0.228268 + 0.973598i \(0.426694\pi\)
\(524\) 3.13512e14 0.346683
\(525\) −4.18519e14 −0.457972
\(526\) −8.68623e14 −0.940610
\(527\) 3.53965e13 0.0379317
\(528\) 8.98473e13 0.0952837
\(529\) 1.09753e15 1.15189
\(530\) −2.38318e15 −2.47537
\(531\) 2.26105e14 0.232429
\(532\) −2.77932e14 −0.282765
\(533\) 3.73219e14 0.375807
\(534\) −1.73211e14 −0.172623
\(535\) −1.15625e15 −1.14053
\(536\) −5.39734e14 −0.526955
\(537\) 1.06850e15 1.03256
\(538\) −5.63087e13 −0.0538608
\(539\) −9.96046e13 −0.0943064
\(540\) −1.80735e14 −0.169386
\(541\) 3.64170e14 0.337846 0.168923 0.985629i \(-0.445971\pi\)
0.168923 + 0.985629i \(0.445971\pi\)
\(542\) −1.29748e15 −1.19152
\(543\) 4.01795e14 0.365263
\(544\) −8.35327e13 −0.0751731
\(545\) 2.05250e15 1.82853
\(546\) −2.06517e14 −0.182136
\(547\) −1.61653e14 −0.141141 −0.0705706 0.997507i \(-0.522482\pi\)
−0.0705706 + 0.997507i \(0.522482\pi\)
\(548\) −9.84238e14 −0.850760
\(549\) 6.07312e14 0.519714
\(550\) −1.15629e15 −0.979654
\(551\) −2.74904e15 −2.30593
\(552\) −3.60553e14 −0.299436
\(553\) −5.85540e14 −0.481469
\(554\) 3.11294e13 0.0253435
\(555\) −5.67562e14 −0.457511
\(556\) −6.65824e13 −0.0531433
\(557\) −8.84208e14 −0.698797 −0.349398 0.936974i \(-0.613614\pi\)
−0.349398 + 0.936974i \(0.613614\pi\)
\(558\) −2.68668e13 −0.0210246
\(559\) −4.58697e14 −0.355436
\(560\) 2.16778e14 0.166334
\(561\) −2.13310e14 −0.162075
\(562\) −5.50177e14 −0.413954
\(563\) −7.41363e14 −0.552376 −0.276188 0.961104i \(-0.589071\pi\)
−0.276188 + 0.961104i \(0.589071\pi\)
\(564\) −5.42093e14 −0.399980
\(565\) −2.93976e15 −2.14806
\(566\) 1.51605e15 1.09704
\(567\) 5.86024e13 0.0419961
\(568\) 2.04166e14 0.144900
\(569\) −2.33591e15 −1.64187 −0.820935 0.571021i \(-0.806547\pi\)
−0.820935 + 0.571021i \(0.806547\pi\)
\(570\) 1.54465e15 1.07527
\(571\) −1.60881e15 −1.10919 −0.554596 0.832120i \(-0.687127\pi\)
−0.554596 + 0.832120i \(0.687127\pi\)
\(572\) −5.70568e14 −0.389609
\(573\) 6.04165e14 0.408607
\(574\) 1.27027e14 0.0850904
\(575\) 4.64014e15 3.07864
\(576\) 6.34034e13 0.0416667
\(577\) −1.26443e15 −0.823051 −0.411525 0.911398i \(-0.635004\pi\)
−0.411525 + 0.911398i \(0.635004\pi\)
\(578\) −8.98382e14 −0.579239
\(579\) −3.47199e14 −0.221741
\(580\) 2.14415e15 1.35645
\(581\) −7.07377e14 −0.443284
\(582\) −6.91065e14 −0.428985
\(583\) 2.13492e15 1.31282
\(584\) −5.09447e14 −0.310334
\(585\) 1.14774e15 0.692609
\(586\) −1.08237e15 −0.647053
\(587\) −1.24119e15 −0.735069 −0.367535 0.930010i \(-0.619798\pi\)
−0.367535 + 0.930010i \(0.619798\pi\)
\(588\) −7.02889e13 −0.0412393
\(589\) 2.29616e14 0.133465
\(590\) 1.50720e15 0.867931
\(591\) −1.22849e15 −0.700873
\(592\) 1.99105e14 0.112542
\(593\) 1.71268e15 0.959125 0.479562 0.877508i \(-0.340795\pi\)
0.479562 + 0.877508i \(0.340795\pi\)
\(594\) 1.61908e14 0.0898343
\(595\) −5.14661e14 −0.282929
\(596\) 1.51669e14 0.0826116
\(597\) 3.88658e14 0.209753
\(598\) 2.28966e15 1.22438
\(599\) 2.24071e15 1.18724 0.593620 0.804746i \(-0.297698\pi\)
0.593620 + 0.804746i \(0.297698\pi\)
\(600\) −8.15971e14 −0.428394
\(601\) 3.50618e15 1.82400 0.911999 0.410193i \(-0.134539\pi\)
0.911999 + 0.410193i \(0.134539\pi\)
\(602\) −1.56120e14 −0.0804780
\(603\) −9.72618e14 −0.496818
\(604\) 9.88571e14 0.500385
\(605\) −1.98008e15 −0.993182
\(606\) 6.68517e14 0.332287
\(607\) 3.76699e15 1.85548 0.927740 0.373226i \(-0.121748\pi\)
0.927740 + 0.373226i \(0.121748\pi\)
\(608\) −5.41874e14 −0.264502
\(609\) −6.95230e14 −0.336305
\(610\) 4.04831e15 1.94071
\(611\) 3.44252e15 1.63549
\(612\) −1.50529e14 −0.0708739
\(613\) −6.39672e14 −0.298487 −0.149243 0.988801i \(-0.547684\pi\)
−0.149243 + 0.988801i \(0.547684\pi\)
\(614\) −1.82468e15 −0.843839
\(615\) −7.05970e14 −0.323574
\(616\) −1.94195e14 −0.0882156
\(617\) −1.76213e15 −0.793358 −0.396679 0.917957i \(-0.629837\pi\)
−0.396679 + 0.917957i \(0.629837\pi\)
\(618\) −3.06704e14 −0.136862
\(619\) −5.99081e14 −0.264964 −0.132482 0.991185i \(-0.542295\pi\)
−0.132482 + 0.991185i \(0.542295\pi\)
\(620\) −1.79093e14 −0.0785097
\(621\) −6.49728e14 −0.282311
\(622\) −2.70424e15 −1.16466
\(623\) 3.74376e14 0.159817
\(624\) −4.02638e14 −0.170372
\(625\) 3.11331e15 1.30581
\(626\) 2.50925e15 1.04324
\(627\) −1.38374e15 −0.570273
\(628\) −2.23168e15 −0.911704
\(629\) −4.72704e14 −0.191430
\(630\) 3.90640e14 0.156821
\(631\) 3.31823e15 1.32052 0.660260 0.751037i \(-0.270446\pi\)
0.660260 + 0.751037i \(0.270446\pi\)
\(632\) −1.14161e15 −0.450373
\(633\) 1.06016e15 0.414622
\(634\) −1.03026e15 −0.399446
\(635\) 7.20726e14 0.277022
\(636\) 1.50657e15 0.574084
\(637\) 4.46364e14 0.168625
\(638\) −1.92079e15 −0.719395
\(639\) 3.67914e14 0.136613
\(640\) 4.22643e14 0.155591
\(641\) −8.35966e14 −0.305119 −0.152560 0.988294i \(-0.548752\pi\)
−0.152560 + 0.988294i \(0.548752\pi\)
\(642\) 7.30942e14 0.264509
\(643\) −2.95306e15 −1.05953 −0.529764 0.848145i \(-0.677719\pi\)
−0.529764 + 0.848145i \(0.677719\pi\)
\(644\) 7.79297e14 0.277224
\(645\) 8.67657e14 0.306034
\(646\) 1.28649e15 0.449911
\(647\) −4.12522e15 −1.43045 −0.715226 0.698893i \(-0.753676\pi\)
−0.715226 + 0.698893i \(0.753676\pi\)
\(648\) 1.14255e14 0.0392837
\(649\) −1.35019e15 −0.460310
\(650\) 5.18176e15 1.75168
\(651\) 5.80698e13 0.0194650
\(652\) 2.04303e15 0.679069
\(653\) −1.85337e15 −0.610857 −0.305428 0.952215i \(-0.598800\pi\)
−0.305428 + 0.952215i \(0.598800\pi\)
\(654\) −1.29752e15 −0.424071
\(655\) 3.76599e15 1.22054
\(656\) 2.47660e14 0.0795948
\(657\) −9.18041e14 −0.292585
\(658\) 1.17168e15 0.370310
\(659\) 3.29701e15 1.03336 0.516679 0.856179i \(-0.327168\pi\)
0.516679 + 0.856179i \(0.327168\pi\)
\(660\) 1.07927e15 0.335458
\(661\) 3.10628e14 0.0957486 0.0478743 0.998853i \(-0.484755\pi\)
0.0478743 + 0.998853i \(0.484755\pi\)
\(662\) −7.50748e14 −0.229496
\(663\) 9.55919e14 0.289799
\(664\) −1.37915e15 −0.414654
\(665\) −3.33859e15 −0.995507
\(666\) 3.58794e14 0.106105
\(667\) 7.70806e15 2.26075
\(668\) −9.42350e14 −0.274121
\(669\) −7.38462e14 −0.213051
\(670\) −6.48342e15 −1.85521
\(671\) −3.62659e15 −1.02926
\(672\) −1.37040e14 −0.0385758
\(673\) 8.84198e14 0.246869 0.123435 0.992353i \(-0.460609\pi\)
0.123435 + 0.992353i \(0.460609\pi\)
\(674\) 5.00166e15 1.38511
\(675\) −1.47041e15 −0.403893
\(676\) 7.21746e14 0.196643
\(677\) −1.49489e15 −0.403992 −0.201996 0.979386i \(-0.564743\pi\)
−0.201996 + 0.979386i \(0.564743\pi\)
\(678\) 1.85842e15 0.498174
\(679\) 1.49366e15 0.397163
\(680\) −1.00342e15 −0.264656
\(681\) −2.46191e15 −0.644113
\(682\) 1.60436e14 0.0416379
\(683\) −3.65655e14 −0.0941364 −0.0470682 0.998892i \(-0.514988\pi\)
−0.0470682 + 0.998892i \(0.514988\pi\)
\(684\) −9.76475e14 −0.249375
\(685\) −1.18229e16 −2.99520
\(686\) 1.51922e14 0.0381802
\(687\) 1.47347e15 0.367350
\(688\) −3.04381e14 −0.0752802
\(689\) −9.56735e15 −2.34739
\(690\) −4.33105e15 −1.05420
\(691\) 5.51737e15 1.33230 0.666151 0.745817i \(-0.267941\pi\)
0.666151 + 0.745817i \(0.267941\pi\)
\(692\) −6.47001e14 −0.154996
\(693\) −3.49947e14 −0.0831704
\(694\) 3.05823e15 0.721096
\(695\) −7.99805e14 −0.187097
\(696\) −1.35546e15 −0.314585
\(697\) −5.87979e14 −0.135389
\(698\) 5.33381e15 1.21852
\(699\) 3.54609e15 0.803757
\(700\) 1.76364e15 0.396615
\(701\) −5.84171e15 −1.30344 −0.651719 0.758460i \(-0.725952\pi\)
−0.651719 + 0.758460i \(0.725952\pi\)
\(702\) −7.25567e14 −0.160629
\(703\) −3.06642e15 −0.673562
\(704\) −3.78616e14 −0.0825181
\(705\) −6.51175e15 −1.40818
\(706\) 5.00883e15 1.07476
\(707\) −1.44493e15 −0.307638
\(708\) −9.52804e14 −0.201289
\(709\) −2.22339e15 −0.466081 −0.233040 0.972467i \(-0.574867\pi\)
−0.233040 + 0.972467i \(0.574867\pi\)
\(710\) 2.45250e15 0.510138
\(711\) −2.05721e15 −0.424616
\(712\) 7.29908e14 0.149496
\(713\) −6.43823e14 −0.130850
\(714\) 3.25352e14 0.0656165
\(715\) −6.85380e15 −1.37167
\(716\) −4.50264e15 −0.894223
\(717\) 3.25230e15 0.640966
\(718\) −3.86740e15 −0.756370
\(719\) −7.51446e14 −0.145844 −0.0729220 0.997338i \(-0.523232\pi\)
−0.0729220 + 0.997338i \(0.523232\pi\)
\(720\) 7.61617e14 0.146693
\(721\) 6.62909e14 0.126710
\(722\) 4.61772e15 0.875937
\(723\) −2.58728e15 −0.487061
\(724\) −1.69316e15 −0.316327
\(725\) 1.74442e16 3.23438
\(726\) 1.25174e15 0.230337
\(727\) 4.17850e15 0.763099 0.381549 0.924348i \(-0.375391\pi\)
0.381549 + 0.924348i \(0.375391\pi\)
\(728\) 8.70259e14 0.157734
\(729\) 2.05891e14 0.0370370
\(730\) −6.11961e15 −1.09257
\(731\) 7.22643e14 0.128050
\(732\) −2.55921e15 −0.450085
\(733\) 5.38066e15 0.939213 0.469606 0.882876i \(-0.344396\pi\)
0.469606 + 0.882876i \(0.344396\pi\)
\(734\) −2.32650e15 −0.403065
\(735\) −8.44327e14 −0.145188
\(736\) 1.51937e15 0.259319
\(737\) 5.80803e15 0.983915
\(738\) 4.46291e14 0.0750427
\(739\) −5.23037e15 −0.872947 −0.436474 0.899717i \(-0.643773\pi\)
−0.436474 + 0.899717i \(0.643773\pi\)
\(740\) 2.39170e15 0.396217
\(741\) 6.20103e15 1.01968
\(742\) −3.25629e15 −0.531498
\(743\) −3.29420e15 −0.533718 −0.266859 0.963736i \(-0.585986\pi\)
−0.266859 + 0.963736i \(0.585986\pi\)
\(744\) 1.13217e14 0.0182079
\(745\) 1.82188e15 0.290844
\(746\) −1.49096e15 −0.236266
\(747\) −2.48527e15 −0.390940
\(748\) 8.98888e14 0.140361
\(749\) −1.57985e15 −0.244888
\(750\) −5.13129e15 −0.789568
\(751\) −2.78992e15 −0.426159 −0.213079 0.977035i \(-0.568349\pi\)
−0.213079 + 0.977035i \(0.568349\pi\)
\(752\) 2.28437e15 0.346393
\(753\) 8.11378e14 0.122138
\(754\) 8.60777e15 1.28632
\(755\) 1.18750e16 1.76167
\(756\) −2.46950e14 −0.0363696
\(757\) −7.32965e15 −1.07166 −0.535829 0.844327i \(-0.680001\pi\)
−0.535829 + 0.844327i \(0.680001\pi\)
\(758\) −3.22535e15 −0.468162
\(759\) 3.87988e15 0.559099
\(760\) −6.50913e15 −0.931211
\(761\) −3.38693e15 −0.481051 −0.240525 0.970643i \(-0.577320\pi\)
−0.240525 + 0.970643i \(0.577320\pi\)
\(762\) −4.55620e14 −0.0642466
\(763\) 2.80446e15 0.392613
\(764\) −2.54595e15 −0.353864
\(765\) −1.80819e15 −0.249520
\(766\) 9.11824e15 1.24926
\(767\) 6.05070e15 0.823060
\(768\) −2.67181e14 −0.0360844
\(769\) 3.45885e15 0.463806 0.231903 0.972739i \(-0.425505\pi\)
0.231903 + 0.972739i \(0.425505\pi\)
\(770\) −2.33272e15 −0.310574
\(771\) 4.12521e14 0.0545314
\(772\) 1.46309e15 0.192034
\(773\) 6.36654e15 0.829691 0.414845 0.909892i \(-0.363836\pi\)
0.414845 + 0.909892i \(0.363836\pi\)
\(774\) −5.48504e14 −0.0709749
\(775\) −1.45704e15 −0.187203
\(776\) 2.91214e15 0.371512
\(777\) −7.75496e14 −0.0982344
\(778\) 2.34824e15 0.295362
\(779\) −3.81421e15 −0.476374
\(780\) −4.83659e15 −0.599817
\(781\) −2.19702e15 −0.270553
\(782\) −3.60719e15 −0.441095
\(783\) −2.44259e15 −0.296593
\(784\) 2.96197e14 0.0357143
\(785\) −2.68075e16 −3.20976
\(786\) −2.38073e15 −0.283065
\(787\) −7.04233e15 −0.831487 −0.415743 0.909482i \(-0.636479\pi\)
−0.415743 + 0.909482i \(0.636479\pi\)
\(788\) 5.17683e15 0.606974
\(789\) 6.59610e15 0.768005
\(790\) −1.37132e16 −1.58559
\(791\) −4.01678e15 −0.461219
\(792\) −6.82278e14 −0.0777988
\(793\) 1.62520e16 1.84037
\(794\) −1.94362e15 −0.218574
\(795\) 1.80973e16 2.02113
\(796\) −1.63780e15 −0.181652
\(797\) −1.60655e16 −1.76959 −0.884794 0.465982i \(-0.845701\pi\)
−0.884794 + 0.465982i \(0.845701\pi\)
\(798\) 2.11055e15 0.230876
\(799\) −5.42343e15 −0.589205
\(800\) 3.43850e15 0.371000
\(801\) 1.31532e15 0.140946
\(802\) −1.29201e16 −1.37501
\(803\) 5.48212e15 0.579446
\(804\) 4.09860e15 0.430257
\(805\) 9.36111e15 0.976000
\(806\) −7.18972e14 −0.0744508
\(807\) 4.27594e14 0.0439772
\(808\) −2.81712e15 −0.287769
\(809\) −7.04385e15 −0.714650 −0.357325 0.933980i \(-0.616311\pi\)
−0.357325 + 0.933980i \(0.616311\pi\)
\(810\) 1.37246e15 0.138303
\(811\) 1.98580e15 0.198756 0.0993782 0.995050i \(-0.468315\pi\)
0.0993782 + 0.995050i \(0.468315\pi\)
\(812\) 2.92969e15 0.291249
\(813\) 9.85271e15 0.972876
\(814\) −2.14255e15 −0.210135
\(815\) 2.45414e16 2.39074
\(816\) 6.34326e14 0.0613786
\(817\) 4.68777e15 0.450552
\(818\) 1.37180e16 1.30963
\(819\) 1.56824e15 0.148713
\(820\) 2.97495e15 0.280223
\(821\) 5.14306e14 0.0481210 0.0240605 0.999711i \(-0.492341\pi\)
0.0240605 + 0.999711i \(0.492341\pi\)
\(822\) 7.47406e15 0.694643
\(823\) 1.34737e16 1.24391 0.621955 0.783053i \(-0.286338\pi\)
0.621955 + 0.783053i \(0.286338\pi\)
\(824\) 1.29245e15 0.118526
\(825\) 8.78060e15 0.799884
\(826\) 2.05938e15 0.186358
\(827\) 4.12894e14 0.0371158 0.0185579 0.999828i \(-0.494093\pi\)
0.0185579 + 0.999828i \(0.494093\pi\)
\(828\) 2.73795e15 0.244489
\(829\) −2.60570e14 −0.0231139 −0.0115570 0.999933i \(-0.503679\pi\)
−0.0115570 + 0.999933i \(0.503679\pi\)
\(830\) −1.65667e16 −1.45984
\(831\) −2.36389e14 −0.0206929
\(832\) 1.69671e15 0.147547
\(833\) −7.03213e14 −0.0607490
\(834\) 5.05610e14 0.0433913
\(835\) −1.13197e16 −0.965074
\(836\) 5.83106e15 0.493871
\(837\) 2.04020e14 0.0171665
\(838\) −6.88206e15 −0.575276
\(839\) 7.52155e15 0.624621 0.312311 0.949980i \(-0.398897\pi\)
0.312311 + 0.949980i \(0.398897\pi\)
\(840\) −1.64615e15 −0.135811
\(841\) 1.67772e16 1.37512
\(842\) −1.39044e15 −0.113223
\(843\) 4.17790e15 0.337992
\(844\) −4.46752e15 −0.359073
\(845\) 8.66980e15 0.692304
\(846\) 4.11652e15 0.326583
\(847\) −2.70551e15 −0.213251
\(848\) −6.34867e15 −0.497171
\(849\) −1.15125e16 −0.895728
\(850\) −8.16348e15 −0.631061
\(851\) 8.59797e15 0.660364
\(852\) −1.55039e15 −0.118310
\(853\) −2.01491e16 −1.52769 −0.763845 0.645399i \(-0.776691\pi\)
−0.763845 + 0.645399i \(0.776691\pi\)
\(854\) 5.53146e15 0.416698
\(855\) −1.17297e16 −0.877954
\(856\) −3.08018e15 −0.229071
\(857\) 1.66555e16 1.23073 0.615365 0.788242i \(-0.289009\pi\)
0.615365 + 0.788242i \(0.289009\pi\)
\(858\) 4.33275e15 0.318115
\(859\) 6.98089e15 0.509271 0.254635 0.967037i \(-0.418045\pi\)
0.254635 + 0.967037i \(0.418045\pi\)
\(860\) −3.65630e15 −0.265033
\(861\) −9.64611e14 −0.0694760
\(862\) 1.26020e16 0.901883
\(863\) −2.65782e16 −1.89002 −0.945009 0.327044i \(-0.893947\pi\)
−0.945009 + 0.327044i \(0.893947\pi\)
\(864\) −4.81469e14 −0.0340207
\(865\) −7.77193e15 −0.545683
\(866\) 1.09301e15 0.0762561
\(867\) 6.82209e15 0.472947
\(868\) −2.44706e14 −0.0168572
\(869\) 1.22847e16 0.840923
\(870\) −1.62822e16 −1.10753
\(871\) −2.60278e16 −1.75929
\(872\) 5.46776e15 0.367256
\(873\) 5.24777e15 0.350265
\(874\) −2.33998e16 −1.55203
\(875\) 1.10907e16 0.730998
\(876\) 3.86862e15 0.253386
\(877\) 9.98093e15 0.649640 0.324820 0.945776i \(-0.394696\pi\)
0.324820 + 0.945776i \(0.394696\pi\)
\(878\) 1.29822e15 0.0839711
\(879\) 8.21927e15 0.528317
\(880\) −4.54803e15 −0.290515
\(881\) −1.46967e16 −0.932935 −0.466467 0.884538i \(-0.654473\pi\)
−0.466467 + 0.884538i \(0.654473\pi\)
\(882\) 5.33756e14 0.0336718
\(883\) 8.36920e15 0.524687 0.262343 0.964975i \(-0.415505\pi\)
0.262343 + 0.964975i \(0.415505\pi\)
\(884\) −4.02824e15 −0.250973
\(885\) −1.14453e16 −0.708663
\(886\) 1.20057e16 0.738755
\(887\) 1.88849e16 1.15487 0.577437 0.816435i \(-0.304053\pi\)
0.577437 + 0.816435i \(0.304053\pi\)
\(888\) −1.51196e15 −0.0918899
\(889\) 9.84774e14 0.0594808
\(890\) 8.76784e15 0.526317
\(891\) −1.22949e15 −0.0733494
\(892\) 3.11187e15 0.184508
\(893\) −3.51816e16 −2.07316
\(894\) −1.15173e15 −0.0674521
\(895\) −5.40868e16 −3.14822
\(896\) 5.77484e14 0.0334077
\(897\) −1.73871e16 −0.999699
\(898\) −3.95745e15 −0.226150
\(899\) −2.42039e15 −0.137470
\(900\) 6.19628e15 0.349782
\(901\) 1.50727e16 0.845675
\(902\) −2.66505e15 −0.148617
\(903\) 1.18553e15 0.0657100
\(904\) −7.83137e15 −0.431431
\(905\) −2.03387e16 −1.11367
\(906\) −7.50696e15 −0.408563
\(907\) 2.16556e15 0.117147 0.0585735 0.998283i \(-0.481345\pi\)
0.0585735 + 0.998283i \(0.481345\pi\)
\(908\) 1.03745e16 0.557819
\(909\) −5.07655e15 −0.271311
\(910\) 1.04538e16 0.555322
\(911\) −9.43108e15 −0.497978 −0.248989 0.968506i \(-0.580098\pi\)
−0.248989 + 0.968506i \(0.580098\pi\)
\(912\) 4.11486e15 0.215965
\(913\) 1.48409e16 0.774231
\(914\) 1.62346e15 0.0841853
\(915\) −3.07418e16 −1.58458
\(916\) −6.20921e15 −0.318135
\(917\) 5.14570e15 0.262068
\(918\) 1.14308e15 0.0578683
\(919\) −2.02685e16 −1.01997 −0.509984 0.860184i \(-0.670349\pi\)
−0.509984 + 0.860184i \(0.670349\pi\)
\(920\) 1.82510e16 0.912965
\(921\) 1.38561e16 0.688991
\(922\) 2.27906e16 1.12651
\(923\) 9.84561e15 0.483764
\(924\) 1.47467e15 0.0720277
\(925\) 1.94581e16 0.944761
\(926\) 1.88091e16 0.907837
\(927\) 2.32904e15 0.111747
\(928\) 5.71192e15 0.272438
\(929\) −2.62415e16 −1.24423 −0.622117 0.782924i \(-0.713727\pi\)
−0.622117 + 0.782924i \(0.713727\pi\)
\(930\) 1.35998e15 0.0641029
\(931\) −4.56173e15 −0.213750
\(932\) −1.49432e16 −0.696074
\(933\) 2.05353e16 0.950939
\(934\) −4.17448e15 −0.192174
\(935\) 1.07977e16 0.494158
\(936\) 3.05753e15 0.139109
\(937\) −1.86612e16 −0.844055 −0.422028 0.906583i \(-0.638681\pi\)
−0.422028 + 0.906583i \(0.638681\pi\)
\(938\) −8.85870e15 −0.398340
\(939\) −1.90546e16 −0.851802
\(940\) 2.74405e16 1.21952
\(941\) 8.07038e15 0.356575 0.178288 0.983978i \(-0.442944\pi\)
0.178288 + 0.983978i \(0.442944\pi\)
\(942\) 1.69468e16 0.744404
\(943\) 1.06947e16 0.467040
\(944\) 4.01511e15 0.174322
\(945\) −2.96642e15 −0.128044
\(946\) 3.27542e15 0.140561
\(947\) −2.41583e16 −1.03072 −0.515361 0.856973i \(-0.672342\pi\)
−0.515361 + 0.856973i \(0.672342\pi\)
\(948\) 8.66907e15 0.367728
\(949\) −2.45673e16 −1.03608
\(950\) −5.29563e16 −2.22043
\(951\) 7.82357e15 0.326146
\(952\) −1.37103e15 −0.0568255
\(953\) 3.30289e16 1.36108 0.680538 0.732712i \(-0.261746\pi\)
0.680538 + 0.732712i \(0.261746\pi\)
\(954\) −1.14405e16 −0.468737
\(955\) −3.05826e16 −1.24582
\(956\) −1.37052e16 −0.555093
\(957\) 1.45860e16 0.587383
\(958\) 1.21981e16 0.488407
\(959\) −1.61544e16 −0.643114
\(960\) −3.20945e15 −0.127039
\(961\) −2.52063e16 −0.992043
\(962\) 9.60155e15 0.375732
\(963\) −5.55059e15 −0.215971
\(964\) 1.09028e16 0.421807
\(965\) 1.75751e16 0.676077
\(966\) −5.91779e15 −0.226352
\(967\) 2.53065e16 0.962468 0.481234 0.876592i \(-0.340189\pi\)
0.481234 + 0.876592i \(0.340189\pi\)
\(968\) −5.27484e15 −0.199478
\(969\) −9.76926e15 −0.367351
\(970\) 3.49813e16 1.30795
\(971\) −1.40760e16 −0.523327 −0.261664 0.965159i \(-0.584271\pi\)
−0.261664 + 0.965159i \(0.584271\pi\)
\(972\) −8.67624e14 −0.0320750
\(973\) −1.09282e15 −0.0401725
\(974\) −1.43264e16 −0.523675
\(975\) −3.93490e16 −1.43024
\(976\) 1.07845e16 0.389785
\(977\) 1.38102e16 0.496339 0.248170 0.968717i \(-0.420171\pi\)
0.248170 + 0.968717i \(0.420171\pi\)
\(978\) −1.55143e16 −0.554458
\(979\) −7.85448e15 −0.279134
\(980\) 3.55799e15 0.125736
\(981\) 9.85308e15 0.346252
\(982\) −9.81361e15 −0.342938
\(983\) 4.36384e16 1.51644 0.758219 0.652000i \(-0.226070\pi\)
0.758219 + 0.652000i \(0.226070\pi\)
\(984\) −1.88067e15 −0.0649888
\(985\) 6.21854e16 2.13692
\(986\) −1.35609e16 −0.463410
\(987\) −8.89742e15 −0.302357
\(988\) −2.61311e16 −0.883068
\(989\) −1.31441e16 −0.441724
\(990\) −8.19569e15 −0.273900
\(991\) 4.52989e16 1.50551 0.752754 0.658302i \(-0.228725\pi\)
0.752754 + 0.658302i \(0.228725\pi\)
\(992\) −4.77094e14 −0.0157685
\(993\) 5.70099e15 0.187383
\(994\) 3.35100e15 0.109534
\(995\) −1.96737e16 −0.639527
\(996\) 1.04729e16 0.338564
\(997\) 1.58537e16 0.509692 0.254846 0.966982i \(-0.417975\pi\)
0.254846 + 0.966982i \(0.417975\pi\)
\(998\) 3.83352e16 1.22569
\(999\) −2.72459e15 −0.0866346
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.12.a.g.1.2 2
3.2 odd 2 126.12.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.12.a.g.1.2 2 1.1 even 1 trivial
126.12.a.k.1.1 2 3.2 odd 2