Properties

Label 42.12.a.g.1.1
Level $42$
Weight $12$
Character 42.1
Self dual yes
Analytic conductor $32.270$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,12,Mod(1,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,64,-486,2048,-1032] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(32.2704135835\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1140720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1068.55\) of defining polynomial
Character \(\chi\) \(=\) 42.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+32.0000 q^{2} -243.000 q^{3} +1024.00 q^{4} -13332.5 q^{5} -7776.00 q^{6} +16807.0 q^{7} +32768.0 q^{8} +59049.0 q^{9} -426641. q^{10} -942174. q^{11} -248832. q^{12} +964993. q^{13} +537824. q^{14} +3.23981e6 q^{15} +1.04858e6 q^{16} +4.71343e6 q^{17} +1.88957e6 q^{18} +1.13808e7 q^{19} -1.36525e7 q^{20} -4.08410e6 q^{21} -3.01496e7 q^{22} -8.11304e6 q^{23} -7.96262e6 q^{24} +1.28929e8 q^{25} +3.08798e7 q^{26} -1.43489e7 q^{27} +1.72104e7 q^{28} -1.19784e8 q^{29} +1.03674e8 q^{30} +2.54467e8 q^{31} +3.35544e7 q^{32} +2.28948e8 q^{33} +1.50830e8 q^{34} -2.24080e8 q^{35} +6.04662e7 q^{36} +2.92927e8 q^{37} +3.64186e8 q^{38} -2.34493e8 q^{39} -4.36881e8 q^{40} +5.90103e8 q^{41} -1.30691e8 q^{42} -1.12848e9 q^{43} -9.64787e8 q^{44} -7.87273e8 q^{45} -2.59617e8 q^{46} +2.37956e9 q^{47} -2.54804e8 q^{48} +2.82475e8 q^{49} +4.12571e9 q^{50} -1.14536e9 q^{51} +9.88153e8 q^{52} +1.35257e9 q^{53} -4.59165e8 q^{54} +1.25616e10 q^{55} +5.50732e8 q^{56} -2.76554e9 q^{57} -3.83310e9 q^{58} +8.14638e9 q^{59} +3.31756e9 q^{60} -9.13202e9 q^{61} +8.14296e9 q^{62} +9.92437e8 q^{63} +1.07374e9 q^{64} -1.28658e10 q^{65} +7.32635e9 q^{66} -4.54261e9 q^{67} +4.82655e9 q^{68} +1.97147e9 q^{69} -7.17056e9 q^{70} -1.62398e10 q^{71} +1.93492e9 q^{72} -1.46180e10 q^{73} +9.37365e9 q^{74} -3.13296e10 q^{75} +1.16540e10 q^{76} -1.58351e10 q^{77} -7.50379e9 q^{78} +2.98983e10 q^{79} -1.39802e10 q^{80} +3.48678e9 q^{81} +1.88833e10 q^{82} +2.00567e9 q^{83} -4.18212e9 q^{84} -6.28420e10 q^{85} -3.61114e10 q^{86} +2.91076e10 q^{87} -3.08732e10 q^{88} +2.27403e10 q^{89} -2.51927e10 q^{90} +1.62186e10 q^{91} -8.30775e9 q^{92} -6.18356e10 q^{93} +7.61460e10 q^{94} -1.51735e11 q^{95} -8.15373e9 q^{96} -4.69241e10 q^{97} +9.03921e9 q^{98} -5.56345e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 64 q^{2} - 486 q^{3} + 2048 q^{4} - 1032 q^{5} - 15552 q^{6} + 33614 q^{7} + 65536 q^{8} + 118098 q^{9} - 33024 q^{10} - 1294788 q^{11} - 497664 q^{12} + 2545180 q^{13} + 1075648 q^{14} + 250776 q^{15}+ \cdots - 76455936612 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 32.0000 0.707107
\(3\) −243.000 −0.577350
\(4\) 1024.00 0.500000
\(5\) −13332.5 −1.90800 −0.953999 0.299810i \(-0.903077\pi\)
−0.953999 + 0.299810i \(0.903077\pi\)
\(6\) −7776.00 −0.408248
\(7\) 16807.0 0.377964
\(8\) 32768.0 0.353553
\(9\) 59049.0 0.333333
\(10\) −426641. −1.34916
\(11\) −942174. −1.76389 −0.881945 0.471352i \(-0.843766\pi\)
−0.881945 + 0.471352i \(0.843766\pi\)
\(12\) −248832. −0.288675
\(13\) 964993. 0.720835 0.360417 0.932791i \(-0.382634\pi\)
0.360417 + 0.932791i \(0.382634\pi\)
\(14\) 537824. 0.267261
\(15\) 3.23981e6 1.10158
\(16\) 1.04858e6 0.250000
\(17\) 4.71343e6 0.805133 0.402567 0.915391i \(-0.368118\pi\)
0.402567 + 0.915391i \(0.368118\pi\)
\(18\) 1.88957e6 0.235702
\(19\) 1.13808e7 1.05446 0.527228 0.849724i \(-0.323231\pi\)
0.527228 + 0.849724i \(0.323231\pi\)
\(20\) −1.36525e7 −0.953999
\(21\) −4.08410e6 −0.218218
\(22\) −3.01496e7 −1.24726
\(23\) −8.11304e6 −0.262833 −0.131417 0.991327i \(-0.541953\pi\)
−0.131417 + 0.991327i \(0.541953\pi\)
\(24\) −7.96262e6 −0.204124
\(25\) 1.28929e8 2.64046
\(26\) 3.08798e7 0.509707
\(27\) −1.43489e7 −0.192450
\(28\) 1.72104e7 0.188982
\(29\) −1.19784e8 −1.08445 −0.542227 0.840232i \(-0.682419\pi\)
−0.542227 + 0.840232i \(0.682419\pi\)
\(30\) 1.03674e8 0.778937
\(31\) 2.54467e8 1.59640 0.798202 0.602390i \(-0.205785\pi\)
0.798202 + 0.602390i \(0.205785\pi\)
\(32\) 3.35544e7 0.176777
\(33\) 2.28948e8 1.01838
\(34\) 1.50830e8 0.569315
\(35\) −2.24080e8 −0.721155
\(36\) 6.04662e7 0.166667
\(37\) 2.92927e8 0.694463 0.347232 0.937779i \(-0.387122\pi\)
0.347232 + 0.937779i \(0.387122\pi\)
\(38\) 3.64186e8 0.745613
\(39\) −2.34493e8 −0.416174
\(40\) −4.36881e8 −0.674579
\(41\) 5.90103e8 0.795457 0.397728 0.917503i \(-0.369799\pi\)
0.397728 + 0.917503i \(0.369799\pi\)
\(42\) −1.30691e8 −0.154303
\(43\) −1.12848e9 −1.17063 −0.585313 0.810807i \(-0.699028\pi\)
−0.585313 + 0.810807i \(0.699028\pi\)
\(44\) −9.64787e8 −0.881945
\(45\) −7.87273e8 −0.635999
\(46\) −2.59617e8 −0.185851
\(47\) 2.37956e9 1.51342 0.756709 0.653751i \(-0.226806\pi\)
0.756709 + 0.653751i \(0.226806\pi\)
\(48\) −2.54804e8 −0.144338
\(49\) 2.82475e8 0.142857
\(50\) 4.12571e9 1.86708
\(51\) −1.14536e9 −0.464844
\(52\) 9.88153e8 0.360417
\(53\) 1.35257e9 0.444266 0.222133 0.975016i \(-0.428698\pi\)
0.222133 + 0.975016i \(0.428698\pi\)
\(54\) −4.59165e8 −0.136083
\(55\) 1.25616e10 3.36550
\(56\) 5.50732e8 0.133631
\(57\) −2.76554e9 −0.608790
\(58\) −3.83310e9 −0.766824
\(59\) 8.14638e9 1.48347 0.741735 0.670693i \(-0.234003\pi\)
0.741735 + 0.670693i \(0.234003\pi\)
\(60\) 3.31756e9 0.550792
\(61\) −9.13202e9 −1.38437 −0.692186 0.721719i \(-0.743352\pi\)
−0.692186 + 0.721719i \(0.743352\pi\)
\(62\) 8.14296e9 1.12883
\(63\) 9.92437e8 0.125988
\(64\) 1.07374e9 0.125000
\(65\) −1.28658e10 −1.37535
\(66\) 7.32635e9 0.720105
\(67\) −4.54261e9 −0.411049 −0.205525 0.978652i \(-0.565890\pi\)
−0.205525 + 0.978652i \(0.565890\pi\)
\(68\) 4.82655e9 0.402567
\(69\) 1.97147e9 0.151747
\(70\) −7.17056e9 −0.509934
\(71\) −1.62398e10 −1.06822 −0.534110 0.845415i \(-0.679353\pi\)
−0.534110 + 0.845415i \(0.679353\pi\)
\(72\) 1.93492e9 0.117851
\(73\) −1.46180e10 −0.825301 −0.412651 0.910889i \(-0.635397\pi\)
−0.412651 + 0.910889i \(0.635397\pi\)
\(74\) 9.37365e9 0.491060
\(75\) −3.13296e10 −1.52447
\(76\) 1.16540e10 0.527228
\(77\) −1.58351e10 −0.666688
\(78\) −7.50379e9 −0.294280
\(79\) 2.98983e10 1.09319 0.546597 0.837396i \(-0.315923\pi\)
0.546597 + 0.837396i \(0.315923\pi\)
\(80\) −1.39802e10 −0.476999
\(81\) 3.48678e9 0.111111
\(82\) 1.88833e10 0.562473
\(83\) 2.00567e9 0.0558896 0.0279448 0.999609i \(-0.491104\pi\)
0.0279448 + 0.999609i \(0.491104\pi\)
\(84\) −4.18212e9 −0.109109
\(85\) −6.28420e10 −1.53619
\(86\) −3.61114e10 −0.827758
\(87\) 2.91076e10 0.626109
\(88\) −3.08732e10 −0.623629
\(89\) 2.27403e10 0.431669 0.215835 0.976430i \(-0.430753\pi\)
0.215835 + 0.976430i \(0.430753\pi\)
\(90\) −2.51927e10 −0.449719
\(91\) 1.62186e10 0.272450
\(92\) −8.30775e9 −0.131417
\(93\) −6.18356e10 −0.921685
\(94\) 7.61460e10 1.07015
\(95\) −1.51735e11 −2.01190
\(96\) −8.15373e9 −0.102062
\(97\) −4.69241e10 −0.554820 −0.277410 0.960752i \(-0.589476\pi\)
−0.277410 + 0.960752i \(0.589476\pi\)
\(98\) 9.03921e9 0.101015
\(99\) −5.56345e10 −0.587963
\(100\) 1.32023e11 1.32023
\(101\) 3.96225e10 0.375124 0.187562 0.982253i \(-0.439942\pi\)
0.187562 + 0.982253i \(0.439942\pi\)
\(102\) −3.66516e10 −0.328694
\(103\) −1.95869e11 −1.66479 −0.832397 0.554180i \(-0.813032\pi\)
−0.832397 + 0.554180i \(0.813032\pi\)
\(104\) 3.16209e10 0.254854
\(105\) 5.44514e10 0.416359
\(106\) 4.32823e10 0.314144
\(107\) 5.96238e10 0.410969 0.205484 0.978660i \(-0.434123\pi\)
0.205484 + 0.978660i \(0.434123\pi\)
\(108\) −1.46933e10 −0.0962250
\(109\) 1.37704e11 0.857240 0.428620 0.903485i \(-0.359000\pi\)
0.428620 + 0.903485i \(0.359000\pi\)
\(110\) 4.01971e11 2.37977
\(111\) −7.11812e10 −0.400949
\(112\) 1.76234e10 0.0944911
\(113\) 5.37389e9 0.0274383 0.0137192 0.999906i \(-0.495633\pi\)
0.0137192 + 0.999906i \(0.495633\pi\)
\(114\) −8.84972e10 −0.430480
\(115\) 1.08167e11 0.501485
\(116\) −1.22659e11 −0.542227
\(117\) 5.69819e10 0.240278
\(118\) 2.60684e11 1.04897
\(119\) 7.92186e10 0.304312
\(120\) 1.06162e11 0.389468
\(121\) 6.02381e11 2.11131
\(122\) −2.92225e11 −0.978899
\(123\) −1.43395e11 −0.459257
\(124\) 2.60575e11 0.798202
\(125\) −1.06794e12 −3.12999
\(126\) 3.17580e10 0.0890871
\(127\) 2.45584e11 0.659598 0.329799 0.944051i \(-0.393019\pi\)
0.329799 + 0.944051i \(0.393019\pi\)
\(128\) 3.43597e10 0.0883883
\(129\) 2.74221e11 0.675861
\(130\) −4.11706e11 −0.972520
\(131\) −1.94455e11 −0.440379 −0.220190 0.975457i \(-0.570668\pi\)
−0.220190 + 0.975457i \(0.570668\pi\)
\(132\) 2.34443e11 0.509191
\(133\) 1.91277e11 0.398547
\(134\) −1.45363e11 −0.290656
\(135\) 1.91307e11 0.367194
\(136\) 1.54450e11 0.284658
\(137\) 9.24556e11 1.63670 0.818352 0.574718i \(-0.194888\pi\)
0.818352 + 0.574718i \(0.194888\pi\)
\(138\) 6.30870e10 0.107301
\(139\) 5.91668e11 0.967156 0.483578 0.875301i \(-0.339337\pi\)
0.483578 + 0.875301i \(0.339337\pi\)
\(140\) −2.29458e11 −0.360578
\(141\) −5.78234e11 −0.873773
\(142\) −5.19675e11 −0.755346
\(143\) −9.09192e11 −1.27147
\(144\) 6.19174e10 0.0833333
\(145\) 1.59703e12 2.06913
\(146\) −4.67776e11 −0.583576
\(147\) −6.86415e10 −0.0824786
\(148\) 2.99957e11 0.347232
\(149\) 1.19926e12 1.33780 0.668899 0.743354i \(-0.266766\pi\)
0.668899 + 0.743354i \(0.266766\pi\)
\(150\) −1.00255e12 −1.07796
\(151\) 1.33922e11 0.138829 0.0694143 0.997588i \(-0.477887\pi\)
0.0694143 + 0.997588i \(0.477887\pi\)
\(152\) 3.72926e11 0.372807
\(153\) 2.78323e11 0.268378
\(154\) −5.06724e11 −0.471419
\(155\) −3.39270e12 −3.04594
\(156\) −2.40121e11 −0.208087
\(157\) 1.13054e12 0.945888 0.472944 0.881093i \(-0.343191\pi\)
0.472944 + 0.881093i \(0.343191\pi\)
\(158\) 9.56745e11 0.773005
\(159\) −3.28675e11 −0.256497
\(160\) −4.47366e11 −0.337290
\(161\) −1.36356e11 −0.0993416
\(162\) 1.11577e11 0.0785674
\(163\) −1.16531e12 −0.793248 −0.396624 0.917981i \(-0.629818\pi\)
−0.396624 + 0.917981i \(0.629818\pi\)
\(164\) 6.04265e11 0.397728
\(165\) −3.05246e12 −1.94307
\(166\) 6.41815e10 0.0395199
\(167\) 1.18497e12 0.705939 0.352970 0.935635i \(-0.385172\pi\)
0.352970 + 0.935635i \(0.385172\pi\)
\(168\) −1.33828e11 −0.0771517
\(169\) −8.60949e11 −0.480397
\(170\) −2.01094e12 −1.08625
\(171\) 6.72026e11 0.351485
\(172\) −1.15557e12 −0.585313
\(173\) 7.17811e11 0.352173 0.176087 0.984375i \(-0.443656\pi\)
0.176087 + 0.984375i \(0.443656\pi\)
\(174\) 9.31443e11 0.442726
\(175\) 2.16690e12 0.997999
\(176\) −9.87942e11 −0.440973
\(177\) −1.97957e12 −0.856482
\(178\) 7.27689e11 0.305236
\(179\) 3.92102e12 1.59480 0.797402 0.603449i \(-0.206207\pi\)
0.797402 + 0.603449i \(0.206207\pi\)
\(180\) −8.06168e11 −0.318000
\(181\) 3.93765e12 1.50663 0.753313 0.657662i \(-0.228455\pi\)
0.753313 + 0.657662i \(0.228455\pi\)
\(182\) 5.18996e11 0.192651
\(183\) 2.21908e12 0.799267
\(184\) −2.65848e11 −0.0929256
\(185\) −3.90546e12 −1.32503
\(186\) −1.97874e12 −0.651729
\(187\) −4.44087e12 −1.42017
\(188\) 2.43667e12 0.756709
\(189\) −2.41162e11 −0.0727393
\(190\) −4.85552e12 −1.42263
\(191\) 8.47221e11 0.241164 0.120582 0.992703i \(-0.461524\pi\)
0.120582 + 0.992703i \(0.461524\pi\)
\(192\) −2.60919e11 −0.0721688
\(193\) 4.75627e12 1.27850 0.639251 0.768998i \(-0.279244\pi\)
0.639251 + 0.768998i \(0.279244\pi\)
\(194\) −1.50157e12 −0.392317
\(195\) 3.12639e12 0.794059
\(196\) 2.89255e11 0.0714286
\(197\) −1.89245e12 −0.454424 −0.227212 0.973845i \(-0.572961\pi\)
−0.227212 + 0.973845i \(0.572961\pi\)
\(198\) −1.78030e12 −0.415753
\(199\) −2.65469e12 −0.603007 −0.301504 0.953465i \(-0.597489\pi\)
−0.301504 + 0.953465i \(0.597489\pi\)
\(200\) 4.22473e12 0.933542
\(201\) 1.10385e12 0.237319
\(202\) 1.26792e12 0.265252
\(203\) −2.01321e12 −0.409885
\(204\) −1.17285e12 −0.232422
\(205\) −7.86757e12 −1.51773
\(206\) −6.26780e12 −1.17719
\(207\) −4.79067e11 −0.0876111
\(208\) 1.01187e12 0.180209
\(209\) −1.07227e13 −1.85994
\(210\) 1.74245e12 0.294410
\(211\) 1.84201e12 0.303206 0.151603 0.988441i \(-0.451556\pi\)
0.151603 + 0.988441i \(0.451556\pi\)
\(212\) 1.38503e12 0.222133
\(213\) 3.94628e12 0.616737
\(214\) 1.90796e12 0.290599
\(215\) 1.50455e13 2.23355
\(216\) −4.70185e11 −0.0680414
\(217\) 4.27683e12 0.603384
\(218\) 4.40654e12 0.606160
\(219\) 3.55218e12 0.476488
\(220\) 1.28631e13 1.68275
\(221\) 4.54843e12 0.580368
\(222\) −2.27780e12 −0.283513
\(223\) −5.87674e12 −0.713608 −0.356804 0.934179i \(-0.616134\pi\)
−0.356804 + 0.934179i \(0.616134\pi\)
\(224\) 5.63949e11 0.0668153
\(225\) 7.61310e12 0.880152
\(226\) 1.71964e11 0.0194018
\(227\) 3.50365e12 0.385815 0.192907 0.981217i \(-0.438208\pi\)
0.192907 + 0.981217i \(0.438208\pi\)
\(228\) −2.83191e12 −0.304395
\(229\) 1.36835e13 1.43583 0.717915 0.696131i \(-0.245097\pi\)
0.717915 + 0.696131i \(0.245097\pi\)
\(230\) 3.46136e12 0.354604
\(231\) 3.84794e12 0.384912
\(232\) −3.92509e12 −0.383412
\(233\) −5.97100e12 −0.569626 −0.284813 0.958583i \(-0.591931\pi\)
−0.284813 + 0.958583i \(0.591931\pi\)
\(234\) 1.82342e12 0.169902
\(235\) −3.17256e13 −2.88760
\(236\) 8.34190e12 0.741735
\(237\) −7.26528e12 −0.631156
\(238\) 2.53499e12 0.215181
\(239\) 1.32284e13 1.09728 0.548640 0.836059i \(-0.315146\pi\)
0.548640 + 0.836059i \(0.315146\pi\)
\(240\) 3.39718e12 0.275396
\(241\) 2.01903e12 0.159974 0.0799868 0.996796i \(-0.474512\pi\)
0.0799868 + 0.996796i \(0.474512\pi\)
\(242\) 1.92762e13 1.49292
\(243\) −8.47289e11 −0.0641500
\(244\) −9.35119e12 −0.692186
\(245\) −3.76611e12 −0.272571
\(246\) −4.58864e12 −0.324744
\(247\) 1.09824e13 0.760089
\(248\) 8.33839e12 0.564414
\(249\) −4.87379e11 −0.0322678
\(250\) −3.41741e13 −2.21323
\(251\) −1.98605e13 −1.25830 −0.629149 0.777284i \(-0.716597\pi\)
−0.629149 + 0.777284i \(0.716597\pi\)
\(252\) 1.01626e12 0.0629941
\(253\) 7.64390e12 0.463609
\(254\) 7.85868e12 0.466406
\(255\) 1.52706e13 0.886921
\(256\) 1.09951e12 0.0625000
\(257\) 1.93132e13 1.07454 0.537269 0.843411i \(-0.319456\pi\)
0.537269 + 0.843411i \(0.319456\pi\)
\(258\) 8.77508e12 0.477906
\(259\) 4.92322e12 0.262482
\(260\) −1.31746e13 −0.687676
\(261\) −7.07314e12 −0.361484
\(262\) −6.22256e12 −0.311395
\(263\) −2.28701e13 −1.12076 −0.560378 0.828237i \(-0.689344\pi\)
−0.560378 + 0.828237i \(0.689344\pi\)
\(264\) 7.50218e12 0.360053
\(265\) −1.80332e13 −0.847659
\(266\) 6.12087e12 0.281815
\(267\) −5.52589e12 −0.249224
\(268\) −4.65163e12 −0.205525
\(269\) −2.72360e13 −1.17898 −0.589488 0.807777i \(-0.700671\pi\)
−0.589488 + 0.807777i \(0.700671\pi\)
\(270\) 6.12184e12 0.259646
\(271\) −2.44294e13 −1.01527 −0.507634 0.861573i \(-0.669480\pi\)
−0.507634 + 0.861573i \(0.669480\pi\)
\(272\) 4.94239e12 0.201283
\(273\) −3.94113e12 −0.157299
\(274\) 2.95858e13 1.15732
\(275\) −1.21473e14 −4.65747
\(276\) 2.01878e12 0.0758734
\(277\) 2.35739e13 0.868545 0.434272 0.900782i \(-0.357006\pi\)
0.434272 + 0.900782i \(0.357006\pi\)
\(278\) 1.89334e13 0.683883
\(279\) 1.50260e13 0.532135
\(280\) −7.34265e12 −0.254967
\(281\) −1.32102e13 −0.449805 −0.224902 0.974381i \(-0.572206\pi\)
−0.224902 + 0.974381i \(0.572206\pi\)
\(282\) −1.85035e13 −0.617851
\(283\) 1.65738e13 0.542746 0.271373 0.962474i \(-0.412522\pi\)
0.271373 + 0.962474i \(0.412522\pi\)
\(284\) −1.66296e13 −0.534110
\(285\) 3.68716e13 1.16157
\(286\) −2.90941e13 −0.899067
\(287\) 9.91786e12 0.300654
\(288\) 1.98136e12 0.0589256
\(289\) −1.20555e13 −0.351760
\(290\) 5.11049e13 1.46310
\(291\) 1.14026e13 0.320325
\(292\) −1.49688e13 −0.412651
\(293\) −3.74363e13 −1.01279 −0.506397 0.862300i \(-0.669023\pi\)
−0.506397 + 0.862300i \(0.669023\pi\)
\(294\) −2.19653e12 −0.0583212
\(295\) −1.08612e14 −2.83046
\(296\) 9.59862e12 0.245530
\(297\) 1.35192e13 0.339461
\(298\) 3.83764e13 0.945965
\(299\) −7.82902e12 −0.189459
\(300\) −3.20815e13 −0.762234
\(301\) −1.89664e13 −0.442455
\(302\) 4.28550e12 0.0981666
\(303\) −9.62827e12 −0.216578
\(304\) 1.19336e13 0.263614
\(305\) 1.21753e14 2.64138
\(306\) 8.90634e12 0.189772
\(307\) −2.13132e13 −0.446055 −0.223027 0.974812i \(-0.571594\pi\)
−0.223027 + 0.974812i \(0.571594\pi\)
\(308\) −1.62152e13 −0.333344
\(309\) 4.75961e13 0.961169
\(310\) −1.08566e14 −2.15380
\(311\) 8.59687e13 1.67555 0.837777 0.546013i \(-0.183855\pi\)
0.837777 + 0.546013i \(0.183855\pi\)
\(312\) −7.68388e12 −0.147140
\(313\) 7.93853e13 1.49364 0.746821 0.665026i \(-0.231579\pi\)
0.746821 + 0.665026i \(0.231579\pi\)
\(314\) 3.61774e13 0.668844
\(315\) −1.32317e13 −0.240385
\(316\) 3.06158e13 0.546597
\(317\) 6.76251e13 1.18654 0.593269 0.805004i \(-0.297837\pi\)
0.593269 + 0.805004i \(0.297837\pi\)
\(318\) −1.05176e13 −0.181371
\(319\) 1.12858e14 1.91286
\(320\) −1.43157e13 −0.238500
\(321\) −1.44886e13 −0.237273
\(322\) −4.36339e12 −0.0702451
\(323\) 5.36426e13 0.848978
\(324\) 3.57047e12 0.0555556
\(325\) 1.24415e14 1.90333
\(326\) −3.72899e13 −0.560911
\(327\) −3.34622e13 −0.494927
\(328\) 1.93365e13 0.281236
\(329\) 3.99933e13 0.572019
\(330\) −9.76788e13 −1.37396
\(331\) −6.70678e13 −0.927813 −0.463906 0.885884i \(-0.653553\pi\)
−0.463906 + 0.885884i \(0.653553\pi\)
\(332\) 2.05381e12 0.0279448
\(333\) 1.72970e13 0.231488
\(334\) 3.79191e13 0.499175
\(335\) 6.05645e13 0.784281
\(336\) −4.28249e12 −0.0545545
\(337\) −3.74847e13 −0.469775 −0.234887 0.972023i \(-0.575472\pi\)
−0.234887 + 0.972023i \(0.575472\pi\)
\(338\) −2.75504e13 −0.339692
\(339\) −1.30586e12 −0.0158415
\(340\) −6.43502e13 −0.768096
\(341\) −2.39753e14 −2.81588
\(342\) 2.15048e13 0.248538
\(343\) 4.74756e12 0.0539949
\(344\) −3.69781e13 −0.413879
\(345\) −2.62847e13 −0.289533
\(346\) 2.29699e13 0.249024
\(347\) −8.68785e13 −0.927044 −0.463522 0.886085i \(-0.653414\pi\)
−0.463522 + 0.886085i \(0.653414\pi\)
\(348\) 2.98062e13 0.313055
\(349\) −3.59701e13 −0.371879 −0.185939 0.982561i \(-0.559533\pi\)
−0.185939 + 0.982561i \(0.559533\pi\)
\(350\) 6.93409e13 0.705692
\(351\) −1.38466e13 −0.138725
\(352\) −3.16141e13 −0.311815
\(353\) 1.74098e14 1.69057 0.845287 0.534313i \(-0.179430\pi\)
0.845287 + 0.534313i \(0.179430\pi\)
\(354\) −6.33463e13 −0.605624
\(355\) 2.16518e14 2.03816
\(356\) 2.32861e13 0.215835
\(357\) −1.92501e13 −0.175694
\(358\) 1.25473e14 1.12770
\(359\) −2.02507e14 −1.79234 −0.896171 0.443709i \(-0.853662\pi\)
−0.896171 + 0.443709i \(0.853662\pi\)
\(360\) −2.57974e13 −0.224860
\(361\) 1.30326e13 0.111878
\(362\) 1.26005e14 1.06535
\(363\) −1.46379e14 −1.21896
\(364\) 1.66079e13 0.136225
\(365\) 1.94895e14 1.57467
\(366\) 7.10106e13 0.565167
\(367\) 4.73835e13 0.371504 0.185752 0.982597i \(-0.440528\pi\)
0.185752 + 0.982597i \(0.440528\pi\)
\(368\) −8.50714e12 −0.0657083
\(369\) 3.48450e13 0.265152
\(370\) −1.24975e14 −0.936941
\(371\) 2.27327e13 0.167917
\(372\) −6.33196e13 −0.460842
\(373\) 1.10001e14 0.788853 0.394427 0.918927i \(-0.370943\pi\)
0.394427 + 0.918927i \(0.370943\pi\)
\(374\) −1.42108e14 −1.00421
\(375\) 2.59510e14 1.80710
\(376\) 7.79736e13 0.535074
\(377\) −1.15591e14 −0.781712
\(378\) −7.71719e12 −0.0514344
\(379\) −1.87150e14 −1.22934 −0.614672 0.788783i \(-0.710712\pi\)
−0.614672 + 0.788783i \(0.710712\pi\)
\(380\) −1.55377e14 −1.00595
\(381\) −5.96769e13 −0.380819
\(382\) 2.71111e13 0.170529
\(383\) −7.14818e13 −0.443202 −0.221601 0.975137i \(-0.571128\pi\)
−0.221601 + 0.975137i \(0.571128\pi\)
\(384\) −8.34942e12 −0.0510310
\(385\) 2.11122e14 1.27204
\(386\) 1.52201e14 0.904037
\(387\) −6.66357e13 −0.390209
\(388\) −4.80503e13 −0.277410
\(389\) −2.21859e14 −1.26285 −0.631427 0.775435i \(-0.717531\pi\)
−0.631427 + 0.775435i \(0.717531\pi\)
\(390\) 1.00045e14 0.561485
\(391\) −3.82402e13 −0.211616
\(392\) 9.25615e12 0.0505076
\(393\) 4.72525e13 0.254253
\(394\) −6.05586e13 −0.321326
\(395\) −3.98620e14 −2.08581
\(396\) −5.69697e13 −0.293982
\(397\) 1.93118e14 0.982823 0.491411 0.870928i \(-0.336481\pi\)
0.491411 + 0.870928i \(0.336481\pi\)
\(398\) −8.49502e13 −0.426391
\(399\) −4.64804e13 −0.230101
\(400\) 1.35191e14 0.660114
\(401\) −2.35185e14 −1.13270 −0.566351 0.824164i \(-0.691645\pi\)
−0.566351 + 0.824164i \(0.691645\pi\)
\(402\) 3.53233e13 0.167810
\(403\) 2.45559e14 1.15074
\(404\) 4.05734e13 0.187562
\(405\) −4.64877e13 −0.212000
\(406\) −6.44229e13 −0.289832
\(407\) −2.75988e14 −1.22496
\(408\) −3.75313e13 −0.164347
\(409\) −6.53420e13 −0.282302 −0.141151 0.989988i \(-0.545080\pi\)
−0.141151 + 0.989988i \(0.545080\pi\)
\(410\) −2.51762e14 −1.07320
\(411\) −2.24667e14 −0.944951
\(412\) −2.00570e14 −0.832397
\(413\) 1.36916e14 0.560699
\(414\) −1.53301e13 −0.0619504
\(415\) −2.67407e13 −0.106637
\(416\) 3.23798e13 0.127427
\(417\) −1.43775e14 −0.558388
\(418\) −3.43127e14 −1.31518
\(419\) 2.10835e14 0.797564 0.398782 0.917046i \(-0.369433\pi\)
0.398782 + 0.917046i \(0.369433\pi\)
\(420\) 5.57583e13 0.208180
\(421\) −1.07833e14 −0.397374 −0.198687 0.980063i \(-0.563668\pi\)
−0.198687 + 0.980063i \(0.563668\pi\)
\(422\) 5.89443e13 0.214399
\(423\) 1.40511e14 0.504473
\(424\) 4.43211e13 0.157072
\(425\) 6.07695e14 2.12592
\(426\) 1.26281e14 0.436099
\(427\) −1.53482e14 −0.523243
\(428\) 6.10547e13 0.205484
\(429\) 2.20934e14 0.734086
\(430\) 4.81457e14 1.57936
\(431\) 3.46201e14 1.12125 0.560626 0.828069i \(-0.310561\pi\)
0.560626 + 0.828069i \(0.310561\pi\)
\(432\) −1.50459e13 −0.0481125
\(433\) −1.25487e14 −0.396201 −0.198100 0.980182i \(-0.563477\pi\)
−0.198100 + 0.980182i \(0.563477\pi\)
\(434\) 1.36859e14 0.426657
\(435\) −3.88078e14 −1.19462
\(436\) 1.41009e14 0.428620
\(437\) −9.23329e13 −0.277146
\(438\) 1.13670e14 0.336928
\(439\) 3.02031e14 0.884091 0.442046 0.896993i \(-0.354253\pi\)
0.442046 + 0.896993i \(0.354253\pi\)
\(440\) 4.11618e14 1.18988
\(441\) 1.66799e13 0.0476190
\(442\) 1.45550e14 0.410382
\(443\) −4.84691e14 −1.34972 −0.674861 0.737945i \(-0.735796\pi\)
−0.674861 + 0.737945i \(0.735796\pi\)
\(444\) −7.28895e13 −0.200474
\(445\) −3.03186e14 −0.823624
\(446\) −1.88056e14 −0.504597
\(447\) −2.91421e14 −0.772378
\(448\) 1.80464e13 0.0472456
\(449\) −2.87545e13 −0.0743620 −0.0371810 0.999309i \(-0.511838\pi\)
−0.0371810 + 0.999309i \(0.511838\pi\)
\(450\) 2.43619e14 0.622361
\(451\) −5.55980e14 −1.40310
\(452\) 5.50286e12 0.0137192
\(453\) −3.25430e13 −0.0801527
\(454\) 1.12117e14 0.272812
\(455\) −2.16236e14 −0.519834
\(456\) −9.06211e13 −0.215240
\(457\) −9.40665e13 −0.220748 −0.110374 0.993890i \(-0.535205\pi\)
−0.110374 + 0.993890i \(0.535205\pi\)
\(458\) 4.37873e14 1.01529
\(459\) −6.76325e13 −0.154948
\(460\) 1.10763e14 0.250743
\(461\) 2.11386e14 0.472847 0.236423 0.971650i \(-0.424025\pi\)
0.236423 + 0.971650i \(0.424025\pi\)
\(462\) 1.23134e14 0.272174
\(463\) −6.35953e14 −1.38909 −0.694543 0.719451i \(-0.744394\pi\)
−0.694543 + 0.719451i \(0.744394\pi\)
\(464\) −1.25603e14 −0.271113
\(465\) 8.24426e14 1.75857
\(466\) −1.91072e14 −0.402786
\(467\) −5.78281e14 −1.20475 −0.602374 0.798214i \(-0.705778\pi\)
−0.602374 + 0.798214i \(0.705778\pi\)
\(468\) 5.83494e13 0.120139
\(469\) −7.63476e13 −0.155362
\(470\) −1.01522e15 −2.04184
\(471\) −2.74722e14 −0.546109
\(472\) 2.66941e14 0.524486
\(473\) 1.06323e15 2.06486
\(474\) −2.32489e14 −0.446295
\(475\) 1.46731e15 2.78424
\(476\) 8.11198e13 0.152156
\(477\) 7.98680e13 0.148089
\(478\) 4.23307e14 0.775894
\(479\) −2.32548e14 −0.421374 −0.210687 0.977554i \(-0.567570\pi\)
−0.210687 + 0.977554i \(0.567570\pi\)
\(480\) 1.08710e14 0.194734
\(481\) 2.82672e14 0.500593
\(482\) 6.46088e13 0.113118
\(483\) 3.31345e13 0.0573549
\(484\) 6.16838e14 1.05565
\(485\) 6.25618e14 1.05859
\(486\) −2.71132e13 −0.0453609
\(487\) −8.73747e14 −1.44536 −0.722681 0.691182i \(-0.757090\pi\)
−0.722681 + 0.691182i \(0.757090\pi\)
\(488\) −2.99238e14 −0.489449
\(489\) 2.83170e14 0.457982
\(490\) −1.20516e14 −0.192737
\(491\) 7.48940e14 1.18440 0.592200 0.805791i \(-0.298259\pi\)
0.592200 + 0.805791i \(0.298259\pi\)
\(492\) −1.46836e14 −0.229629
\(493\) −5.64595e14 −0.873130
\(494\) 3.51437e14 0.537464
\(495\) 7.41749e14 1.12183
\(496\) 2.66828e14 0.399101
\(497\) −2.72943e14 −0.403749
\(498\) −1.55961e13 −0.0228168
\(499\) 9.82984e13 0.142231 0.0711154 0.997468i \(-0.477344\pi\)
0.0711154 + 0.997468i \(0.477344\pi\)
\(500\) −1.09357e15 −1.56499
\(501\) −2.87948e14 −0.407574
\(502\) −6.35535e14 −0.889752
\(503\) 2.00714e14 0.277942 0.138971 0.990296i \(-0.455620\pi\)
0.138971 + 0.990296i \(0.455620\pi\)
\(504\) 3.25202e13 0.0445435
\(505\) −5.28269e14 −0.715735
\(506\) 2.44605e14 0.327821
\(507\) 2.09211e14 0.277357
\(508\) 2.51478e14 0.329799
\(509\) 1.35293e15 1.75521 0.877605 0.479385i \(-0.159140\pi\)
0.877605 + 0.479385i \(0.159140\pi\)
\(510\) 4.88659e14 0.627148
\(511\) −2.45685e14 −0.311934
\(512\) 3.51844e13 0.0441942
\(513\) −1.63302e14 −0.202930
\(514\) 6.18022e14 0.759814
\(515\) 2.61143e15 3.17642
\(516\) 2.80802e14 0.337931
\(517\) −2.24196e15 −2.66950
\(518\) 1.57543e14 0.185603
\(519\) −1.74428e14 −0.203327
\(520\) −4.21587e14 −0.486260
\(521\) −1.09487e15 −1.24956 −0.624778 0.780803i \(-0.714810\pi\)
−0.624778 + 0.780803i \(0.714810\pi\)
\(522\) −2.26341e14 −0.255608
\(523\) −3.36352e14 −0.375868 −0.187934 0.982182i \(-0.560179\pi\)
−0.187934 + 0.982182i \(0.560179\pi\)
\(524\) −1.99122e14 −0.220190
\(525\) −5.26557e14 −0.576195
\(526\) −7.31842e14 −0.792494
\(527\) 1.19941e15 1.28532
\(528\) 2.40070e14 0.254596
\(529\) −8.86988e14 −0.930919
\(530\) −5.77063e14 −0.599385
\(531\) 4.81036e14 0.494490
\(532\) 1.95868e14 0.199273
\(533\) 5.69445e14 0.573393
\(534\) −1.76829e14 −0.176228
\(535\) −7.94936e14 −0.784127
\(536\) −1.48852e14 −0.145328
\(537\) −9.52807e14 −0.920760
\(538\) −8.71551e14 −0.833663
\(539\) −2.66141e14 −0.251984
\(540\) 1.95899e14 0.183597
\(541\) 1.87131e15 1.73604 0.868022 0.496526i \(-0.165391\pi\)
0.868022 + 0.496526i \(0.165391\pi\)
\(542\) −7.81739e14 −0.717903
\(543\) −9.56850e14 −0.869851
\(544\) 1.58156e14 0.142329
\(545\) −1.83595e15 −1.63561
\(546\) −1.26116e14 −0.111227
\(547\) 9.92908e14 0.866919 0.433459 0.901173i \(-0.357293\pi\)
0.433459 + 0.901173i \(0.357293\pi\)
\(548\) 9.46745e14 0.818352
\(549\) −5.39237e14 −0.461457
\(550\) −3.88714e15 −3.29333
\(551\) −1.36324e15 −1.14351
\(552\) 6.46011e13 0.0536506
\(553\) 5.02500e14 0.413188
\(554\) 7.54364e14 0.614154
\(555\) 9.49026e14 0.765009
\(556\) 6.05868e14 0.483578
\(557\) −1.46331e15 −1.15647 −0.578234 0.815871i \(-0.696258\pi\)
−0.578234 + 0.815871i \(0.696258\pi\)
\(558\) 4.80834e14 0.376276
\(559\) −1.08898e15 −0.843828
\(560\) −2.34965e14 −0.180289
\(561\) 1.07913e15 0.819934
\(562\) −4.22726e14 −0.318060
\(563\) 1.97309e15 1.47011 0.735056 0.678006i \(-0.237156\pi\)
0.735056 + 0.678006i \(0.237156\pi\)
\(564\) −5.92112e14 −0.436886
\(565\) −7.16476e13 −0.0523522
\(566\) 5.30361e14 0.383779
\(567\) 5.86024e13 0.0419961
\(568\) −5.32147e14 −0.377673
\(569\) 1.47960e15 1.03999 0.519993 0.854170i \(-0.325934\pi\)
0.519993 + 0.854170i \(0.325934\pi\)
\(570\) 1.17989e15 0.821355
\(571\) −5.01296e14 −0.345617 −0.172809 0.984955i \(-0.555284\pi\)
−0.172809 + 0.984955i \(0.555284\pi\)
\(572\) −9.31012e14 −0.635737
\(573\) −2.05875e14 −0.139236
\(574\) 3.17371e14 0.212595
\(575\) −1.04600e15 −0.694000
\(576\) 6.34034e13 0.0416667
\(577\) 1.47089e15 0.957446 0.478723 0.877966i \(-0.341100\pi\)
0.478723 + 0.877966i \(0.341100\pi\)
\(578\) −3.85776e14 −0.248732
\(579\) −1.15577e15 −0.738143
\(580\) 1.63536e15 1.03457
\(581\) 3.37093e13 0.0211243
\(582\) 3.64882e14 0.226504
\(583\) −1.27436e15 −0.783637
\(584\) −4.79003e14 −0.291788
\(585\) −7.59713e14 −0.458450
\(586\) −1.19796e15 −0.716154
\(587\) −4.07703e12 −0.00241454 −0.00120727 0.999999i \(-0.500384\pi\)
−0.00120727 + 0.999999i \(0.500384\pi\)
\(588\) −7.02889e13 −0.0412393
\(589\) 2.89605e15 1.68334
\(590\) −3.47558e15 −2.00144
\(591\) 4.59867e14 0.262362
\(592\) 3.07156e14 0.173616
\(593\) 1.27454e15 0.713760 0.356880 0.934150i \(-0.383841\pi\)
0.356880 + 0.934150i \(0.383841\pi\)
\(594\) 4.32614e14 0.240035
\(595\) −1.05618e15 −0.580626
\(596\) 1.22805e15 0.668899
\(597\) 6.45091e14 0.348146
\(598\) −2.50529e14 −0.133968
\(599\) 2.17309e15 1.15141 0.575706 0.817657i \(-0.304727\pi\)
0.575706 + 0.817657i \(0.304727\pi\)
\(600\) −1.02661e15 −0.538981
\(601\) −7.15146e14 −0.372036 −0.186018 0.982546i \(-0.559558\pi\)
−0.186018 + 0.982546i \(0.559558\pi\)
\(602\) −6.06925e14 −0.312863
\(603\) −2.68236e14 −0.137016
\(604\) 1.37136e14 0.0694143
\(605\) −8.03127e15 −4.02837
\(606\) −3.08105e14 −0.153144
\(607\) 1.32744e15 0.653848 0.326924 0.945051i \(-0.393988\pi\)
0.326924 + 0.945051i \(0.393988\pi\)
\(608\) 3.81877e14 0.186403
\(609\) 4.89211e14 0.236647
\(610\) 3.89610e15 1.86774
\(611\) 2.29626e15 1.09092
\(612\) 2.85003e14 0.134189
\(613\) 3.33889e15 1.55801 0.779003 0.627021i \(-0.215726\pi\)
0.779003 + 0.627021i \(0.215726\pi\)
\(614\) −6.82023e14 −0.315408
\(615\) 1.91182e15 0.876261
\(616\) −5.18885e14 −0.235710
\(617\) 1.01248e15 0.455845 0.227922 0.973679i \(-0.426807\pi\)
0.227922 + 0.973679i \(0.426807\pi\)
\(618\) 1.52308e15 0.679649
\(619\) −1.74701e15 −0.772677 −0.386338 0.922357i \(-0.626260\pi\)
−0.386338 + 0.922357i \(0.626260\pi\)
\(620\) −3.47412e15 −1.52297
\(621\) 1.16413e14 0.0505823
\(622\) 2.75100e15 1.18480
\(623\) 3.82196e14 0.163156
\(624\) −2.45884e14 −0.104044
\(625\) 7.94304e15 3.33155
\(626\) 2.54033e15 1.05616
\(627\) 2.60562e15 1.07384
\(628\) 1.15768e15 0.472944
\(629\) 1.38069e15 0.559136
\(630\) −4.23414e14 −0.169978
\(631\) −1.02070e15 −0.406196 −0.203098 0.979158i \(-0.565101\pi\)
−0.203098 + 0.979158i \(0.565101\pi\)
\(632\) 9.79707e14 0.386502
\(633\) −4.47608e14 −0.175056
\(634\) 2.16400e15 0.839009
\(635\) −3.27426e15 −1.25851
\(636\) −3.36563e14 −0.128249
\(637\) 2.72587e14 0.102976
\(638\) 3.61145e15 1.35259
\(639\) −9.58946e14 −0.356073
\(640\) −4.58103e14 −0.168645
\(641\) 1.04132e15 0.380071 0.190035 0.981777i \(-0.439140\pi\)
0.190035 + 0.981777i \(0.439140\pi\)
\(642\) −4.63634e14 −0.167777
\(643\) −2.11500e14 −0.0758838 −0.0379419 0.999280i \(-0.512080\pi\)
−0.0379419 + 0.999280i \(0.512080\pi\)
\(644\) −1.39628e14 −0.0496708
\(645\) −3.65606e15 −1.28954
\(646\) 1.71656e15 0.600318
\(647\) −1.73431e15 −0.601387 −0.300693 0.953721i \(-0.597218\pi\)
−0.300693 + 0.953721i \(0.597218\pi\)
\(648\) 1.14255e14 0.0392837
\(649\) −7.67531e15 −2.61668
\(650\) 3.98128e15 1.34586
\(651\) −1.03927e15 −0.348364
\(652\) −1.19328e15 −0.396624
\(653\) −3.27517e15 −1.07947 −0.539735 0.841835i \(-0.681476\pi\)
−0.539735 + 0.841835i \(0.681476\pi\)
\(654\) −1.07079e15 −0.349967
\(655\) 2.59258e15 0.840242
\(656\) 6.18768e14 0.198864
\(657\) −8.63179e14 −0.275100
\(658\) 1.27979e15 0.404478
\(659\) 1.56825e15 0.491525 0.245763 0.969330i \(-0.420962\pi\)
0.245763 + 0.969330i \(0.420962\pi\)
\(660\) −3.12572e15 −0.971536
\(661\) 3.82080e15 1.17773 0.588865 0.808231i \(-0.299575\pi\)
0.588865 + 0.808231i \(0.299575\pi\)
\(662\) −2.14617e15 −0.656063
\(663\) −1.10527e15 −0.335076
\(664\) 6.57219e13 0.0197599
\(665\) −2.55021e15 −0.760427
\(666\) 5.53505e14 0.163687
\(667\) 9.71814e14 0.285030
\(668\) 1.21341e15 0.352970
\(669\) 1.42805e15 0.412002
\(670\) 1.93806e15 0.554571
\(671\) 8.60395e15 2.44188
\(672\) −1.37040e14 −0.0385758
\(673\) −1.86527e15 −0.520784 −0.260392 0.965503i \(-0.583852\pi\)
−0.260392 + 0.965503i \(0.583852\pi\)
\(674\) −1.19951e15 −0.332181
\(675\) −1.84998e15 −0.508156
\(676\) −8.81612e14 −0.240199
\(677\) −7.74999e14 −0.209442 −0.104721 0.994502i \(-0.533395\pi\)
−0.104721 + 0.994502i \(0.533395\pi\)
\(678\) −4.17874e13 −0.0112016
\(679\) −7.88654e14 −0.209702
\(680\) −2.05921e15 −0.543126
\(681\) −8.51387e14 −0.222750
\(682\) −7.67209e15 −1.99113
\(683\) 2.01384e15 0.518454 0.259227 0.965816i \(-0.416532\pi\)
0.259227 + 0.965816i \(0.416532\pi\)
\(684\) 6.88154e14 0.175743
\(685\) −1.23267e16 −3.12283
\(686\) 1.51922e14 0.0381802
\(687\) −3.32510e15 −0.828977
\(688\) −1.18330e15 −0.292656
\(689\) 1.30522e15 0.320242
\(690\) −8.41110e14 −0.204731
\(691\) −3.69003e15 −0.891048 −0.445524 0.895270i \(-0.646983\pi\)
−0.445524 + 0.895270i \(0.646983\pi\)
\(692\) 7.35038e14 0.176087
\(693\) −9.35048e14 −0.222229
\(694\) −2.78011e15 −0.655519
\(695\) −7.88843e15 −1.84533
\(696\) 9.53797e14 0.221363
\(697\) 2.78141e15 0.640449
\(698\) −1.15104e15 −0.262958
\(699\) 1.45095e15 0.328873
\(700\) 2.21891e15 0.498999
\(701\) −3.75954e15 −0.838853 −0.419427 0.907789i \(-0.637769\pi\)
−0.419427 + 0.907789i \(0.637769\pi\)
\(702\) −4.43091e14 −0.0980932
\(703\) 3.33374e15 0.732281
\(704\) −1.01165e15 −0.220486
\(705\) 7.70933e15 1.66716
\(706\) 5.57115e15 1.19542
\(707\) 6.65935e14 0.141783
\(708\) −2.02708e15 −0.428241
\(709\) 3.70373e15 0.776398 0.388199 0.921575i \(-0.373097\pi\)
0.388199 + 0.921575i \(0.373097\pi\)
\(710\) 6.92859e15 1.44120
\(711\) 1.76546e15 0.364398
\(712\) 7.45154e14 0.152618
\(713\) −2.06450e15 −0.419588
\(714\) −6.16004e14 −0.124235
\(715\) 1.21218e16 2.42597
\(716\) 4.01512e15 0.797402
\(717\) −3.21449e15 −0.633515
\(718\) −6.48023e15 −1.26738
\(719\) 2.83631e15 0.550485 0.275242 0.961375i \(-0.411242\pi\)
0.275242 + 0.961375i \(0.411242\pi\)
\(720\) −8.25516e14 −0.159000
\(721\) −3.29197e15 −0.629233
\(722\) 4.17044e14 0.0791093
\(723\) −4.90623e14 −0.0923608
\(724\) 4.03216e15 0.753313
\(725\) −1.54436e16 −2.86345
\(726\) −4.68411e15 −0.861938
\(727\) 1.93703e15 0.353751 0.176875 0.984233i \(-0.443401\pi\)
0.176875 + 0.984233i \(0.443401\pi\)
\(728\) 5.31452e14 0.0963256
\(729\) 2.05891e14 0.0370370
\(730\) 6.23665e15 1.11346
\(731\) −5.31902e15 −0.942510
\(732\) 2.27234e15 0.399634
\(733\) 1.06583e16 1.86044 0.930222 0.366997i \(-0.119614\pi\)
0.930222 + 0.366997i \(0.119614\pi\)
\(734\) 1.51627e15 0.262693
\(735\) 9.15165e14 0.157369
\(736\) −2.72228e14 −0.0464628
\(737\) 4.27993e15 0.725046
\(738\) 1.11504e15 0.187491
\(739\) −7.46006e15 −1.24508 −0.622541 0.782588i \(-0.713899\pi\)
−0.622541 + 0.782588i \(0.713899\pi\)
\(740\) −3.99919e15 −0.662517
\(741\) −2.66872e15 −0.438837
\(742\) 7.27446e14 0.118735
\(743\) −5.09128e15 −0.824876 −0.412438 0.910986i \(-0.635323\pi\)
−0.412438 + 0.910986i \(0.635323\pi\)
\(744\) −2.02623e15 −0.325865
\(745\) −1.59892e16 −2.55251
\(746\) 3.52002e15 0.557803
\(747\) 1.18433e14 0.0186299
\(748\) −4.54745e15 −0.710083
\(749\) 1.00210e15 0.155332
\(750\) 8.30431e15 1.27781
\(751\) 7.54756e15 1.15289 0.576444 0.817137i \(-0.304440\pi\)
0.576444 + 0.817137i \(0.304440\pi\)
\(752\) 2.49515e15 0.378355
\(753\) 4.82609e15 0.726479
\(754\) −3.69891e15 −0.552754
\(755\) −1.78552e15 −0.264885
\(756\) −2.46950e14 −0.0363696
\(757\) −5.56380e15 −0.813475 −0.406737 0.913545i \(-0.633334\pi\)
−0.406737 + 0.913545i \(0.633334\pi\)
\(758\) −5.98879e15 −0.869277
\(759\) −1.85747e15 −0.267665
\(760\) −4.97206e15 −0.711314
\(761\) −6.47250e15 −0.919298 −0.459649 0.888101i \(-0.652025\pi\)
−0.459649 + 0.888101i \(0.652025\pi\)
\(762\) −1.90966e15 −0.269280
\(763\) 2.31440e15 0.324006
\(764\) 8.67554e14 0.120582
\(765\) −3.71076e15 −0.512064
\(766\) −2.28742e15 −0.313391
\(767\) 7.86120e15 1.06934
\(768\) −2.67181e14 −0.0360844
\(769\) −1.11739e16 −1.49834 −0.749169 0.662379i \(-0.769547\pi\)
−0.749169 + 0.662379i \(0.769547\pi\)
\(770\) 6.75592e15 0.899467
\(771\) −4.69311e15 −0.620385
\(772\) 4.87042e15 0.639251
\(773\) 1.18139e16 1.53960 0.769799 0.638286i \(-0.220356\pi\)
0.769799 + 0.638286i \(0.220356\pi\)
\(774\) −2.13234e15 −0.275919
\(775\) 3.28081e16 4.21524
\(776\) −1.53761e15 −0.196158
\(777\) −1.19634e15 −0.151544
\(778\) −7.09947e15 −0.892973
\(779\) 6.71585e15 0.838774
\(780\) 3.20142e15 0.397030
\(781\) 1.53008e16 1.88422
\(782\) −1.22369e15 −0.149635
\(783\) 1.71877e15 0.208703
\(784\) 2.96197e14 0.0357143
\(785\) −1.50730e16 −1.80475
\(786\) 1.51208e15 0.179784
\(787\) −1.37519e16 −1.62368 −0.811841 0.583879i \(-0.801534\pi\)
−0.811841 + 0.583879i \(0.801534\pi\)
\(788\) −1.93787e15 −0.227212
\(789\) 5.55743e15 0.647068
\(790\) −1.27558e16 −1.47489
\(791\) 9.03190e13 0.0103707
\(792\) −1.82303e15 −0.207876
\(793\) −8.81233e15 −0.997903
\(794\) 6.17978e15 0.694961
\(795\) 4.38207e15 0.489396
\(796\) −2.71841e15 −0.301504
\(797\) 8.06181e15 0.887998 0.443999 0.896027i \(-0.353559\pi\)
0.443999 + 0.896027i \(0.353559\pi\)
\(798\) −1.48737e15 −0.162706
\(799\) 1.12159e16 1.21850
\(800\) 4.32612e15 0.466771
\(801\) 1.34279e15 0.143890
\(802\) −7.52593e15 −0.800942
\(803\) 1.37727e16 1.45574
\(804\) 1.13035e15 0.118660
\(805\) 1.81797e15 0.189544
\(806\) 7.85790e15 0.813699
\(807\) 6.61834e15 0.680683
\(808\) 1.29835e15 0.132626
\(809\) −1.17570e15 −0.119283 −0.0596414 0.998220i \(-0.518996\pi\)
−0.0596414 + 0.998220i \(0.518996\pi\)
\(810\) −1.48761e15 −0.149906
\(811\) −9.38568e15 −0.939401 −0.469700 0.882826i \(-0.655638\pi\)
−0.469700 + 0.882826i \(0.655638\pi\)
\(812\) −2.06153e15 −0.204942
\(813\) 5.93633e15 0.586165
\(814\) −8.83161e15 −0.866175
\(815\) 1.55365e16 1.51352
\(816\) −1.20100e15 −0.116211
\(817\) −1.28430e16 −1.23437
\(818\) −2.09094e15 −0.199618
\(819\) 9.57694e14 0.0908166
\(820\) −8.05639e15 −0.758865
\(821\) −6.18260e15 −0.578474 −0.289237 0.957257i \(-0.593402\pi\)
−0.289237 + 0.957257i \(0.593402\pi\)
\(822\) −7.18934e15 −0.668181
\(823\) −4.01768e15 −0.370917 −0.185458 0.982652i \(-0.559377\pi\)
−0.185458 + 0.982652i \(0.559377\pi\)
\(824\) −6.41823e15 −0.588594
\(825\) 2.95180e16 2.68899
\(826\) 4.38132e15 0.396474
\(827\) 7.52839e14 0.0676740 0.0338370 0.999427i \(-0.489227\pi\)
0.0338370 + 0.999427i \(0.489227\pi\)
\(828\) −4.90564e14 −0.0438055
\(829\) 2.04085e16 1.81035 0.905173 0.425044i \(-0.139741\pi\)
0.905173 + 0.425044i \(0.139741\pi\)
\(830\) −8.55703e14 −0.0754039
\(831\) −5.72845e15 −0.501455
\(832\) 1.03615e15 0.0901043
\(833\) 1.33143e15 0.115019
\(834\) −4.60081e15 −0.394840
\(835\) −1.57987e16 −1.34693
\(836\) −1.09801e16 −0.929972
\(837\) −3.65133e15 −0.307228
\(838\) 6.74672e15 0.563963
\(839\) −1.04297e16 −0.866128 −0.433064 0.901363i \(-0.642568\pi\)
−0.433064 + 0.901363i \(0.642568\pi\)
\(840\) 1.78426e15 0.147205
\(841\) 2.14777e15 0.176039
\(842\) −3.45065e15 −0.280986
\(843\) 3.21007e15 0.259695
\(844\) 1.88622e15 0.151603
\(845\) 1.14786e16 0.916597
\(846\) 4.49635e15 0.356716
\(847\) 1.01242e16 0.798000
\(848\) 1.41827e15 0.111067
\(849\) −4.02743e15 −0.313355
\(850\) 1.94462e16 1.50325
\(851\) −2.37652e15 −0.182528
\(852\) 4.04099e15 0.308369
\(853\) 4.62836e15 0.350920 0.175460 0.984487i \(-0.443859\pi\)
0.175460 + 0.984487i \(0.443859\pi\)
\(854\) −4.91142e15 −0.369989
\(855\) −8.95981e15 −0.670633
\(856\) 1.95375e15 0.145299
\(857\) 1.98113e16 1.46392 0.731962 0.681346i \(-0.238605\pi\)
0.731962 + 0.681346i \(0.238605\pi\)
\(858\) 7.06988e15 0.519077
\(859\) −1.62985e16 −1.18901 −0.594504 0.804092i \(-0.702652\pi\)
−0.594504 + 0.804092i \(0.702652\pi\)
\(860\) 1.54066e16 1.11678
\(861\) −2.41004e15 −0.173583
\(862\) 1.10784e16 0.792844
\(863\) −5.19049e15 −0.369104 −0.184552 0.982823i \(-0.559083\pi\)
−0.184552 + 0.982823i \(0.559083\pi\)
\(864\) −4.81469e14 −0.0340207
\(865\) −9.57024e15 −0.671946
\(866\) −4.01559e15 −0.280156
\(867\) 2.92948e15 0.203089
\(868\) 4.37948e15 0.301692
\(869\) −2.81694e16 −1.92827
\(870\) −1.24185e16 −0.844721
\(871\) −4.38359e15 −0.296299
\(872\) 4.51230e15 0.303080
\(873\) −2.77082e15 −0.184940
\(874\) −2.95465e15 −0.195972
\(875\) −1.79489e16 −1.18302
\(876\) 3.63743e15 0.238244
\(877\) −1.19437e16 −0.777391 −0.388696 0.921366i \(-0.627074\pi\)
−0.388696 + 0.921366i \(0.627074\pi\)
\(878\) 9.66500e15 0.625147
\(879\) 9.09702e15 0.584737
\(880\) 1.31718e16 0.841375
\(881\) 2.05626e16 1.30530 0.652652 0.757658i \(-0.273656\pi\)
0.652652 + 0.757658i \(0.273656\pi\)
\(882\) 5.33756e14 0.0336718
\(883\) −9.10836e15 −0.571026 −0.285513 0.958375i \(-0.592164\pi\)
−0.285513 + 0.958375i \(0.592164\pi\)
\(884\) 4.65759e15 0.290184
\(885\) 2.63927e16 1.63417
\(886\) −1.55101e16 −0.954397
\(887\) 9.02318e15 0.551797 0.275899 0.961187i \(-0.411025\pi\)
0.275899 + 0.961187i \(0.411025\pi\)
\(888\) −2.33246e15 −0.141757
\(889\) 4.12753e15 0.249305
\(890\) −9.70195e15 −0.582390
\(891\) −3.28516e15 −0.195988
\(892\) −6.01778e15 −0.356804
\(893\) 2.70814e16 1.59583
\(894\) −9.32548e15 −0.546153
\(895\) −5.22771e16 −3.04288
\(896\) 5.77484e14 0.0334077
\(897\) 1.90245e15 0.109384
\(898\) −9.20144e14 −0.0525819
\(899\) −3.04812e16 −1.73123
\(900\) 7.79581e15 0.440076
\(901\) 6.37525e15 0.357693
\(902\) −1.77914e16 −0.992140
\(903\) 4.60883e15 0.255452
\(904\) 1.76092e14 0.00970091
\(905\) −5.24989e16 −2.87464
\(906\) −1.04138e15 −0.0566765
\(907\) 1.07100e16 0.579360 0.289680 0.957124i \(-0.406451\pi\)
0.289680 + 0.957124i \(0.406451\pi\)
\(908\) 3.58774e15 0.192907
\(909\) 2.33967e15 0.125041
\(910\) −6.91954e15 −0.367578
\(911\) −1.40721e16 −0.743030 −0.371515 0.928427i \(-0.621162\pi\)
−0.371515 + 0.928427i \(0.621162\pi\)
\(912\) −2.89988e15 −0.152198
\(913\) −1.88969e15 −0.0985830
\(914\) −3.01013e15 −0.156092
\(915\) −2.95860e16 −1.52500
\(916\) 1.40119e16 0.717915
\(917\) −3.26820e15 −0.166448
\(918\) −2.16424e15 −0.109565
\(919\) −1.80497e16 −0.908311 −0.454156 0.890922i \(-0.650059\pi\)
−0.454156 + 0.890922i \(0.650059\pi\)
\(920\) 3.54443e15 0.177302
\(921\) 5.17911e15 0.257530
\(922\) 6.76434e15 0.334353
\(923\) −1.56713e16 −0.770010
\(924\) 3.94029e15 0.192456
\(925\) 3.77666e16 1.83370
\(926\) −2.03505e16 −0.982233
\(927\) −1.15659e16 −0.554931
\(928\) −4.01929e15 −0.191706
\(929\) −4.98042e15 −0.236145 −0.118073 0.993005i \(-0.537672\pi\)
−0.118073 + 0.993005i \(0.537672\pi\)
\(930\) 2.63816e16 1.24350
\(931\) 3.21480e15 0.150637
\(932\) −6.11430e15 −0.284813
\(933\) −2.08904e16 −0.967382
\(934\) −1.85050e16 −0.851885
\(935\) 5.92081e16 2.70968
\(936\) 1.86718e15 0.0849512
\(937\) 7.40349e15 0.334864 0.167432 0.985884i \(-0.446452\pi\)
0.167432 + 0.985884i \(0.446452\pi\)
\(938\) −2.44312e15 −0.109858
\(939\) −1.92906e16 −0.862354
\(940\) −3.24870e16 −1.44380
\(941\) 4.67123e15 0.206390 0.103195 0.994661i \(-0.467093\pi\)
0.103195 + 0.994661i \(0.467093\pi\)
\(942\) −8.79112e15 −0.386157
\(943\) −4.78753e15 −0.209072
\(944\) 8.54210e15 0.370867
\(945\) 3.21530e15 0.138786
\(946\) 3.40233e16 1.46007
\(947\) 3.17364e16 1.35404 0.677021 0.735963i \(-0.263270\pi\)
0.677021 + 0.735963i \(0.263270\pi\)
\(948\) −7.43965e15 −0.315578
\(949\) −1.41063e16 −0.594906
\(950\) 4.69540e16 1.96876
\(951\) −1.64329e16 −0.685048
\(952\) 2.59583e15 0.107590
\(953\) 2.11673e16 0.872279 0.436139 0.899879i \(-0.356345\pi\)
0.436139 + 0.899879i \(0.356345\pi\)
\(954\) 2.55578e15 0.104715
\(955\) −1.12956e16 −0.460141
\(956\) 1.35458e16 0.548640
\(957\) −2.74244e16 −1.10439
\(958\) −7.44155e15 −0.297957
\(959\) 1.55390e16 0.618616
\(960\) 3.47872e15 0.137698
\(961\) 3.93452e16 1.54851
\(962\) 9.04551e15 0.353973
\(963\) 3.52072e15 0.136990
\(964\) 2.06748e15 0.0799868
\(965\) −6.34132e16 −2.43938
\(966\) 1.06030e15 0.0405561
\(967\) 3.50734e16 1.33393 0.666963 0.745091i \(-0.267594\pi\)
0.666963 + 0.745091i \(0.267594\pi\)
\(968\) 1.97388e16 0.746460
\(969\) −1.30352e16 −0.490157
\(970\) 2.00198e16 0.748539
\(971\) 1.54954e16 0.576099 0.288049 0.957616i \(-0.406993\pi\)
0.288049 + 0.957616i \(0.406993\pi\)
\(972\) −8.67624e14 −0.0320750
\(973\) 9.94416e15 0.365551
\(974\) −2.79599e16 −1.02203
\(975\) −3.02329e16 −1.09889
\(976\) −9.57562e15 −0.346093
\(977\) 6.90269e15 0.248084 0.124042 0.992277i \(-0.460414\pi\)
0.124042 + 0.992277i \(0.460414\pi\)
\(978\) 9.06144e15 0.323842
\(979\) −2.14253e16 −0.761417
\(980\) −3.85650e15 −0.136286
\(981\) 8.13131e15 0.285747
\(982\) 2.39661e16 0.837498
\(983\) 2.01691e16 0.700877 0.350438 0.936586i \(-0.386033\pi\)
0.350438 + 0.936586i \(0.386033\pi\)
\(984\) −4.69877e15 −0.162372
\(985\) 2.52312e16 0.867040
\(986\) −1.80670e16 −0.617396
\(987\) −9.71838e15 −0.330255
\(988\) 1.12460e16 0.380044
\(989\) 9.15542e15 0.307679
\(990\) 2.37360e16 0.793256
\(991\) −3.76304e16 −1.25064 −0.625322 0.780367i \(-0.715032\pi\)
−0.625322 + 0.780367i \(0.715032\pi\)
\(992\) 8.53851e15 0.282207
\(993\) 1.62975e16 0.535673
\(994\) −8.73417e15 −0.285494
\(995\) 3.53938e16 1.15054
\(996\) −4.99076e14 −0.0161339
\(997\) −1.38219e16 −0.444371 −0.222185 0.975004i \(-0.571319\pi\)
−0.222185 + 0.975004i \(0.571319\pi\)
\(998\) 3.14555e15 0.100572
\(999\) −4.20318e15 −0.133650
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 42.12.a.g.1.1 2
3.2 odd 2 126.12.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.12.a.g.1.1 2 1.1 even 1 trivial
126.12.a.k.1.2 2 3.2 odd 2