Properties

Label 42.12.a
Level $42$
Weight $12$
Character orbit 42.a
Rep. character $\chi_{42}(1,\cdot)$
Character field $\Q$
Dimension $10$
Newform subspaces $8$
Sturm bound $96$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 42.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(96\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(42))\).

Total New Old
Modular forms 92 10 82
Cusp forms 84 10 74
Eisenstein series 8 0 8

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(7\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(13\)\(1\)\(12\)\(12\)\(1\)\(11\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(11\)\(1\)\(10\)\(10\)\(1\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(+\)\(-\)\(11\)\(1\)\(10\)\(10\)\(1\)\(9\)\(1\)\(0\)\(1\)
\(+\)\(-\)\(-\)\(+\)\(11\)\(1\)\(10\)\(10\)\(1\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(+\)\(-\)\(11\)\(1\)\(10\)\(10\)\(1\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(+\)\(-\)\(+\)\(12\)\(2\)\(10\)\(11\)\(2\)\(9\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(+\)\(+\)\(11\)\(2\)\(9\)\(10\)\(2\)\(8\)\(1\)\(0\)\(1\)
\(-\)\(-\)\(-\)\(-\)\(12\)\(1\)\(11\)\(11\)\(1\)\(10\)\(1\)\(0\)\(1\)
Plus space\(+\)\(47\)\(6\)\(41\)\(43\)\(6\)\(37\)\(4\)\(0\)\(4\)
Minus space\(-\)\(45\)\(4\)\(41\)\(41\)\(4\)\(37\)\(4\)\(0\)\(4\)

Trace form

\( 10 q + 64 q^{2} + 10240 q^{4} - 15580 q^{5} + 65536 q^{8} + 590490 q^{9} - 50560 q^{10} + 122152 q^{11} - 776588 q^{13} + 2183112 q^{15} + 10485760 q^{16} - 4020284 q^{17} + 3779136 q^{18} - 6098224 q^{19}+ \cdots + 7212953448 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 7
42.12.a.a 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.a \(-32\) \(-243\) \(-8010\) \(16807\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-8010q^{5}+\cdots\)
42.12.a.b 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.b \(-32\) \(-243\) \(-4580\) \(-16807\) $+$ $+$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}-4580q^{5}+\cdots\)
42.12.a.c 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.c \(-32\) \(243\) \(1080\) \(16807\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+1080q^{5}+\cdots\)
42.12.a.d 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.d \(-32\) \(243\) \(4510\) \(-16807\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+4510q^{5}+\cdots\)
42.12.a.e 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.e \(32\) \(-243\) \(1340\) \(-16807\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+1340q^{5}+\cdots\)
42.12.a.f 42.a 1.a $1$ $32.270$ \(\Q\) None 42.12.a.f \(32\) \(243\) \(-11880\) \(16807\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}-11880q^{5}+\cdots\)
42.12.a.g 42.a 1.a $2$ $32.270$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 42.12.a.g \(64\) \(-486\) \(-1032\) \(33614\) $-$ $+$ $-$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}-3^{5}q^{3}+2^{10}q^{4}+(-516+\cdots)q^{5}+\cdots\)
42.12.a.h 42.a 1.a $2$ $32.270$ \(\Q(\sqrt{1753921}) \) None 42.12.a.h \(64\) \(486\) \(2992\) \(-33614\) $-$ $-$ $+$ $\mathrm{SU}(2)$ \(q+2^{5}q^{2}+3^{5}q^{3}+2^{10}q^{4}+(1496+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)