Defining parameters
| Level: | \( N \) | \(=\) | \( 42 = 2 \cdot 3 \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 12 \) |
| Character orbit: | \([\chi]\) | \(=\) | 42.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 8 \) | ||
| Sturm bound: | \(96\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(42))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 92 | 10 | 82 |
| Cusp forms | 84 | 10 | 74 |
| Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(7\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(13\) | \(1\) | \(12\) | \(12\) | \(1\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(11\) | \(1\) | \(10\) | \(10\) | \(1\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(12\) | \(2\) | \(10\) | \(11\) | \(2\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(11\) | \(2\) | \(9\) | \(10\) | \(2\) | \(8\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(12\) | \(1\) | \(11\) | \(11\) | \(1\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(47\) | \(6\) | \(41\) | \(43\) | \(6\) | \(37\) | \(4\) | \(0\) | \(4\) | |||||
| Minus space | \(-\) | \(45\) | \(4\) | \(41\) | \(41\) | \(4\) | \(37\) | \(4\) | \(0\) | \(4\) | |||||
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(42))\) into newform subspaces
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(42))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(42)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 2}\)