Properties

Label 405.3.h.k.269.22
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.22
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.k.134.22

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.74200 - 3.01723i) q^{2} +(-4.06913 - 7.04793i) q^{4} +(3.55914 + 3.51177i) q^{5} +(-11.0647 - 6.38818i) q^{7} -14.4177 q^{8} +(16.7958 - 4.62123i) q^{10} +(-12.2871 - 7.09395i) q^{11} +(3.89787 - 2.25044i) q^{13} +(-38.5493 + 22.2564i) q^{14} +(-8.83907 + 15.3097i) q^{16} +9.20574 q^{17} -15.8342 q^{19} +(10.2682 - 39.3744i) q^{20} +(-42.8082 + 24.7153i) q^{22} +(-2.12146 - 3.67447i) q^{23} +(0.334886 + 24.9978i) q^{25} -15.6810i q^{26} +103.977i q^{28} +(-22.9719 - 13.2628i) q^{29} +(-15.7179 - 27.2242i) q^{31} +(1.95998 + 3.39479i) q^{32} +(16.0364 - 27.7759i) q^{34} +(-16.9468 - 61.5930i) q^{35} +14.6355i q^{37} +(-27.5831 + 47.7753i) q^{38} +(-51.3144 - 50.6316i) q^{40} +(38.6673 - 22.3246i) q^{41} +(56.6228 + 32.6912i) q^{43} +115.465i q^{44} -14.7823 q^{46} +(28.2856 - 48.9921i) q^{47} +(57.1178 + 98.9309i) q^{49} +(76.0074 + 42.5357i) q^{50} +(-31.7218 - 18.3146i) q^{52} +17.8840 q^{53} +(-18.8190 - 68.3978i) q^{55} +(159.527 + 92.1027i) q^{56} +(-80.0340 + 46.2076i) q^{58} +(-41.8306 + 24.1509i) q^{59} +(45.7349 - 79.2151i) q^{61} -109.522 q^{62} -57.0554 q^{64} +(21.7761 + 5.67883i) q^{65} +(43.8758 - 25.3317i) q^{67} +(-37.4593 - 64.8815i) q^{68} +(-215.362 - 56.1627i) q^{70} -67.7587i q^{71} +52.6768i q^{73} +(44.1586 + 25.4950i) q^{74} +(64.4312 + 111.598i) q^{76} +(90.6349 + 156.984i) q^{77} +(27.4481 - 47.5415i) q^{79} +(-85.2237 + 23.4485i) q^{80} -155.558i q^{82} +(1.27876 - 2.21487i) q^{83} +(32.7645 + 32.3285i) q^{85} +(197.274 - 113.896i) q^{86} +(177.151 + 102.278i) q^{88} -82.7313i q^{89} -57.5048 q^{91} +(-17.2650 + 29.9038i) q^{92} +(-98.5469 - 170.688i) q^{94} +(-56.3559 - 55.6060i) q^{95} +(55.3388 + 31.9499i) q^{97} +397.997 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.74200 3.01723i 0.871000 1.50862i 0.0100362 0.999950i \(-0.496805\pi\)
0.860964 0.508666i \(-0.169861\pi\)
\(3\) 0 0
\(4\) −4.06913 7.04793i −1.01728 1.76198i
\(5\) 3.55914 + 3.51177i 0.711827 + 0.702355i
\(6\) 0 0
\(7\) −11.0647 6.38818i −1.58067 0.912598i −0.994762 0.102217i \(-0.967406\pi\)
−0.585903 0.810381i \(-0.699260\pi\)
\(8\) −14.4177 −1.80221
\(9\) 0 0
\(10\) 16.7958 4.62123i 1.67958 0.462123i
\(11\) −12.2871 7.09395i −1.11701 0.644905i −0.176372 0.984324i \(-0.556436\pi\)
−0.940635 + 0.339419i \(0.889770\pi\)
\(12\) 0 0
\(13\) 3.89787 2.25044i 0.299836 0.173110i −0.342533 0.939506i \(-0.611285\pi\)
0.642369 + 0.766395i \(0.277952\pi\)
\(14\) −38.5493 + 22.2564i −2.75352 + 1.58974i
\(15\) 0 0
\(16\) −8.83907 + 15.3097i −0.552442 + 0.956857i
\(17\) 9.20574 0.541514 0.270757 0.962648i \(-0.412726\pi\)
0.270757 + 0.962648i \(0.412726\pi\)
\(18\) 0 0
\(19\) −15.8342 −0.833376 −0.416688 0.909049i \(-0.636809\pi\)
−0.416688 + 0.909049i \(0.636809\pi\)
\(20\) 10.2682 39.3744i 0.513409 1.96872i
\(21\) 0 0
\(22\) −42.8082 + 24.7153i −1.94583 + 1.12342i
\(23\) −2.12146 3.67447i −0.0922373 0.159760i 0.816215 0.577748i \(-0.196068\pi\)
−0.908452 + 0.417989i \(0.862735\pi\)
\(24\) 0 0
\(25\) 0.334886 + 24.9978i 0.0133954 + 0.999910i
\(26\) 15.6810i 0.603117i
\(27\) 0 0
\(28\) 103.977i 3.71348i
\(29\) −22.9719 13.2628i −0.792133 0.457338i 0.0485796 0.998819i \(-0.484531\pi\)
−0.840713 + 0.541481i \(0.817864\pi\)
\(30\) 0 0
\(31\) −15.7179 27.2242i −0.507028 0.878199i −0.999967 0.00813474i \(-0.997411\pi\)
0.492939 0.870064i \(-0.335923\pi\)
\(32\) 1.95998 + 3.39479i 0.0612494 + 0.106087i
\(33\) 0 0
\(34\) 16.0364 27.7759i 0.471659 0.816937i
\(35\) −16.9468 61.5930i −0.484193 1.75980i
\(36\) 0 0
\(37\) 14.6355i 0.395553i 0.980247 + 0.197777i \(0.0633720\pi\)
−0.980247 + 0.197777i \(0.936628\pi\)
\(38\) −27.5831 + 47.7753i −0.725871 + 1.25725i
\(39\) 0 0
\(40\) −51.3144 50.6316i −1.28286 1.26579i
\(41\) 38.6673 22.3246i 0.943104 0.544502i 0.0521722 0.998638i \(-0.483386\pi\)
0.890932 + 0.454137i \(0.150052\pi\)
\(42\) 0 0
\(43\) 56.6228 + 32.6912i 1.31681 + 0.760261i 0.983214 0.182455i \(-0.0584045\pi\)
0.333596 + 0.942716i \(0.391738\pi\)
\(44\) 115.465i 2.62420i
\(45\) 0 0
\(46\) −14.7823 −0.321355
\(47\) 28.2856 48.9921i 0.601821 1.04238i −0.390725 0.920508i \(-0.627776\pi\)
0.992545 0.121876i \(-0.0388912\pi\)
\(48\) 0 0
\(49\) 57.1178 + 98.9309i 1.16567 + 2.01900i
\(50\) 76.0074 + 42.5357i 1.52015 + 0.850713i
\(51\) 0 0
\(52\) −31.7218 18.3146i −0.610035 0.352204i
\(53\) 17.8840 0.337434 0.168717 0.985665i \(-0.446038\pi\)
0.168717 + 0.985665i \(0.446038\pi\)
\(54\) 0 0
\(55\) −18.8190 68.3978i −0.342164 1.24360i
\(56\) 159.527 + 92.1027i 2.84869 + 1.64469i
\(57\) 0 0
\(58\) −80.0340 + 46.2076i −1.37990 + 0.796683i
\(59\) −41.8306 + 24.1509i −0.708992 + 0.409337i −0.810688 0.585479i \(-0.800907\pi\)
0.101695 + 0.994816i \(0.467573\pi\)
\(60\) 0 0
\(61\) 45.7349 79.2151i 0.749752 1.29861i −0.198190 0.980164i \(-0.563506\pi\)
0.947942 0.318444i \(-0.103160\pi\)
\(62\) −109.522 −1.76649
\(63\) 0 0
\(64\) −57.0554 −0.891491
\(65\) 21.7761 + 5.67883i 0.335016 + 0.0873666i
\(66\) 0 0
\(67\) 43.8758 25.3317i 0.654862 0.378085i −0.135454 0.990784i \(-0.543249\pi\)
0.790317 + 0.612699i \(0.209916\pi\)
\(68\) −37.4593 64.8815i −0.550873 0.954139i
\(69\) 0 0
\(70\) −215.362 56.1627i −3.07659 0.802324i
\(71\) 67.7587i 0.954348i −0.878809 0.477174i \(-0.841661\pi\)
0.878809 0.477174i \(-0.158339\pi\)
\(72\) 0 0
\(73\) 52.6768i 0.721600i 0.932643 + 0.360800i \(0.117496\pi\)
−0.932643 + 0.360800i \(0.882504\pi\)
\(74\) 44.1586 + 25.4950i 0.596738 + 0.344527i
\(75\) 0 0
\(76\) 64.4312 + 111.598i 0.847778 + 1.46840i
\(77\) 90.6349 + 156.984i 1.17708 + 2.03876i
\(78\) 0 0
\(79\) 27.4481 47.5415i 0.347444 0.601791i −0.638351 0.769746i \(-0.720383\pi\)
0.985795 + 0.167955i \(0.0537163\pi\)
\(80\) −85.2237 + 23.4485i −1.06530 + 0.293107i
\(81\) 0 0
\(82\) 155.558i 1.89704i
\(83\) 1.27876 2.21487i 0.0154067 0.0266852i −0.858219 0.513283i \(-0.828429\pi\)
0.873626 + 0.486598i \(0.161762\pi\)
\(84\) 0 0
\(85\) 32.7645 + 32.3285i 0.385465 + 0.380335i
\(86\) 197.274 113.896i 2.29388 1.32437i
\(87\) 0 0
\(88\) 177.151 + 102.278i 2.01308 + 1.16225i
\(89\) 82.7313i 0.929565i −0.885425 0.464783i \(-0.846132\pi\)
0.885425 0.464783i \(-0.153868\pi\)
\(90\) 0 0
\(91\) −57.5048 −0.631921
\(92\) −17.2650 + 29.9038i −0.187663 + 0.325041i
\(93\) 0 0
\(94\) −98.5469 170.688i −1.04837 1.81583i
\(95\) −56.3559 55.6060i −0.593220 0.585326i
\(96\) 0 0
\(97\) 55.3388 + 31.9499i 0.570503 + 0.329380i 0.757350 0.653009i \(-0.226494\pi\)
−0.186847 + 0.982389i \(0.559827\pi\)
\(98\) 397.997 4.06119
\(99\) 0 0
\(100\) 174.820 104.079i 1.74820 1.04079i
\(101\) −69.8180 40.3094i −0.691267 0.399103i 0.112819 0.993616i \(-0.464012\pi\)
−0.804087 + 0.594512i \(0.797345\pi\)
\(102\) 0 0
\(103\) 31.1536 17.9866i 0.302462 0.174627i −0.341086 0.940032i \(-0.610795\pi\)
0.643549 + 0.765405i \(0.277461\pi\)
\(104\) −56.1982 + 32.4460i −0.540367 + 0.311981i
\(105\) 0 0
\(106\) 31.1539 53.9602i 0.293905 0.509059i
\(107\) −21.6725 −0.202546 −0.101273 0.994859i \(-0.532292\pi\)
−0.101273 + 0.994859i \(0.532292\pi\)
\(108\) 0 0
\(109\) −1.09218 −0.0100200 −0.00501000 0.999987i \(-0.501595\pi\)
−0.00501000 + 0.999987i \(0.501595\pi\)
\(110\) −239.155 62.3675i −2.17413 0.566978i
\(111\) 0 0
\(112\) 195.603 112.931i 1.74645 1.00831i
\(113\) −76.1074 131.822i −0.673517 1.16657i −0.976900 0.213697i \(-0.931449\pi\)
0.303383 0.952869i \(-0.401884\pi\)
\(114\) 0 0
\(115\) 5.35336 20.5280i 0.0465510 0.178505i
\(116\) 215.872i 1.86097i
\(117\) 0 0
\(118\) 168.283i 1.42613i
\(119\) −101.858 58.8080i −0.855953 0.494185i
\(120\) 0 0
\(121\) 40.1483 + 69.5389i 0.331804 + 0.574702i
\(122\) −159.340 275.985i −1.30607 2.26217i
\(123\) 0 0
\(124\) −127.916 + 221.557i −1.03158 + 1.78675i
\(125\) −86.5946 + 90.1464i −0.692757 + 0.721172i
\(126\) 0 0
\(127\) 114.497i 0.901549i 0.892638 + 0.450775i \(0.148852\pi\)
−0.892638 + 0.450775i \(0.851148\pi\)
\(128\) −107.230 + 185.729i −0.837738 + 1.45100i
\(129\) 0 0
\(130\) 55.0682 55.8109i 0.423602 0.429315i
\(131\) −148.182 + 85.5530i −1.13116 + 0.653077i −0.944227 0.329296i \(-0.893189\pi\)
−0.186935 + 0.982372i \(0.559855\pi\)
\(132\) 0 0
\(133\) 175.200 + 101.151i 1.31729 + 0.760537i
\(134\) 176.511i 1.31725i
\(135\) 0 0
\(136\) −132.725 −0.975922
\(137\) 18.2103 31.5412i 0.132922 0.230228i −0.791880 0.610677i \(-0.790897\pi\)
0.924802 + 0.380449i \(0.124231\pi\)
\(138\) 0 0
\(139\) −37.8921 65.6311i −0.272605 0.472166i 0.696923 0.717146i \(-0.254552\pi\)
−0.969528 + 0.244980i \(0.921219\pi\)
\(140\) −365.145 + 370.069i −2.60818 + 2.64335i
\(141\) 0 0
\(142\) −204.444 118.036i −1.43974 0.831237i
\(143\) −63.8579 −0.446559
\(144\) 0 0
\(145\) −35.1840 127.876i −0.242648 0.881905i
\(146\) 158.938 + 91.7629i 1.08862 + 0.628513i
\(147\) 0 0
\(148\) 103.150 59.5535i 0.696958 0.402389i
\(149\) 165.772 95.7083i 1.11256 0.642338i 0.173070 0.984910i \(-0.444631\pi\)
0.939492 + 0.342572i \(0.111298\pi\)
\(150\) 0 0
\(151\) −119.619 + 207.186i −0.792178 + 1.37209i 0.132438 + 0.991191i \(0.457719\pi\)
−0.924616 + 0.380901i \(0.875614\pi\)
\(152\) 228.292 1.50192
\(153\) 0 0
\(154\) 631.544 4.10094
\(155\) 39.6631 152.092i 0.255891 0.981239i
\(156\) 0 0
\(157\) −124.141 + 71.6729i −0.790707 + 0.456515i −0.840212 0.542259i \(-0.817569\pi\)
0.0495042 + 0.998774i \(0.484236\pi\)
\(158\) −95.6291 165.634i −0.605248 1.04832i
\(159\) 0 0
\(160\) −4.94588 + 18.9655i −0.0309118 + 0.118534i
\(161\) 54.2090i 0.336702i
\(162\) 0 0
\(163\) 138.957i 0.852496i −0.904606 0.426248i \(-0.859835\pi\)
0.904606 0.426248i \(-0.140165\pi\)
\(164\) −314.684 181.683i −1.91881 1.10782i
\(165\) 0 0
\(166\) −4.45519 7.71661i −0.0268385 0.0464856i
\(167\) 102.790 + 178.038i 0.615510 + 1.06610i 0.990295 + 0.138983i \(0.0443834\pi\)
−0.374784 + 0.927112i \(0.622283\pi\)
\(168\) 0 0
\(169\) −74.3711 + 128.814i −0.440066 + 0.762216i
\(170\) 154.618 42.5418i 0.909519 0.250246i
\(171\) 0 0
\(172\) 532.099i 3.09360i
\(173\) 23.7687 41.1687i 0.137392 0.237969i −0.789117 0.614243i \(-0.789461\pi\)
0.926508 + 0.376274i \(0.122795\pi\)
\(174\) 0 0
\(175\) 155.985 278.731i 0.891342 1.59275i
\(176\) 217.213 125.408i 1.23416 0.712545i
\(177\) 0 0
\(178\) −249.620 144.118i −1.40236 0.809651i
\(179\) 124.298i 0.694402i −0.937791 0.347201i \(-0.887132\pi\)
0.937791 0.347201i \(-0.112868\pi\)
\(180\) 0 0
\(181\) −12.0770 −0.0667237 −0.0333618 0.999443i \(-0.510621\pi\)
−0.0333618 + 0.999443i \(0.510621\pi\)
\(182\) −100.173 + 173.505i −0.550403 + 0.953326i
\(183\) 0 0
\(184\) 30.5865 + 52.9773i 0.166231 + 0.287920i
\(185\) −51.3964 + 52.0896i −0.277819 + 0.281565i
\(186\) 0 0
\(187\) −113.112 65.3051i −0.604876 0.349225i
\(188\) −460.390 −2.44888
\(189\) 0 0
\(190\) −265.948 + 73.1732i −1.39973 + 0.385122i
\(191\) 247.436 + 142.857i 1.29548 + 0.747945i 0.979620 0.200862i \(-0.0643742\pi\)
0.315859 + 0.948806i \(0.397708\pi\)
\(192\) 0 0
\(193\) 284.807 164.433i 1.47568 0.851987i 0.476061 0.879412i \(-0.342064\pi\)
0.999624 + 0.0274255i \(0.00873089\pi\)
\(194\) 192.800 111.313i 0.993816 0.573780i
\(195\) 0 0
\(196\) 464.839 805.125i 2.37163 4.10778i
\(197\) −90.3147 −0.458450 −0.229225 0.973373i \(-0.573619\pi\)
−0.229225 + 0.973373i \(0.573619\pi\)
\(198\) 0 0
\(199\) 0.315816 0.00158702 0.000793508 1.00000i \(-0.499747\pi\)
0.000793508 1.00000i \(0.499747\pi\)
\(200\) −4.82827 360.409i −0.0241414 1.80205i
\(201\) 0 0
\(202\) −243.246 + 140.438i −1.20419 + 0.695238i
\(203\) 169.451 + 293.497i 0.834732 + 1.44580i
\(204\) 0 0
\(205\) 216.021 + 56.3346i 1.05376 + 0.274803i
\(206\) 125.330i 0.608399i
\(207\) 0 0
\(208\) 79.5670i 0.382534i
\(209\) 194.556 + 112.327i 0.930888 + 0.537448i
\(210\) 0 0
\(211\) 164.187 + 284.380i 0.778137 + 1.34777i 0.933014 + 0.359839i \(0.117168\pi\)
−0.154878 + 0.987934i \(0.549498\pi\)
\(212\) −72.7723 126.045i −0.343266 0.594553i
\(213\) 0 0
\(214\) −37.7534 + 65.3909i −0.176418 + 0.305565i
\(215\) 86.7242 + 315.199i 0.403368 + 1.46604i
\(216\) 0 0
\(217\) 401.635i 1.85085i
\(218\) −1.90258 + 3.29536i −0.00872741 + 0.0151163i
\(219\) 0 0
\(220\) −405.486 + 410.955i −1.84312 + 1.86798i
\(221\) 35.8828 20.7169i 0.162366 0.0937418i
\(222\) 0 0
\(223\) −43.7853 25.2795i −0.196347 0.113361i 0.398604 0.917123i \(-0.369495\pi\)
−0.594950 + 0.803763i \(0.702828\pi\)
\(224\) 50.0829i 0.223584i
\(225\) 0 0
\(226\) −530.316 −2.34653
\(227\) 150.507 260.685i 0.663024 1.14839i −0.316793 0.948495i \(-0.602606\pi\)
0.979817 0.199897i \(-0.0640607\pi\)
\(228\) 0 0
\(229\) −139.713 241.989i −0.610099 1.05672i −0.991223 0.132198i \(-0.957796\pi\)
0.381124 0.924524i \(-0.375537\pi\)
\(230\) −52.6123 51.9121i −0.228749 0.225705i
\(231\) 0 0
\(232\) 331.201 + 191.219i 1.42759 + 0.824219i
\(233\) 27.3269 0.117283 0.0586415 0.998279i \(-0.481323\pi\)
0.0586415 + 0.998279i \(0.481323\pi\)
\(234\) 0 0
\(235\) 272.721 75.0368i 1.16052 0.319305i
\(236\) 340.428 + 196.546i 1.44249 + 0.832822i
\(237\) 0 0
\(238\) −354.875 + 204.887i −1.49107 + 0.860870i
\(239\) 15.3488 8.86165i 0.0642210 0.0370780i −0.467546 0.883969i \(-0.654862\pi\)
0.531767 + 0.846891i \(0.321528\pi\)
\(240\) 0 0
\(241\) −101.946 + 176.576i −0.423014 + 0.732682i −0.996233 0.0867204i \(-0.972361\pi\)
0.573218 + 0.819403i \(0.305695\pi\)
\(242\) 279.753 1.15601
\(243\) 0 0
\(244\) −744.404 −3.05083
\(245\) −144.133 + 552.693i −0.588298 + 2.25589i
\(246\) 0 0
\(247\) −61.7194 + 35.6337i −0.249876 + 0.144266i
\(248\) 226.615 + 392.509i 0.913771 + 1.58270i
\(249\) 0 0
\(250\) 121.145 + 418.311i 0.484580 + 1.67324i
\(251\) 117.194i 0.466908i 0.972368 + 0.233454i \(0.0750029\pi\)
−0.972368 + 0.233454i \(0.924997\pi\)
\(252\) 0 0
\(253\) 60.1981i 0.237937i
\(254\) 345.463 + 199.453i 1.36009 + 0.785249i
\(255\) 0 0
\(256\) 259.480 + 449.433i 1.01359 + 1.75560i
\(257\) −76.6823 132.818i −0.298375 0.516800i 0.677390 0.735624i \(-0.263111\pi\)
−0.975764 + 0.218824i \(0.929778\pi\)
\(258\) 0 0
\(259\) 93.4940 161.936i 0.360981 0.625237i
\(260\) −48.5855 176.584i −0.186867 0.679170i
\(261\) 0 0
\(262\) 596.133i 2.27532i
\(263\) −131.747 + 228.193i −0.500941 + 0.867655i 0.499059 + 0.866568i \(0.333679\pi\)
−0.999999 + 0.00108680i \(0.999654\pi\)
\(264\) 0 0
\(265\) 63.6516 + 62.8046i 0.240195 + 0.236999i
\(266\) 610.395 352.412i 2.29472 1.32486i
\(267\) 0 0
\(268\) −357.072 206.156i −1.33236 0.769238i
\(269\) 10.4219i 0.0387431i −0.999812 0.0193715i \(-0.993833\pi\)
0.999812 0.0193715i \(-0.00616654\pi\)
\(270\) 0 0
\(271\) 501.590 1.85089 0.925443 0.378886i \(-0.123693\pi\)
0.925443 + 0.378886i \(0.123693\pi\)
\(272\) −81.3702 + 140.937i −0.299155 + 0.518152i
\(273\) 0 0
\(274\) −63.4448 109.890i −0.231550 0.401057i
\(275\) 173.218 309.525i 0.629884 1.12555i
\(276\) 0 0
\(277\) 304.210 + 175.636i 1.09823 + 0.634065i 0.935756 0.352648i \(-0.114719\pi\)
0.162476 + 0.986713i \(0.448052\pi\)
\(278\) −264.032 −0.949756
\(279\) 0 0
\(280\) 244.333 + 888.027i 0.872617 + 3.17153i
\(281\) 252.986 + 146.061i 0.900304 + 0.519791i 0.877299 0.479944i \(-0.159343\pi\)
0.0230054 + 0.999735i \(0.492677\pi\)
\(282\) 0 0
\(283\) −162.862 + 94.0285i −0.575485 + 0.332256i −0.759337 0.650698i \(-0.774477\pi\)
0.183852 + 0.982954i \(0.441143\pi\)
\(284\) −477.559 + 275.719i −1.68155 + 0.970840i
\(285\) 0 0
\(286\) −111.241 + 192.674i −0.388953 + 0.673686i
\(287\) −570.454 −1.98764
\(288\) 0 0
\(289\) −204.254 −0.706762
\(290\) −447.123 116.602i −1.54180 0.402076i
\(291\) 0 0
\(292\) 371.262 214.348i 1.27145 0.734070i
\(293\) −154.985 268.442i −0.528958 0.916183i −0.999430 0.0337676i \(-0.989249\pi\)
0.470471 0.882415i \(-0.344084\pi\)
\(294\) 0 0
\(295\) −233.693 60.9432i −0.792180 0.206587i
\(296\) 211.009i 0.712869i
\(297\) 0 0
\(298\) 666.895i 2.23790i
\(299\) −16.5383 9.54841i −0.0553121 0.0319345i
\(300\) 0 0
\(301\) −417.675 723.434i −1.38762 2.40344i
\(302\) 416.752 + 721.836i 1.37997 + 2.39018i
\(303\) 0 0
\(304\) 139.959 242.416i 0.460392 0.797422i
\(305\) 440.962 121.327i 1.44578 0.397793i
\(306\) 0 0
\(307\) 143.887i 0.468687i 0.972154 + 0.234344i \(0.0752941\pi\)
−0.972154 + 0.234344i \(0.924706\pi\)
\(308\) 737.610 1277.58i 2.39484 4.14798i
\(309\) 0 0
\(310\) −389.804 384.617i −1.25743 1.24070i
\(311\) 24.1305 13.9318i 0.0775901 0.0447966i −0.460703 0.887554i \(-0.652403\pi\)
0.538293 + 0.842758i \(0.319069\pi\)
\(312\) 0 0
\(313\) −361.967 208.982i −1.15644 0.667673i −0.205995 0.978553i \(-0.566043\pi\)
−0.950449 + 0.310880i \(0.899376\pi\)
\(314\) 499.416i 1.59050i
\(315\) 0 0
\(316\) −446.759 −1.41379
\(317\) 33.5344 58.0833i 0.105787 0.183228i −0.808273 0.588808i \(-0.799597\pi\)
0.914059 + 0.405580i \(0.132931\pi\)
\(318\) 0 0
\(319\) 188.172 + 325.923i 0.589880 + 1.02170i
\(320\) −203.068 200.366i −0.634587 0.626143i
\(321\) 0 0
\(322\) 163.561 + 94.4321i 0.507954 + 0.293268i
\(323\) −145.765 −0.451285
\(324\) 0 0
\(325\) 57.5612 + 96.6843i 0.177111 + 0.297490i
\(326\) −419.265 242.063i −1.28609 0.742524i
\(327\) 0 0
\(328\) −557.492 + 321.868i −1.69967 + 0.981305i
\(329\) −625.940 + 361.387i −1.90255 + 1.09844i
\(330\) 0 0
\(331\) 53.2428 92.2192i 0.160854 0.278608i −0.774321 0.632793i \(-0.781908\pi\)
0.935175 + 0.354185i \(0.115242\pi\)
\(332\) −20.8137 −0.0626918
\(333\) 0 0
\(334\) 716.242 2.14444
\(335\) 245.119 + 63.9229i 0.731698 + 0.190815i
\(336\) 0 0
\(337\) −461.486 + 266.439i −1.36940 + 0.790621i −0.990851 0.134962i \(-0.956909\pi\)
−0.378545 + 0.925583i \(0.623576\pi\)
\(338\) 259.109 + 448.790i 0.766594 + 1.32778i
\(339\) 0 0
\(340\) 94.5262 362.471i 0.278018 1.06609i
\(341\) 446.008i 1.30794i
\(342\) 0 0
\(343\) 833.474i 2.42995i
\(344\) −816.369 471.331i −2.37317 1.37015i
\(345\) 0 0
\(346\) −82.8103 143.432i −0.239336 0.414542i
\(347\) −1.35563 2.34802i −0.00390672 0.00676664i 0.864065 0.503380i \(-0.167910\pi\)
−0.867972 + 0.496613i \(0.834577\pi\)
\(348\) 0 0
\(349\) 99.4267 172.212i 0.284890 0.493444i −0.687692 0.726002i \(-0.741376\pi\)
0.972583 + 0.232558i \(0.0747095\pi\)
\(350\) −569.270 956.192i −1.62649 2.73198i
\(351\) 0 0
\(352\) 55.6160i 0.158000i
\(353\) 125.575 217.503i 0.355737 0.616155i −0.631506 0.775371i \(-0.717563\pi\)
0.987244 + 0.159215i \(0.0508964\pi\)
\(354\) 0 0
\(355\) 237.953 241.162i 0.670291 0.679331i
\(356\) −583.085 + 336.644i −1.63788 + 0.945630i
\(357\) 0 0
\(358\) −375.036 216.527i −1.04759 0.604824i
\(359\) 314.839i 0.876989i 0.898734 + 0.438495i \(0.144488\pi\)
−0.898734 + 0.438495i \(0.855512\pi\)
\(360\) 0 0
\(361\) −110.280 −0.305484
\(362\) −21.0381 + 36.4391i −0.0581163 + 0.100660i
\(363\) 0 0
\(364\) 233.994 + 405.290i 0.642841 + 1.11343i
\(365\) −184.989 + 187.484i −0.506819 + 0.513654i
\(366\) 0 0
\(367\) −195.196 112.696i −0.531868 0.307074i 0.209909 0.977721i \(-0.432683\pi\)
−0.741777 + 0.670647i \(0.766017\pi\)
\(368\) 75.0069 0.203823
\(369\) 0 0
\(370\) 67.6338 + 245.815i 0.182794 + 0.664365i
\(371\) −197.880 114.246i −0.533371 0.307942i
\(372\) 0 0
\(373\) 434.035 250.590i 1.16363 0.671824i 0.211461 0.977386i \(-0.432178\pi\)
0.952172 + 0.305563i \(0.0988445\pi\)
\(374\) −394.081 + 227.523i −1.05369 + 0.608350i
\(375\) 0 0
\(376\) −407.812 + 706.351i −1.08461 + 1.87859i
\(377\) −119.388 −0.316680
\(378\) 0 0
\(379\) 3.37369 0.00890156 0.00445078 0.999990i \(-0.498583\pi\)
0.00445078 + 0.999990i \(0.498583\pi\)
\(380\) −162.588 + 623.460i −0.427863 + 1.64068i
\(381\) 0 0
\(382\) 862.068 497.715i 2.25672 1.30292i
\(383\) 207.530 + 359.452i 0.541853 + 0.938516i 0.998798 + 0.0490215i \(0.0156103\pi\)
−0.456945 + 0.889495i \(0.651056\pi\)
\(384\) 0 0
\(385\) −228.711 + 877.018i −0.594056 + 2.27797i
\(386\) 1145.77i 2.96832i
\(387\) 0 0
\(388\) 520.032i 1.34029i
\(389\) −639.742 369.355i −1.64458 0.949499i −0.979175 0.203018i \(-0.934925\pi\)
−0.665406 0.746482i \(-0.731742\pi\)
\(390\) 0 0
\(391\) −19.5296 33.8263i −0.0499478 0.0865122i
\(392\) −823.505 1426.35i −2.10078 3.63866i
\(393\) 0 0
\(394\) −157.328 + 272.500i −0.399310 + 0.691625i
\(395\) 264.646 72.8151i 0.669991 0.184342i
\(396\) 0 0
\(397\) 258.122i 0.650183i 0.945683 + 0.325091i \(0.105395\pi\)
−0.945683 + 0.325091i \(0.894605\pi\)
\(398\) 0.550152 0.952891i 0.00138229 0.00239420i
\(399\) 0 0
\(400\) −385.669 215.830i −0.964172 0.539575i
\(401\) 259.533 149.841i 0.647214 0.373669i −0.140174 0.990127i \(-0.544766\pi\)
0.787388 + 0.616458i \(0.211433\pi\)
\(402\) 0 0
\(403\) −122.532 70.7441i −0.304051 0.175544i
\(404\) 656.097i 1.62400i
\(405\) 0 0
\(406\) 1180.73 2.90821
\(407\) 103.823 179.827i 0.255094 0.441836i
\(408\) 0 0
\(409\) 274.690 + 475.777i 0.671614 + 1.16327i 0.977446 + 0.211184i \(0.0677320\pi\)
−0.305832 + 0.952085i \(0.598935\pi\)
\(410\) 546.283 553.650i 1.33240 1.35037i
\(411\) 0 0
\(412\) −253.536 146.379i −0.615379 0.355289i
\(413\) 617.121 1.49424
\(414\) 0 0
\(415\) 12.3294 3.39232i 0.0297094 0.00817427i
\(416\) 15.2795 + 8.82162i 0.0367295 + 0.0212058i
\(417\) 0 0
\(418\) 677.832 391.346i 1.62161 0.936235i
\(419\) 214.767 123.996i 0.512571 0.295933i −0.221319 0.975202i \(-0.571036\pi\)
0.733890 + 0.679268i \(0.237703\pi\)
\(420\) 0 0
\(421\) 163.175 282.627i 0.387588 0.671322i −0.604537 0.796577i \(-0.706642\pi\)
0.992125 + 0.125255i \(0.0399750\pi\)
\(422\) 1144.05 2.71103
\(423\) 0 0
\(424\) −257.846 −0.608127
\(425\) 3.08287 + 230.123i 0.00725382 + 0.541466i
\(426\) 0 0
\(427\) −1012.08 + 584.325i −2.37021 + 1.36844i
\(428\) 88.1880 + 152.746i 0.206047 + 0.356884i
\(429\) 0 0
\(430\) 1102.10 + 287.410i 2.56303 + 0.668395i
\(431\) 96.3692i 0.223594i 0.993731 + 0.111797i \(0.0356607\pi\)
−0.993731 + 0.111797i \(0.964339\pi\)
\(432\) 0 0
\(433\) 672.095i 1.55218i 0.630620 + 0.776091i \(0.282800\pi\)
−0.630620 + 0.776091i \(0.717200\pi\)
\(434\) 1211.83 + 699.648i 2.79222 + 1.61209i
\(435\) 0 0
\(436\) 4.44422 + 7.69761i 0.0101932 + 0.0176551i
\(437\) 33.5915 + 58.1822i 0.0768684 + 0.133140i
\(438\) 0 0
\(439\) −51.8764 + 89.8526i −0.118170 + 0.204676i −0.919042 0.394159i \(-0.871036\pi\)
0.800873 + 0.598835i \(0.204369\pi\)
\(440\) 271.327 + 986.137i 0.616652 + 2.24122i
\(441\) 0 0
\(442\) 144.356i 0.326596i
\(443\) −113.879 + 197.244i −0.257063 + 0.445247i −0.965454 0.260574i \(-0.916088\pi\)
0.708391 + 0.705821i \(0.249422\pi\)
\(444\) 0 0
\(445\) 290.534 294.452i 0.652885 0.661690i
\(446\) −152.548 + 88.0736i −0.342036 + 0.197474i
\(447\) 0 0
\(448\) 631.299 + 364.481i 1.40915 + 0.813573i
\(449\) 504.100i 1.12272i −0.827573 0.561359i \(-0.810279\pi\)
0.827573 0.561359i \(-0.189721\pi\)
\(450\) 0 0
\(451\) −633.478 −1.40461
\(452\) −619.381 + 1072.80i −1.37031 + 2.37345i
\(453\) 0 0
\(454\) −524.365 908.226i −1.15499 2.00050i
\(455\) −204.667 201.944i −0.449818 0.443833i
\(456\) 0 0
\(457\) 155.873 + 89.9933i 0.341079 + 0.196922i 0.660749 0.750607i \(-0.270239\pi\)
−0.319670 + 0.947529i \(0.603572\pi\)
\(458\) −973.518 −2.12558
\(459\) 0 0
\(460\) −166.464 + 45.8010i −0.361877 + 0.0995673i
\(461\) −505.060 291.597i −1.09558 0.632531i −0.160520 0.987033i \(-0.551317\pi\)
−0.935055 + 0.354502i \(0.884650\pi\)
\(462\) 0 0
\(463\) −13.6629 + 7.88827i −0.0295095 + 0.0170373i −0.514682 0.857381i \(-0.672090\pi\)
0.485173 + 0.874418i \(0.338757\pi\)
\(464\) 406.100 234.462i 0.875215 0.505306i
\(465\) 0 0
\(466\) 47.6035 82.4517i 0.102154 0.176935i
\(467\) −400.171 −0.856896 −0.428448 0.903566i \(-0.640940\pi\)
−0.428448 + 0.903566i \(0.640940\pi\)
\(468\) 0 0
\(469\) −647.294 −1.38016
\(470\) 248.677 953.577i 0.529100 2.02889i
\(471\) 0 0
\(472\) 603.099 348.199i 1.27775 0.737711i
\(473\) −463.820 803.360i −0.980592 1.69843i
\(474\) 0 0
\(475\) −5.30263 395.818i −0.0111634 0.833302i
\(476\) 957.189i 2.01090i
\(477\) 0 0
\(478\) 61.7480i 0.129180i
\(479\) 140.425 + 81.0741i 0.293162 + 0.169257i 0.639367 0.768902i \(-0.279197\pi\)
−0.346205 + 0.938159i \(0.612530\pi\)
\(480\) 0 0
\(481\) 32.9362 + 57.0471i 0.0684744 + 0.118601i
\(482\) 355.181 + 615.192i 0.736891 + 1.27633i
\(483\) 0 0
\(484\) 326.737 565.925i 0.675077 1.16927i
\(485\) 84.7576 + 308.051i 0.174758 + 0.635157i
\(486\) 0 0
\(487\) 328.071i 0.673658i −0.941566 0.336829i \(-0.890646\pi\)
0.941566 0.336829i \(-0.109354\pi\)
\(488\) −659.390 + 1142.10i −1.35121 + 2.34036i
\(489\) 0 0
\(490\) 1416.52 + 1397.67i 2.89087 + 2.85240i
\(491\) 34.1647 19.7250i 0.0695819 0.0401731i −0.464805 0.885413i \(-0.653876\pi\)
0.534387 + 0.845240i \(0.320542\pi\)
\(492\) 0 0
\(493\) −211.473 122.094i −0.428952 0.247655i
\(494\) 248.296i 0.502623i
\(495\) 0 0
\(496\) 555.726 1.12041
\(497\) −432.855 + 749.727i −0.870936 + 1.50850i
\(498\) 0 0
\(499\) 37.8512 + 65.5602i 0.0758541 + 0.131383i 0.901457 0.432868i \(-0.142498\pi\)
−0.825603 + 0.564251i \(0.809165\pi\)
\(500\) 987.710 + 243.496i 1.97542 + 0.486991i
\(501\) 0 0
\(502\) 353.602 + 204.152i 0.704385 + 0.406677i
\(503\) −139.725 −0.277784 −0.138892 0.990308i \(-0.544354\pi\)
−0.138892 + 0.990308i \(0.544354\pi\)
\(504\) 0 0
\(505\) −106.934 388.652i −0.211751 0.769607i
\(506\) 181.632 + 104.865i 0.358956 + 0.207243i
\(507\) 0 0
\(508\) 806.966 465.902i 1.58851 0.917129i
\(509\) 694.059 400.715i 1.36357 0.787259i 0.373475 0.927640i \(-0.378166\pi\)
0.990098 + 0.140381i \(0.0448327\pi\)
\(510\) 0 0
\(511\) 336.509 582.851i 0.658530 1.14061i
\(512\) 950.213 1.85588
\(513\) 0 0
\(514\) −534.322 −1.03954
\(515\) 174.045 + 45.3879i 0.337951 + 0.0881319i
\(516\) 0 0
\(517\) −695.095 + 401.313i −1.34448 + 0.776234i
\(518\) −325.733 564.186i −0.628828 1.08916i
\(519\) 0 0
\(520\) −313.960 81.8755i −0.603769 0.157453i
\(521\) 472.323i 0.906570i −0.891366 0.453285i \(-0.850252\pi\)
0.891366 0.453285i \(-0.149748\pi\)
\(522\) 0 0
\(523\) 843.303i 1.61243i −0.591620 0.806217i \(-0.701511\pi\)
0.591620 0.806217i \(-0.298489\pi\)
\(524\) 1205.94 + 696.252i 2.30142 + 1.32873i
\(525\) 0 0
\(526\) 459.008 + 795.025i 0.872639 + 1.51145i
\(527\) −144.695 250.619i −0.274563 0.475557i
\(528\) 0 0
\(529\) 255.499 442.537i 0.482985 0.836554i
\(530\) 300.377 82.6461i 0.566749 0.155936i
\(531\) 0 0
\(532\) 1646.39i 3.09472i
\(533\) 100.480 174.036i 0.188518 0.326522i
\(534\) 0 0
\(535\) −77.1353 76.1088i −0.144178 0.142259i
\(536\) −632.586 + 365.224i −1.18020 + 0.681388i
\(537\) 0 0
\(538\) −31.4452 18.1549i −0.0584484 0.0337452i
\(539\) 1620.76i 3.00698i
\(540\) 0 0
\(541\) 797.318 1.47379 0.736893 0.676010i \(-0.236292\pi\)
0.736893 + 0.676010i \(0.236292\pi\)
\(542\) 873.770 1513.41i 1.61212 2.79228i
\(543\) 0 0
\(544\) 18.0431 + 31.2515i 0.0331674 + 0.0574477i
\(545\) −3.88721 3.83549i −0.00713250 0.00703759i
\(546\) 0 0
\(547\) −764.052 441.126i −1.39680 0.806446i −0.402748 0.915311i \(-0.631945\pi\)
−0.994057 + 0.108865i \(0.965278\pi\)
\(548\) −296.401 −0.540877
\(549\) 0 0
\(550\) −632.164 1061.83i −1.14939 1.93060i
\(551\) 363.740 + 210.005i 0.660145 + 0.381135i
\(552\) 0 0
\(553\) −607.407 + 350.687i −1.09839 + 0.634153i
\(554\) 1059.87 611.915i 1.91312 1.10454i
\(555\) 0 0
\(556\) −308.376 + 534.122i −0.554632 + 0.960652i
\(557\) 589.979 1.05921 0.529604 0.848245i \(-0.322341\pi\)
0.529604 + 0.848245i \(0.322341\pi\)
\(558\) 0 0
\(559\) 294.278 0.526436
\(560\) 1092.77 + 284.975i 1.95137 + 0.508883i
\(561\) 0 0
\(562\) 881.401 508.877i 1.56833 0.905476i
\(563\) 393.077 + 680.830i 0.698183 + 1.20929i 0.969096 + 0.246685i \(0.0793414\pi\)
−0.270912 + 0.962604i \(0.587325\pi\)
\(564\) 0 0
\(565\) 192.052 736.444i 0.339915 1.30344i
\(566\) 655.191i 1.15758i
\(567\) 0 0
\(568\) 976.922i 1.71993i
\(569\) −944.299 545.191i −1.65958 0.958157i −0.972910 0.231185i \(-0.925740\pi\)
−0.686667 0.726972i \(-0.740927\pi\)
\(570\) 0 0
\(571\) 1.34031 + 2.32148i 0.00234730 + 0.00406565i 0.867197 0.497966i \(-0.165919\pi\)
−0.864849 + 0.502031i \(0.832586\pi\)
\(572\) 259.846 + 450.066i 0.454276 + 0.786829i
\(573\) 0 0
\(574\) −993.730 + 1721.19i −1.73124 + 2.99859i
\(575\) 91.1431 54.2622i 0.158510 0.0943691i
\(576\) 0 0
\(577\) 802.089i 1.39010i 0.718960 + 0.695051i \(0.244618\pi\)
−0.718960 + 0.695051i \(0.755382\pi\)
\(578\) −355.811 + 616.282i −0.615590 + 1.06623i
\(579\) 0 0
\(580\) −758.095 + 768.319i −1.30706 + 1.32469i
\(581\) −28.2980 + 16.3379i −0.0487057 + 0.0281202i
\(582\) 0 0
\(583\) −219.742 126.868i −0.376917 0.217613i
\(584\) 759.476i 1.30047i
\(585\) 0 0
\(586\) −1079.93 −1.84289
\(587\) 554.555 960.517i 0.944727 1.63632i 0.188431 0.982086i \(-0.439660\pi\)
0.756296 0.654230i \(-0.227007\pi\)
\(588\) 0 0
\(589\) 248.879 + 431.072i 0.422545 + 0.731870i
\(590\) −590.973 + 598.943i −1.00165 + 1.01516i
\(591\) 0 0
\(592\) −224.065 129.364i −0.378488 0.218520i
\(593\) 633.417 1.06816 0.534078 0.845435i \(-0.320659\pi\)
0.534078 + 0.845435i \(0.320659\pi\)
\(594\) 0 0
\(595\) −156.008 567.009i −0.262198 0.952957i
\(596\) −1349.09 778.898i −2.26358 1.30688i
\(597\) 0 0
\(598\) −57.6195 + 33.2666i −0.0963537 + 0.0556298i
\(599\) 454.283 262.281i 0.758403 0.437864i −0.0703190 0.997525i \(-0.522402\pi\)
0.828722 + 0.559660i \(0.189068\pi\)
\(600\) 0 0
\(601\) −347.002 + 601.024i −0.577374 + 1.00004i 0.418406 + 0.908260i \(0.362589\pi\)
−0.995779 + 0.0917802i \(0.970744\pi\)
\(602\) −2910.36 −4.83448
\(603\) 0 0
\(604\) 1946.98 3.22347
\(605\) −101.312 + 388.490i −0.167457 + 0.642133i
\(606\) 0 0
\(607\) 779.225 449.886i 1.28373 0.741163i 0.306203 0.951966i \(-0.400941\pi\)
0.977528 + 0.210804i \(0.0676081\pi\)
\(608\) −31.0346 53.7536i −0.0510438 0.0884104i
\(609\) 0 0
\(610\) 402.085 1541.84i 0.659155 2.52760i
\(611\) 254.619i 0.416726i
\(612\) 0 0
\(613\) 966.059i 1.57595i 0.615706 + 0.787976i \(0.288871\pi\)
−0.615706 + 0.787976i \(0.711129\pi\)
\(614\) 434.140 + 250.651i 0.707069 + 0.408226i
\(615\) 0 0
\(616\) −1306.74 2263.35i −2.12134 3.67427i
\(617\) 139.629 + 241.844i 0.226302 + 0.391967i 0.956709 0.291045i \(-0.0940029\pi\)
−0.730407 + 0.683012i \(0.760670\pi\)
\(618\) 0 0
\(619\) 419.292 726.234i 0.677369 1.17324i −0.298401 0.954441i \(-0.596453\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(620\) −1233.33 + 339.339i −1.98924 + 0.547322i
\(621\) 0 0
\(622\) 97.0765i 0.156071i
\(623\) −528.503 + 915.394i −0.848319 + 1.46933i
\(624\) 0 0
\(625\) −624.776 + 16.7428i −0.999641 + 0.0267885i
\(626\) −1261.09 + 728.092i −2.01453 + 1.16309i
\(627\) 0 0
\(628\) 1010.29 + 583.292i 1.60874 + 0.928809i
\(629\) 134.730i 0.214198i
\(630\) 0 0
\(631\) −544.887 −0.863529 −0.431764 0.901986i \(-0.642109\pi\)
−0.431764 + 0.901986i \(0.642109\pi\)
\(632\) −395.737 + 685.437i −0.626167 + 1.08455i
\(633\) 0 0
\(634\) −116.834 202.362i −0.184280 0.319183i
\(635\) −402.087 + 407.509i −0.633207 + 0.641747i
\(636\) 0 0
\(637\) 445.275 + 257.080i 0.699019 + 0.403579i
\(638\) 1311.18 2.05514
\(639\) 0 0
\(640\) −1033.88 + 284.464i −1.61544 + 0.444475i
\(641\) −0.254013 0.146655i −0.000396276 0.000228790i 0.499802 0.866140i \(-0.333406\pi\)
−0.500198 + 0.865911i \(0.666739\pi\)
\(642\) 0 0
\(643\) −134.596 + 77.7089i −0.209325 + 0.120854i −0.600997 0.799251i \(-0.705230\pi\)
0.391673 + 0.920105i \(0.371897\pi\)
\(644\) 382.062 220.583i 0.593264 0.342521i
\(645\) 0 0
\(646\) −253.923 + 439.807i −0.393069 + 0.680816i
\(647\) 657.668 1.01649 0.508244 0.861213i \(-0.330295\pi\)
0.508244 + 0.861213i \(0.330295\pi\)
\(648\) 0 0
\(649\) 685.301 1.05593
\(650\) 391.991 5.25136i 0.603063 0.00807901i
\(651\) 0 0
\(652\) −979.358 + 565.433i −1.50208 + 0.867228i
\(653\) −503.101 871.396i −0.770446 1.33445i −0.937319 0.348473i \(-0.886700\pi\)
0.166873 0.985978i \(-0.446633\pi\)
\(654\) 0 0
\(655\) −827.843 215.888i −1.26388 0.329599i
\(656\) 789.314i 1.20322i
\(657\) 0 0
\(658\) 2518.14i 3.82697i
\(659\) −1083.60 625.615i −1.64431 0.949340i −0.979278 0.202522i \(-0.935086\pi\)
−0.665028 0.746818i \(-0.731581\pi\)
\(660\) 0 0
\(661\) 398.585 + 690.369i 0.603002 + 1.04443i 0.992364 + 0.123346i \(0.0393624\pi\)
−0.389361 + 0.921085i \(0.627304\pi\)
\(662\) −185.498 321.292i −0.280208 0.485335i
\(663\) 0 0
\(664\) −18.4367 + 31.9333i −0.0277661 + 0.0480923i
\(665\) 268.338 + 975.273i 0.403515 + 1.46658i
\(666\) 0 0
\(667\) 112.546i 0.168735i
\(668\) 836.533 1448.92i 1.25229 2.16904i
\(669\) 0 0
\(670\) 619.867 628.227i 0.925175 0.937653i
\(671\) −1123.90 + 648.882i −1.67496 + 0.967037i
\(672\) 0 0
\(673\) 1083.26 + 625.421i 1.60960 + 0.929303i 0.989459 + 0.144812i \(0.0462579\pi\)
0.620141 + 0.784491i \(0.287075\pi\)
\(674\) 1856.55i 2.75452i
\(675\) 0 0
\(676\) 1210.50 1.79068
\(677\) 302.147 523.335i 0.446303 0.773020i −0.551839 0.833951i \(-0.686074\pi\)
0.998142 + 0.0609308i \(0.0194069\pi\)
\(678\) 0 0
\(679\) −408.203 707.029i −0.601183 1.04128i
\(680\) −472.388 466.102i −0.694688 0.685443i
\(681\) 0 0
\(682\) 1345.71 + 776.945i 1.97318 + 1.13922i
\(683\) 707.854 1.03639 0.518195 0.855263i \(-0.326604\pi\)
0.518195 + 0.855263i \(0.326604\pi\)
\(684\) 0 0
\(685\) 175.579 48.3089i 0.256319 0.0705240i
\(686\) −2514.78 1451.91i −3.66587 2.11649i
\(687\) 0 0
\(688\) −1000.99 + 577.920i −1.45492 + 0.840000i
\(689\) 69.7095 40.2468i 0.101175 0.0584134i
\(690\) 0 0
\(691\) −243.104 + 421.069i −0.351815 + 0.609362i −0.986568 0.163354i \(-0.947769\pi\)
0.634752 + 0.772716i \(0.281102\pi\)
\(692\) −386.872 −0.559063
\(693\) 0 0
\(694\) −9.44604 −0.0136110
\(695\) 95.6183 366.658i 0.137580 0.527566i
\(696\) 0 0
\(697\) 355.961 205.514i 0.510705 0.294855i
\(698\) −346.403 599.987i −0.496279 0.859580i
\(699\) 0 0
\(700\) −2599.20 + 34.8205i −3.71314 + 0.0497436i
\(701\) 646.017i 0.921564i −0.887513 0.460782i \(-0.847569\pi\)
0.887513 0.460782i \(-0.152431\pi\)
\(702\) 0 0
\(703\) 231.740i 0.329645i
\(704\) 701.045 + 404.748i 0.995802 + 0.574927i
\(705\) 0 0
\(706\) −437.504 757.780i −0.619695 1.07334i
\(707\) 515.008 + 892.020i 0.728441 + 1.26170i
\(708\) 0 0
\(709\) −319.634 + 553.622i −0.450823 + 0.780849i −0.998437 0.0558820i \(-0.982203\pi\)
0.547614 + 0.836731i \(0.315536\pi\)
\(710\) −313.128 1138.06i −0.441026 1.60291i
\(711\) 0 0
\(712\) 1192.79i 1.67527i
\(713\) −66.6896 + 115.510i −0.0935338 + 0.162005i
\(714\) 0 0
\(715\) −227.279 224.255i −0.317873 0.313643i
\(716\) −876.044 + 505.784i −1.22352 + 0.706402i
\(717\) 0 0
\(718\) 949.943 + 548.450i 1.32304 + 0.763858i
\(719\) 1060.47i 1.47493i −0.675386 0.737465i \(-0.736023\pi\)
0.675386 0.737465i \(-0.263977\pi\)
\(720\) 0 0
\(721\) −459.606 −0.637456
\(722\) −192.107 + 332.739i −0.266076 + 0.460858i
\(723\) 0 0
\(724\) 49.1428 + 85.1178i 0.0678768 + 0.117566i
\(725\) 323.848 578.687i 0.446686 0.798189i
\(726\) 0 0
\(727\) −692.899 400.045i −0.953093 0.550269i −0.0590528 0.998255i \(-0.518808\pi\)
−0.894040 + 0.447986i \(0.852141\pi\)
\(728\) 829.085 1.13885
\(729\) 0 0
\(730\) 243.431 + 884.751i 0.333468 + 1.21199i
\(731\) 521.255 + 300.947i 0.713072 + 0.411692i
\(732\) 0 0
\(733\) 8.38843 4.84307i 0.0114440 0.00660718i −0.494267 0.869310i \(-0.664564\pi\)
0.505711 + 0.862703i \(0.331230\pi\)
\(734\) −680.061 + 392.633i −0.926514 + 0.534923i
\(735\) 0 0
\(736\) 8.31603 14.4038i 0.0112990 0.0195704i
\(737\) −718.807 −0.975315
\(738\) 0 0
\(739\) −1107.89 −1.49918 −0.749590 0.661902i \(-0.769749\pi\)
−0.749590 + 0.661902i \(0.769749\pi\)
\(740\) 576.263 + 150.280i 0.778733 + 0.203080i
\(741\) 0 0
\(742\) −689.416 + 398.034i −0.929131 + 0.536434i
\(743\) −390.228 675.894i −0.525206 0.909683i −0.999569 0.0293537i \(-0.990655\pi\)
0.474364 0.880329i \(-0.342678\pi\)
\(744\) 0 0
\(745\) 926.110 + 241.514i 1.24310 + 0.324180i
\(746\) 1746.11i 2.34063i
\(747\) 0 0
\(748\) 1062.94i 1.42104i
\(749\) 239.799 + 138.448i 0.320158 + 0.184843i
\(750\) 0 0
\(751\) 36.6548 + 63.4880i 0.0488080 + 0.0845379i 0.889397 0.457135i \(-0.151124\pi\)
−0.840589 + 0.541673i \(0.817791\pi\)
\(752\) 500.036 + 866.088i 0.664942 + 1.15171i
\(753\) 0 0
\(754\) −207.975 + 360.223i −0.275828 + 0.477749i
\(755\) −1153.33 + 317.328i −1.52759 + 0.420302i
\(756\) 0 0
\(757\) 95.5082i 0.126167i 0.998008 + 0.0630834i \(0.0200934\pi\)
−0.998008 + 0.0630834i \(0.979907\pi\)
\(758\) 5.87697 10.1792i 0.00775325 0.0134290i
\(759\) 0 0
\(760\) 812.521 + 801.708i 1.06911 + 1.05488i
\(761\) 683.596 394.674i 0.898286 0.518626i 0.0216424 0.999766i \(-0.493110\pi\)
0.876644 + 0.481140i \(0.159777\pi\)
\(762\) 0 0
\(763\) 12.0846 + 6.97704i 0.0158383 + 0.00914422i
\(764\) 2325.22i 3.04348i
\(765\) 0 0
\(766\) 1446.07 1.88781
\(767\) −108.700 + 188.274i −0.141721 + 0.245468i
\(768\) 0 0
\(769\) 15.0251 + 26.0242i 0.0195385 + 0.0338416i 0.875629 0.482984i \(-0.160447\pi\)
−0.856091 + 0.516825i \(0.827114\pi\)
\(770\) 2247.75 + 2217.84i 2.91916 + 2.88031i
\(771\) 0 0
\(772\) −2317.83 1338.20i −3.00237 1.73342i
\(773\) −1290.89 −1.66998 −0.834988 0.550269i \(-0.814525\pi\)
−0.834988 + 0.550269i \(0.814525\pi\)
\(774\) 0 0
\(775\) 675.279 402.029i 0.871328 0.518747i
\(776\) −797.857 460.643i −1.02817 0.593612i
\(777\) 0 0
\(778\) −2228.86 + 1286.83i −2.86486 + 1.65403i
\(779\) −612.264 + 353.491i −0.785961 + 0.453775i
\(780\) 0 0
\(781\) −480.677 + 832.557i −0.615463 + 1.06601i
\(782\) −136.082 −0.174018
\(783\) 0 0
\(784\) −2019.47 −2.57586
\(785\) −693.534 180.862i −0.883482 0.230397i
\(786\) 0 0
\(787\) −74.1557 + 42.8138i −0.0942258 + 0.0544013i −0.546372 0.837542i \(-0.683992\pi\)
0.452147 + 0.891944i \(0.350658\pi\)
\(788\) 367.502 + 636.532i 0.466373 + 0.807781i
\(789\) 0 0
\(790\) 241.314 925.343i 0.305461 1.17132i
\(791\) 1944.75i 2.45860i
\(792\) 0 0
\(793\) 411.693i 0.519159i
\(794\) 778.815 + 449.649i 0.980876 + 0.566309i
\(795\) 0 0
\(796\) −1.28510 2.22585i −0.00161444 0.00279630i
\(797\) −378.821 656.137i −0.475308 0.823258i 0.524292 0.851539i \(-0.324330\pi\)
−0.999600 + 0.0282806i \(0.990997\pi\)
\(798\) 0 0
\(799\) 260.390 451.008i 0.325895 0.564466i
\(800\) −84.2057 + 50.1320i −0.105257 + 0.0626650i
\(801\) 0 0
\(802\) 1044.09i 1.30186i
\(803\) 373.687 647.244i 0.465363 0.806032i
\(804\) 0 0
\(805\) −190.370 + 192.937i −0.236484 + 0.239674i
\(806\) −426.903 + 246.473i −0.529656 + 0.305797i
\(807\) 0 0
\(808\) 1006.61 + 581.168i 1.24581 + 0.719267i
\(809\) 624.032i 0.771362i 0.922632 + 0.385681i \(0.126033\pi\)
−0.922632 + 0.385681i \(0.873967\pi\)
\(810\) 0 0
\(811\) 972.993 1.19974 0.599872 0.800096i \(-0.295218\pi\)
0.599872 + 0.800096i \(0.295218\pi\)
\(812\) 1379.03 2388.55i 1.69832 2.94157i
\(813\) 0 0
\(814\) −361.720 626.518i −0.444374 0.769678i
\(815\) 487.985 494.566i 0.598754 0.606829i
\(816\) 0 0
\(817\) −896.575 517.638i −1.09740 0.633583i
\(818\) 1914.04 2.33990
\(819\) 0 0
\(820\) −481.974 1751.73i −0.587773 2.13626i
\(821\) 810.895 + 468.170i 0.987692 + 0.570244i 0.904584 0.426296i \(-0.140182\pi\)
0.0831083 + 0.996541i \(0.473515\pi\)
\(822\) 0 0
\(823\) 222.467 128.441i 0.270312 0.156065i −0.358717 0.933446i \(-0.616786\pi\)
0.629030 + 0.777381i \(0.283452\pi\)
\(824\) −449.163 + 259.324i −0.545100 + 0.314714i
\(825\) 0 0
\(826\) 1075.02 1862.00i 1.30148 2.25423i
\(827\) −13.1651 −0.0159191 −0.00795957 0.999968i \(-0.502534\pi\)
−0.00795957 + 0.999968i \(0.502534\pi\)
\(828\) 0 0
\(829\) −1494.14 −1.80234 −0.901171 0.433464i \(-0.857291\pi\)
−0.901171 + 0.433464i \(0.857291\pi\)
\(830\) 11.2424 43.1101i 0.0135450 0.0519398i
\(831\) 0 0
\(832\) −222.395 + 128.400i −0.267301 + 0.154326i
\(833\) 525.812 + 910.733i 0.631227 + 1.09332i
\(834\) 0 0
\(835\) −259.385 + 994.637i −0.310640 + 1.19118i
\(836\) 1828.29i 2.18695i
\(837\) 0 0
\(838\) 864.004i 1.03103i
\(839\) 97.3526 + 56.2066i 0.116034 + 0.0669923i 0.556894 0.830584i \(-0.311993\pi\)
−0.440860 + 0.897576i \(0.645326\pi\)
\(840\) 0 0
\(841\) −68.6954 118.984i −0.0816830 0.141479i
\(842\) −568.500 984.671i −0.675178 1.16944i
\(843\) 0 0
\(844\) 1336.19 2314.36i 1.58317 2.74213i
\(845\) −717.064 + 197.294i −0.848597 + 0.233484i
\(846\) 0 0
\(847\) 1025.90i 1.21122i
\(848\) −158.078 + 273.799i −0.186413 + 0.322876i
\(849\) 0 0
\(850\) 699.705 + 391.572i 0.823182 + 0.460673i
\(851\) 53.7776 31.0485i 0.0631934 0.0364847i
\(852\) 0 0
\(853\) 54.0966 + 31.2327i 0.0634192 + 0.0366151i 0.531374 0.847137i \(-0.321676\pi\)
−0.467955 + 0.883752i \(0.655009\pi\)
\(854\) 4071.58i 4.76766i
\(855\) 0 0
\(856\) 312.467 0.365031
\(857\) −763.782 + 1322.91i −0.891228 + 1.54365i −0.0528232 + 0.998604i \(0.516822\pi\)
−0.838405 + 0.545048i \(0.816511\pi\)
\(858\) 0 0
\(859\) 432.136 + 748.481i 0.503068 + 0.871340i 0.999994 + 0.00354649i \(0.00112888\pi\)
−0.496926 + 0.867793i \(0.665538\pi\)
\(860\) 1868.61 1893.81i 2.17280 2.20211i
\(861\) 0 0
\(862\) 290.768 + 167.875i 0.337318 + 0.194751i
\(863\) −593.430 −0.687636 −0.343818 0.939036i \(-0.611720\pi\)
−0.343818 + 0.939036i \(0.611720\pi\)
\(864\) 0 0
\(865\) 229.171 63.0544i 0.264938 0.0728952i
\(866\) 2027.87 + 1170.79i 2.34165 + 1.35195i
\(867\) 0 0
\(868\) 2830.70 1634.30i 3.26117 1.88284i
\(869\) −674.514 + 389.431i −0.776196 + 0.448137i
\(870\) 0 0
\(871\) 114.015 197.479i 0.130901 0.226727i
\(872\) 15.7467 0.0180581
\(873\) 0 0
\(874\) 234.065 0.267809
\(875\) 1534.01 444.258i 1.75316 0.507723i
\(876\) 0 0
\(877\) 69.3714 40.0516i 0.0791008 0.0456689i −0.459928 0.887956i \(-0.652125\pi\)
0.539029 + 0.842287i \(0.318791\pi\)
\(878\) 180.738 + 313.047i 0.205851 + 0.356545i
\(879\) 0 0
\(880\) 1213.49 + 316.459i 1.37897 + 0.359612i
\(881\) 612.391i 0.695109i 0.937660 + 0.347555i \(0.112988\pi\)
−0.937660 + 0.347555i \(0.887012\pi\)
\(882\) 0 0
\(883\) 1106.80i 1.25345i 0.779239 + 0.626727i \(0.215606\pi\)
−0.779239 + 0.626727i \(0.784394\pi\)
\(884\) −292.023 168.600i −0.330343 0.190724i
\(885\) 0 0
\(886\) 396.755 + 687.199i 0.447804 + 0.775620i
\(887\) 370.500 + 641.725i 0.417700 + 0.723477i 0.995708 0.0925538i \(-0.0295030\pi\)
−0.578008 + 0.816031i \(0.696170\pi\)
\(888\) 0 0
\(889\) 731.426 1266.87i 0.822752 1.42505i
\(890\) −382.320 1389.54i −0.429573 1.56128i
\(891\) 0 0
\(892\) 411.461i 0.461279i
\(893\) −447.878 + 775.748i −0.501543 + 0.868698i
\(894\) 0 0
\(895\) 436.506 442.393i 0.487717 0.494294i
\(896\) 2372.94 1370.02i 2.64837 1.52904i
\(897\) 0 0
\(898\) −1520.99 878.142i −1.69375 0.977887i
\(899\) 833.853i 0.927534i
\(900\) 0 0
\(901\) 164.636 0.182725
\(902\) −1103.52 + 1911.35i −1.22341 + 2.11901i
\(903\) 0 0
\(904\) 1097.29 + 1900.56i 1.21382 + 2.10239i
\(905\) −42.9836 42.4116i −0.0474957 0.0468637i
\(906\) 0 0
\(907\) 256.204 + 147.920i 0.282475 + 0.163087i 0.634543 0.772887i \(-0.281188\pi\)
−0.352069 + 0.935974i \(0.614522\pi\)
\(908\) −2449.72 −2.69793
\(909\) 0 0
\(910\) −965.842 + 265.743i −1.06136 + 0.292025i
\(911\) −602.338 347.760i −0.661183 0.381734i 0.131544 0.991310i \(-0.458006\pi\)
−0.792728 + 0.609576i \(0.791340\pi\)
\(912\) 0 0
\(913\) −31.4244 + 18.1429i −0.0344188 + 0.0198717i
\(914\) 543.061 313.537i 0.594159 0.343038i
\(915\) 0 0
\(916\) −1137.02 + 1969.37i −1.24128 + 2.14997i
\(917\) 2186.11 2.38399
\(918\) 0 0
\(919\) 60.1197 0.0654186 0.0327093 0.999465i \(-0.489586\pi\)
0.0327093 + 0.999465i \(0.489586\pi\)
\(920\) −77.1830 + 295.966i −0.0838946 + 0.321702i
\(921\) 0 0
\(922\) −1759.63 + 1015.92i −1.90849 + 1.10187i
\(923\) −152.487 264.115i −0.165208 0.286148i
\(924\) 0 0
\(925\) −365.854 + 4.90121i −0.395518 + 0.00529861i
\(926\) 54.9654i 0.0593579i
\(927\) 0 0
\(928\) 103.979i 0.112047i
\(929\) 1236.02 + 713.617i 1.33049 + 0.768156i 0.985374 0.170405i \(-0.0545077\pi\)
0.345112 + 0.938562i \(0.387841\pi\)
\(930\) 0 0
\(931\) −904.412 1566.49i −0.971441 1.68259i
\(932\) −111.197 192.598i −0.119310 0.206651i
\(933\) 0 0
\(934\) −697.097 + 1207.41i −0.746356 + 1.29273i
\(935\) −173.243 629.653i −0.185287 0.673425i
\(936\) 0 0
\(937\) 174.346i 0.186068i −0.995663 0.0930341i \(-0.970343\pi\)
0.995663 0.0930341i \(-0.0296566\pi\)
\(938\) −1127.59 + 1953.04i −1.20212 + 2.08213i
\(939\) 0 0
\(940\) −1638.59 1616.79i −1.74318 1.71999i
\(941\) 397.871 229.711i 0.422818 0.244114i −0.273464 0.961882i \(-0.588170\pi\)
0.696282 + 0.717768i \(0.254836\pi\)
\(942\) 0 0
\(943\) −164.062 94.7212i −0.173979 0.100447i
\(944\) 853.885i 0.904540i
\(945\) 0 0
\(946\) −3231.90 −3.41638
\(947\) −426.988 + 739.564i −0.450884 + 0.780955i −0.998441 0.0558137i \(-0.982225\pi\)
0.547557 + 0.836769i \(0.315558\pi\)
\(948\) 0 0
\(949\) 118.546 + 205.327i 0.124916 + 0.216362i
\(950\) −1203.51 673.516i −1.26686 0.708964i
\(951\) 0 0
\(952\) 1468.56 + 847.874i 1.54261 + 0.890624i
\(953\) 1103.28 1.15769 0.578843 0.815439i \(-0.303504\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(954\) 0 0
\(955\) 378.976 + 1377.39i 0.396834 + 1.44229i
\(956\) −124.913 72.1183i −0.130662 0.0754376i
\(957\) 0 0
\(958\) 489.239 282.462i 0.510688 0.294846i
\(959\) −402.982 + 232.662i −0.420211 + 0.242609i
\(960\) 0 0
\(961\) −13.6034 + 23.5618i −0.0141555 + 0.0245180i
\(962\) 229.499 0.238565
\(963\) 0 0
\(964\) 1659.33 1.72130
\(965\) 1591.12 + 414.937i 1.64883 + 0.429987i
\(966\) 0 0
\(967\) 886.133 511.609i 0.916373 0.529068i 0.0338972 0.999425i \(-0.489208\pi\)
0.882476 + 0.470357i \(0.155875\pi\)
\(968\) −578.845 1002.59i −0.597981 1.03573i
\(969\) 0 0
\(970\) 1077.11 + 280.892i 1.11042 + 0.289580i
\(971\) 589.306i 0.606906i 0.952846 + 0.303453i \(0.0981395\pi\)
−0.952846 + 0.303453i \(0.901860\pi\)
\(972\) 0 0
\(973\) 968.247i 0.995115i
\(974\) −989.868 571.500i −1.01629 0.586756i
\(975\) 0 0
\(976\) 808.507 + 1400.38i 0.828389 + 1.43481i
\(977\) 378.616 + 655.783i 0.387530 + 0.671221i 0.992117 0.125318i \(-0.0399952\pi\)
−0.604587 + 0.796539i \(0.706662\pi\)
\(978\) 0 0
\(979\) −586.892 + 1016.53i −0.599481 + 1.03833i
\(980\) 4481.84 1233.14i 4.57331 1.25830i
\(981\) 0 0
\(982\) 137.444i 0.139963i
\(983\) 701.951 1215.82i 0.714091 1.23684i −0.249218 0.968447i \(-0.580174\pi\)
0.963309 0.268394i \(-0.0864930\pi\)
\(984\) 0 0
\(985\) −321.442 317.165i −0.326337 0.321995i
\(986\) −736.772 + 425.376i −0.747234 + 0.431416i
\(987\) 0 0
\(988\) 502.288 + 289.996i 0.508389 + 0.293519i
\(989\) 277.412i 0.280498i
\(990\) 0 0
\(991\) 1778.87 1.79502 0.897512 0.440990i \(-0.145373\pi\)
0.897512 + 0.440990i \(0.145373\pi\)
\(992\) 61.6135 106.718i 0.0621104 0.107578i
\(993\) 0 0
\(994\) 1508.07 + 2612.05i 1.51717 + 2.62782i
\(995\) 1.12403 + 1.10908i 0.00112968 + 0.00111465i
\(996\) 0 0
\(997\) 1207.19 + 696.970i 1.21082 + 0.699067i 0.962938 0.269723i \(-0.0869321\pi\)
0.247882 + 0.968790i \(0.420265\pi\)
\(998\) 263.747 0.264276
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.269.22 48
3.2 odd 2 inner 405.3.h.k.269.3 48
5.4 even 2 inner 405.3.h.k.269.4 48
9.2 odd 6 405.3.d.b.404.21 yes 24
9.4 even 3 inner 405.3.h.k.134.21 48
9.5 odd 6 inner 405.3.h.k.134.4 48
9.7 even 3 405.3.d.b.404.4 yes 24
15.14 odd 2 inner 405.3.h.k.269.21 48
45.4 even 6 inner 405.3.h.k.134.3 48
45.14 odd 6 inner 405.3.h.k.134.22 48
45.29 odd 6 405.3.d.b.404.3 24
45.34 even 6 405.3.d.b.404.22 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.3 24 45.29 odd 6
405.3.d.b.404.4 yes 24 9.7 even 3
405.3.d.b.404.21 yes 24 9.2 odd 6
405.3.d.b.404.22 yes 24 45.34 even 6
405.3.h.k.134.3 48 45.4 even 6 inner
405.3.h.k.134.4 48 9.5 odd 6 inner
405.3.h.k.134.21 48 9.4 even 3 inner
405.3.h.k.134.22 48 45.14 odd 6 inner
405.3.h.k.269.3 48 3.2 odd 2 inner
405.3.h.k.269.4 48 5.4 even 2 inner
405.3.h.k.269.21 48 15.14 odd 2 inner
405.3.h.k.269.22 48 1.1 even 1 trivial