L(s) = 1 | + (1.74 − 3.01i)2-s + (−4.06 − 7.04i)4-s + (3.55 + 3.51i)5-s + (−11.0 − 6.38i)7-s − 14.4·8-s + (16.7 − 4.62i)10-s + (−12.2 − 7.09i)11-s + (3.89 − 2.25i)13-s + (−38.5 + 22.2i)14-s + (−8.83 + 15.3i)16-s + 9.20·17-s − 15.8·19-s + (10.2 − 39.3i)20-s + (−42.8 + 24.7i)22-s + (−2.12 − 3.67i)23-s + ⋯ |
L(s) = 1 | + (0.870 − 1.50i)2-s + (−1.01 − 1.76i)4-s + (0.711 + 0.702i)5-s + (−1.58 − 0.912i)7-s − 1.80·8-s + (1.67 − 0.462i)10-s + (−1.11 − 0.644i)11-s + (0.299 − 0.173i)13-s + (−2.75 + 1.58i)14-s + (−0.552 + 0.956i)16-s + 0.541·17-s − 0.833·19-s + (0.513 − 1.96i)20-s + (−1.94 + 1.12i)22-s + (−0.0922 − 0.159i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.770 - 0.637i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 405 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.529168 + 1.46916i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.529168 + 1.46916i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-3.55 - 3.51i)T \) |
good | 2 | \( 1 + (-1.74 + 3.01i)T + (-2 - 3.46i)T^{2} \) |
| 7 | \( 1 + (11.0 + 6.38i)T + (24.5 + 42.4i)T^{2} \) |
| 11 | \( 1 + (12.2 + 7.09i)T + (60.5 + 104. i)T^{2} \) |
| 13 | \( 1 + (-3.89 + 2.25i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 - 9.20T + 289T^{2} \) |
| 19 | \( 1 + 15.8T + 361T^{2} \) |
| 23 | \( 1 + (2.12 + 3.67i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (22.9 + 13.2i)T + (420.5 + 728. i)T^{2} \) |
| 31 | \( 1 + (15.7 + 27.2i)T + (-480.5 + 832. i)T^{2} \) |
| 37 | \( 1 - 14.6iT - 1.36e3T^{2} \) |
| 41 | \( 1 + (-38.6 + 22.3i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (-56.6 - 32.6i)T + (924.5 + 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-28.2 + 48.9i)T + (-1.10e3 - 1.91e3i)T^{2} \) |
| 53 | \( 1 - 17.8T + 2.80e3T^{2} \) |
| 59 | \( 1 + (41.8 - 24.1i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (-45.7 + 79.2i)T + (-1.86e3 - 3.22e3i)T^{2} \) |
| 67 | \( 1 + (-43.8 + 25.3i)T + (2.24e3 - 3.88e3i)T^{2} \) |
| 71 | \( 1 + 67.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 52.6iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-27.4 + 47.5i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (-1.27 + 2.21i)T + (-3.44e3 - 5.96e3i)T^{2} \) |
| 89 | \( 1 + 82.7iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-55.3 - 31.9i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.63108208165204202388271396340, −10.01622094598552736149265799900, −9.304184160490782747085152507638, −7.55123810147637224734594538309, −6.24699622491037760349193273384, −5.58144032758470522374707510728, −4.00291068846191814204682471860, −3.21519656618690040494528342790, −2.33959283354642094551032532438, −0.47722890147102395898790779486,
2.58291442416487439753732554839, 3.98866856958648909499217578164, 5.29394628617105097016379580796, 5.78069193874155976701647685913, 6.62105504753593425015674686888, 7.63776138698648071082864586235, 8.778009630336848157832924681230, 9.382407835535472227442060397439, 10.46176832030923340485612853396, 12.38911523179283198794272569264