Properties

Label 405.3.d.b.404.4
Level $405$
Weight $3$
Character 405.404
Analytic conductor $11.035$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(404,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.404"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 404.4
Character \(\chi\) \(=\) 405.404
Dual form 405.3.d.b.404.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.48400 q^{2} +8.13825 q^{4} +(-4.82085 + 1.32641i) q^{5} +12.7764i q^{7} -14.4177 q^{8} +(16.7958 - 4.62123i) q^{10} +14.1879i q^{11} +4.50087i q^{13} -44.5129i q^{14} +17.6781 q^{16} +9.20574 q^{17} -15.8342 q^{19} +(-39.2333 + 10.7947i) q^{20} -49.4307i q^{22} +4.24292 q^{23} +(21.4812 - 12.7889i) q^{25} -15.6810i q^{26} +103.977i q^{28} +26.5256i q^{29} +31.4358 q^{31} -3.91996 q^{32} -32.0728 q^{34} +(-16.9468 - 61.5930i) q^{35} +14.6355i q^{37} +55.1662 q^{38} +(69.5055 - 19.1238i) q^{40} +44.6491i q^{41} -65.3824i q^{43} +115.465i q^{44} -14.7823 q^{46} -56.5711 q^{47} -114.236 q^{49} +(-74.8407 + 44.5565i) q^{50} +36.6292i q^{52} +17.8840 q^{53} +(-18.8190 - 68.3978i) q^{55} -184.205i q^{56} -92.4153i q^{58} -48.3018i q^{59} -91.4697 q^{61} -109.522 q^{62} -57.0554 q^{64} +(-5.97002 - 21.6980i) q^{65} +50.6634i q^{67} +74.9187 q^{68} +(59.0425 + 214.590i) q^{70} -67.7587i q^{71} +52.6768i q^{73} -50.9899i q^{74} -128.862 q^{76} -181.270 q^{77} -54.8962 q^{79} +(-85.2237 + 23.4485i) q^{80} -155.558i q^{82} -2.55751 q^{83} +(-44.3795 + 12.2106i) q^{85} +227.792i q^{86} -204.557i q^{88} -82.7313i q^{89} -57.5048 q^{91} +34.5299 q^{92} +197.094 q^{94} +(76.3341 - 21.0026i) q^{95} -63.8998i q^{97} +397.997 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 48 q^{4} + 12 q^{10} + 96 q^{16} + 48 q^{25} + 144 q^{34} + 72 q^{40} - 168 q^{46} - 288 q^{49} - 132 q^{55} - 360 q^{61} - 72 q^{64} - 156 q^{70} + 48 q^{76} - 480 q^{79} - 456 q^{85} - 48 q^{91}+ \cdots + 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.48400 −1.74200 −0.871000 0.491283i \(-0.836528\pi\)
−0.871000 + 0.491283i \(0.836528\pi\)
\(3\) 0 0
\(4\) 8.13825 2.03456
\(5\) −4.82085 + 1.32641i −0.964171 + 0.265283i
\(6\) 0 0
\(7\) 12.7764i 1.82520i 0.408859 + 0.912598i \(0.365927\pi\)
−0.408859 + 0.912598i \(0.634073\pi\)
\(8\) −14.4177 −1.80221
\(9\) 0 0
\(10\) 16.7958 4.62123i 1.67958 0.462123i
\(11\) 14.1879i 1.28981i 0.764263 + 0.644905i \(0.223103\pi\)
−0.764263 + 0.644905i \(0.776897\pi\)
\(12\) 0 0
\(13\) 4.50087i 0.346221i 0.984902 + 0.173110i \(0.0553818\pi\)
−0.984902 + 0.173110i \(0.944618\pi\)
\(14\) 44.5129i 3.17949i
\(15\) 0 0
\(16\) 17.6781 1.10488
\(17\) 9.20574 0.541514 0.270757 0.962648i \(-0.412726\pi\)
0.270757 + 0.962648i \(0.412726\pi\)
\(18\) 0 0
\(19\) −15.8342 −0.833376 −0.416688 0.909049i \(-0.636809\pi\)
−0.416688 + 0.909049i \(0.636809\pi\)
\(20\) −39.2333 + 10.7947i −1.96167 + 0.539735i
\(21\) 0 0
\(22\) 49.4307i 2.24685i
\(23\) 4.24292 0.184475 0.0922373 0.995737i \(-0.470598\pi\)
0.0922373 + 0.995737i \(0.470598\pi\)
\(24\) 0 0
\(25\) 21.4812 12.7889i 0.859250 0.511556i
\(26\) 15.6810i 0.603117i
\(27\) 0 0
\(28\) 103.977i 3.71348i
\(29\) 26.5256i 0.914677i 0.889293 + 0.457338i \(0.151197\pi\)
−0.889293 + 0.457338i \(0.848803\pi\)
\(30\) 0 0
\(31\) 31.4358 1.01406 0.507028 0.861929i \(-0.330744\pi\)
0.507028 + 0.861929i \(0.330744\pi\)
\(32\) −3.91996 −0.122499
\(33\) 0 0
\(34\) −32.0728 −0.943318
\(35\) −16.9468 61.5930i −0.484193 1.75980i
\(36\) 0 0
\(37\) 14.6355i 0.395553i 0.980247 + 0.197777i \(0.0633720\pi\)
−0.980247 + 0.197777i \(0.936628\pi\)
\(38\) 55.1662 1.45174
\(39\) 0 0
\(40\) 69.5055 19.1238i 1.73764 0.478095i
\(41\) 44.6491i 1.08900i 0.838760 + 0.544502i \(0.183281\pi\)
−0.838760 + 0.544502i \(0.816719\pi\)
\(42\) 0 0
\(43\) 65.3824i 1.52052i −0.649618 0.760261i \(-0.725071\pi\)
0.649618 0.760261i \(-0.274929\pi\)
\(44\) 115.465i 2.62420i
\(45\) 0 0
\(46\) −14.7823 −0.321355
\(47\) −56.5711 −1.20364 −0.601821 0.798631i \(-0.705558\pi\)
−0.601821 + 0.798631i \(0.705558\pi\)
\(48\) 0 0
\(49\) −114.236 −2.33134
\(50\) −74.8407 + 44.5565i −1.49681 + 0.891130i
\(51\) 0 0
\(52\) 36.6292i 0.704408i
\(53\) 17.8840 0.337434 0.168717 0.985665i \(-0.446038\pi\)
0.168717 + 0.985665i \(0.446038\pi\)
\(54\) 0 0
\(55\) −18.8190 68.3978i −0.342164 1.24360i
\(56\) 184.205i 3.28938i
\(57\) 0 0
\(58\) 92.4153i 1.59337i
\(59\) 48.3018i 0.818674i −0.912383 0.409337i \(-0.865760\pi\)
0.912383 0.409337i \(-0.134240\pi\)
\(60\) 0 0
\(61\) −91.4697 −1.49950 −0.749752 0.661719i \(-0.769827\pi\)
−0.749752 + 0.661719i \(0.769827\pi\)
\(62\) −109.522 −1.76649
\(63\) 0 0
\(64\) −57.0554 −0.891491
\(65\) −5.97002 21.6980i −0.0918465 0.333816i
\(66\) 0 0
\(67\) 50.6634i 0.756170i 0.925771 + 0.378085i \(0.123417\pi\)
−0.925771 + 0.378085i \(0.876583\pi\)
\(68\) 74.9187 1.10175
\(69\) 0 0
\(70\) 59.0425 + 214.590i 0.843464 + 3.06557i
\(71\) 67.7587i 0.954348i −0.878809 0.477174i \(-0.841661\pi\)
0.878809 0.477174i \(-0.158339\pi\)
\(72\) 0 0
\(73\) 52.6768i 0.721600i 0.932643 + 0.360800i \(0.117496\pi\)
−0.932643 + 0.360800i \(0.882504\pi\)
\(74\) 50.9899i 0.689053i
\(75\) 0 0
\(76\) −128.862 −1.69556
\(77\) −181.270 −2.35415
\(78\) 0 0
\(79\) −54.8962 −0.694888 −0.347444 0.937701i \(-0.612950\pi\)
−0.347444 + 0.937701i \(0.612950\pi\)
\(80\) −85.2237 + 23.4485i −1.06530 + 0.293107i
\(81\) 0 0
\(82\) 155.558i 1.89704i
\(83\) −2.55751 −0.0308134 −0.0154067 0.999881i \(-0.504904\pi\)
−0.0154067 + 0.999881i \(0.504904\pi\)
\(84\) 0 0
\(85\) −44.3795 + 12.2106i −0.522112 + 0.143655i
\(86\) 227.792i 2.64875i
\(87\) 0 0
\(88\) 204.557i 2.32451i
\(89\) 82.7313i 0.929565i −0.885425 0.464783i \(-0.846132\pi\)
0.885425 0.464783i \(-0.153868\pi\)
\(90\) 0 0
\(91\) −57.5048 −0.631921
\(92\) 34.5299 0.375325
\(93\) 0 0
\(94\) 197.094 2.09674
\(95\) 76.3341 21.0026i 0.803517 0.221081i
\(96\) 0 0
\(97\) 63.8998i 0.658760i −0.944197 0.329380i \(-0.893160\pi\)
0.944197 0.329380i \(-0.106840\pi\)
\(98\) 397.997 4.06119
\(99\) 0 0
\(100\) 174.820 104.079i 1.74820 1.04079i
\(101\) 80.6189i 0.798206i 0.916906 + 0.399103i \(0.130678\pi\)
−0.916906 + 0.399103i \(0.869322\pi\)
\(102\) 0 0
\(103\) 35.9731i 0.349253i 0.984635 + 0.174627i \(0.0558719\pi\)
−0.984635 + 0.174627i \(0.944128\pi\)
\(104\) 64.8921i 0.623962i
\(105\) 0 0
\(106\) −62.3079 −0.587810
\(107\) −21.6725 −0.202546 −0.101273 0.994859i \(-0.532292\pi\)
−0.101273 + 0.994859i \(0.532292\pi\)
\(108\) 0 0
\(109\) −1.09218 −0.0100200 −0.00501000 0.999987i \(-0.501595\pi\)
−0.00501000 + 0.999987i \(0.501595\pi\)
\(110\) 65.5655 + 238.298i 0.596050 + 2.16634i
\(111\) 0 0
\(112\) 225.862i 2.01663i
\(113\) 152.215 1.34703 0.673517 0.739172i \(-0.264783\pi\)
0.673517 + 0.739172i \(0.264783\pi\)
\(114\) 0 0
\(115\) −20.4545 + 5.62786i −0.177865 + 0.0489379i
\(116\) 215.872i 1.86097i
\(117\) 0 0
\(118\) 168.283i 1.42613i
\(119\) 117.616i 0.988370i
\(120\) 0 0
\(121\) −80.2966 −0.663609
\(122\) 318.680 2.61213
\(123\) 0 0
\(124\) 255.832 2.06316
\(125\) −86.5946 + 90.1464i −0.692757 + 0.721172i
\(126\) 0 0
\(127\) 114.497i 0.901549i 0.892638 + 0.450775i \(0.148852\pi\)
−0.892638 + 0.450775i \(0.851148\pi\)
\(128\) 214.461 1.67548
\(129\) 0 0
\(130\) 20.7995 + 75.5960i 0.159997 + 0.581507i
\(131\) 171.106i 1.30615i −0.757292 0.653077i \(-0.773478\pi\)
0.757292 0.653077i \(-0.226522\pi\)
\(132\) 0 0
\(133\) 202.303i 1.52107i
\(134\) 176.511i 1.31725i
\(135\) 0 0
\(136\) −132.725 −0.975922
\(137\) −36.4207 −0.265844 −0.132922 0.991126i \(-0.542436\pi\)
−0.132922 + 0.991126i \(0.542436\pi\)
\(138\) 0 0
\(139\) 75.7842 0.545210 0.272605 0.962126i \(-0.412115\pi\)
0.272605 + 0.962126i \(0.412115\pi\)
\(140\) −137.917 501.259i −0.985121 3.58042i
\(141\) 0 0
\(142\) 236.071i 1.66247i
\(143\) −63.8579 −0.446559
\(144\) 0 0
\(145\) −35.1840 127.876i −0.242648 0.881905i
\(146\) 183.526i 1.25703i
\(147\) 0 0
\(148\) 119.107i 0.804778i
\(149\) 191.417i 1.28468i 0.766422 + 0.642338i \(0.222035\pi\)
−0.766422 + 0.642338i \(0.777965\pi\)
\(150\) 0 0
\(151\) 239.238 1.58436 0.792178 0.610290i \(-0.208947\pi\)
0.792178 + 0.610290i \(0.208947\pi\)
\(152\) 228.292 1.50192
\(153\) 0 0
\(154\) 631.544 4.10094
\(155\) −151.547 + 41.6968i −0.977724 + 0.269012i
\(156\) 0 0
\(157\) 143.346i 0.913030i −0.889716 0.456515i \(-0.849097\pi\)
0.889716 0.456515i \(-0.150903\pi\)
\(158\) 191.258 1.21050
\(159\) 0 0
\(160\) 18.8976 5.19949i 0.118110 0.0324968i
\(161\) 54.2090i 0.336702i
\(162\) 0 0
\(163\) 138.957i 0.852496i −0.904606 0.426248i \(-0.859835\pi\)
0.904606 0.426248i \(-0.140165\pi\)
\(164\) 363.366i 2.21565i
\(165\) 0 0
\(166\) 8.91037 0.0536769
\(167\) −205.580 −1.23102 −0.615510 0.788129i \(-0.711050\pi\)
−0.615510 + 0.788129i \(0.711050\pi\)
\(168\) 0 0
\(169\) 148.742 0.880131
\(170\) 154.618 42.5418i 0.909519 0.250246i
\(171\) 0 0
\(172\) 532.099i 3.09360i
\(173\) −47.5375 −0.274783 −0.137392 0.990517i \(-0.543872\pi\)
−0.137392 + 0.990517i \(0.543872\pi\)
\(174\) 0 0
\(175\) 163.396 + 274.452i 0.933690 + 1.56830i
\(176\) 250.816i 1.42509i
\(177\) 0 0
\(178\) 288.236i 1.61930i
\(179\) 124.298i 0.694402i −0.937791 0.347201i \(-0.887132\pi\)
0.937791 0.347201i \(-0.112868\pi\)
\(180\) 0 0
\(181\) −12.0770 −0.0667237 −0.0333618 0.999443i \(-0.510621\pi\)
−0.0333618 + 0.999443i \(0.510621\pi\)
\(182\) 200.347 1.10081
\(183\) 0 0
\(184\) −61.1729 −0.332462
\(185\) −19.4127 70.5554i −0.104933 0.381381i
\(186\) 0 0
\(187\) 130.610i 0.698450i
\(188\) −460.390 −2.44888
\(189\) 0 0
\(190\) −265.948 + 73.1732i −1.39973 + 0.385122i
\(191\) 285.715i 1.49589i −0.663761 0.747945i \(-0.731041\pi\)
0.663761 0.747945i \(-0.268959\pi\)
\(192\) 0 0
\(193\) 328.867i 1.70397i 0.523563 + 0.851987i \(0.324602\pi\)
−0.523563 + 0.851987i \(0.675398\pi\)
\(194\) 222.627i 1.14756i
\(195\) 0 0
\(196\) −929.678 −4.74326
\(197\) −90.3147 −0.458450 −0.229225 0.973373i \(-0.573619\pi\)
−0.229225 + 0.973373i \(0.573619\pi\)
\(198\) 0 0
\(199\) 0.315816 0.00158702 0.000793508 1.00000i \(-0.499747\pi\)
0.000793508 1.00000i \(0.499747\pi\)
\(200\) −309.710 + 184.386i −1.54855 + 0.921931i
\(201\) 0 0
\(202\) 280.876i 1.39048i
\(203\) −338.901 −1.66946
\(204\) 0 0
\(205\) −59.2232 215.247i −0.288894 1.04998i
\(206\) 125.330i 0.608399i
\(207\) 0 0
\(208\) 79.5670i 0.382534i
\(209\) 224.653i 1.07490i
\(210\) 0 0
\(211\) −328.374 −1.55627 −0.778137 0.628095i \(-0.783835\pi\)
−0.778137 + 0.628095i \(0.783835\pi\)
\(212\) 145.545 0.686531
\(213\) 0 0
\(214\) 75.5069 0.352836
\(215\) 86.7242 + 315.199i 0.403368 + 1.46604i
\(216\) 0 0
\(217\) 401.635i 1.85085i
\(218\) 3.80515 0.0174548
\(219\) 0 0
\(220\) −153.154 556.639i −0.696155 2.53018i
\(221\) 41.4339i 0.187484i
\(222\) 0 0
\(223\) 50.5589i 0.226722i 0.993554 + 0.113361i \(0.0361616\pi\)
−0.993554 + 0.113361i \(0.963838\pi\)
\(224\) 50.0829i 0.223584i
\(225\) 0 0
\(226\) −530.316 −2.34653
\(227\) −301.013 −1.32605 −0.663024 0.748598i \(-0.730727\pi\)
−0.663024 + 0.748598i \(0.730727\pi\)
\(228\) 0 0
\(229\) 279.425 1.22020 0.610099 0.792325i \(-0.291130\pi\)
0.610099 + 0.792325i \(0.291130\pi\)
\(230\) 71.2634 19.6075i 0.309841 0.0852499i
\(231\) 0 0
\(232\) 382.438i 1.64844i
\(233\) 27.3269 0.117283 0.0586415 0.998279i \(-0.481323\pi\)
0.0586415 + 0.998279i \(0.481323\pi\)
\(234\) 0 0
\(235\) 272.721 75.0368i 1.16052 0.319305i
\(236\) 393.092i 1.66564i
\(237\) 0 0
\(238\) 409.774i 1.72174i
\(239\) 17.7233i 0.0741561i 0.999312 + 0.0370780i \(0.0118050\pi\)
−0.999312 + 0.0370780i \(0.988195\pi\)
\(240\) 0 0
\(241\) 203.893 0.846029 0.423014 0.906123i \(-0.360972\pi\)
0.423014 + 0.906123i \(0.360972\pi\)
\(242\) 279.753 1.15601
\(243\) 0 0
\(244\) −744.404 −3.05083
\(245\) 550.713 151.524i 2.24781 0.618464i
\(246\) 0 0
\(247\) 71.2675i 0.288532i
\(248\) −453.230 −1.82754
\(249\) 0 0
\(250\) 301.695 314.070i 1.20678 1.25628i
\(251\) 117.194i 0.466908i 0.972368 + 0.233454i \(0.0750029\pi\)
−0.972368 + 0.233454i \(0.924997\pi\)
\(252\) 0 0
\(253\) 60.1981i 0.237937i
\(254\) 398.907i 1.57050i
\(255\) 0 0
\(256\) −518.960 −2.02719
\(257\) 153.365 0.596749 0.298375 0.954449i \(-0.403556\pi\)
0.298375 + 0.954449i \(0.403556\pi\)
\(258\) 0 0
\(259\) −186.988 −0.721962
\(260\) −48.5855 176.584i −0.186867 0.679170i
\(261\) 0 0
\(262\) 596.133i 2.27532i
\(263\) 263.495 1.00188 0.500941 0.865481i \(-0.332987\pi\)
0.500941 + 0.865481i \(0.332987\pi\)
\(264\) 0 0
\(265\) −86.2162 + 23.7216i −0.325344 + 0.0895155i
\(266\) 704.823i 2.64971i
\(267\) 0 0
\(268\) 412.311i 1.53848i
\(269\) 10.4219i 0.0387431i −0.999812 0.0193715i \(-0.993833\pi\)
0.999812 0.0193715i \(-0.00616654\pi\)
\(270\) 0 0
\(271\) 501.590 1.85089 0.925443 0.378886i \(-0.123693\pi\)
0.925443 + 0.378886i \(0.123693\pi\)
\(272\) 162.740 0.598311
\(273\) 0 0
\(274\) 126.890 0.463101
\(275\) 181.448 + 304.774i 0.659810 + 1.10827i
\(276\) 0 0
\(277\) 351.272i 1.26813i −0.773280 0.634065i \(-0.781385\pi\)
0.773280 0.634065i \(-0.218615\pi\)
\(278\) −264.032 −0.949756
\(279\) 0 0
\(280\) 244.333 + 888.027i 0.872617 + 3.17153i
\(281\) 292.122i 1.03958i −0.854294 0.519791i \(-0.826010\pi\)
0.854294 0.519791i \(-0.173990\pi\)
\(282\) 0 0
\(283\) 188.057i 0.664513i −0.943189 0.332256i \(-0.892190\pi\)
0.943189 0.332256i \(-0.107810\pi\)
\(284\) 551.437i 1.94168i
\(285\) 0 0
\(286\) 222.481 0.777906
\(287\) −570.454 −1.98764
\(288\) 0 0
\(289\) −204.254 −0.706762
\(290\) 122.581 + 445.521i 0.422693 + 1.53628i
\(291\) 0 0
\(292\) 428.697i 1.46814i
\(293\) 309.970 1.05792 0.528958 0.848648i \(-0.322583\pi\)
0.528958 + 0.848648i \(0.322583\pi\)
\(294\) 0 0
\(295\) 64.0682 + 232.856i 0.217180 + 0.789341i
\(296\) 211.009i 0.712869i
\(297\) 0 0
\(298\) 666.895i 2.23790i
\(299\) 19.0968i 0.0638689i
\(300\) 0 0
\(301\) 835.350 2.77525
\(302\) −833.504 −2.75995
\(303\) 0 0
\(304\) −279.918 −0.920784
\(305\) 440.962 121.327i 1.44578 0.397793i
\(306\) 0 0
\(307\) 143.887i 0.468687i 0.972154 + 0.234344i \(0.0752941\pi\)
−0.972154 + 0.234344i \(0.924706\pi\)
\(308\) −1475.22 −4.78968
\(309\) 0 0
\(310\) 527.990 145.272i 1.70319 0.468619i
\(311\) 27.8635i 0.0895933i 0.998996 + 0.0447966i \(0.0142640\pi\)
−0.998996 + 0.0447966i \(0.985736\pi\)
\(312\) 0 0
\(313\) 417.963i 1.33535i 0.744454 + 0.667673i \(0.232710\pi\)
−0.744454 + 0.667673i \(0.767290\pi\)
\(314\) 499.416i 1.59050i
\(315\) 0 0
\(316\) −446.759 −1.41379
\(317\) −67.0688 −0.211573 −0.105787 0.994389i \(-0.533736\pi\)
−0.105787 + 0.994389i \(0.533736\pi\)
\(318\) 0 0
\(319\) −376.343 −1.17976
\(320\) 275.056 75.6791i 0.859549 0.236497i
\(321\) 0 0
\(322\) 188.864i 0.586535i
\(323\) −145.765 −0.451285
\(324\) 0 0
\(325\) 57.5612 + 96.6843i 0.177111 + 0.297490i
\(326\) 484.125i 1.48505i
\(327\) 0 0
\(328\) 643.736i 1.96261i
\(329\) 722.774i 2.19688i
\(330\) 0 0
\(331\) −106.486 −0.321709 −0.160854 0.986978i \(-0.551425\pi\)
−0.160854 + 0.986978i \(0.551425\pi\)
\(332\) −20.8137 −0.0626918
\(333\) 0 0
\(334\) 716.242 2.14444
\(335\) −67.2006 244.241i −0.200599 0.729077i
\(336\) 0 0
\(337\) 532.879i 1.58124i −0.612306 0.790621i \(-0.709758\pi\)
0.612306 0.790621i \(-0.290242\pi\)
\(338\) −518.218 −1.53319
\(339\) 0 0
\(340\) −361.172 + 99.3732i −1.06227 + 0.292274i
\(341\) 446.008i 1.30794i
\(342\) 0 0
\(343\) 833.474i 2.42995i
\(344\) 942.662i 2.74030i
\(345\) 0 0
\(346\) 165.621 0.478672
\(347\) 2.71126 0.00781344 0.00390672 0.999992i \(-0.498756\pi\)
0.00390672 + 0.999992i \(0.498756\pi\)
\(348\) 0 0
\(349\) −198.853 −0.569780 −0.284890 0.958560i \(-0.591957\pi\)
−0.284890 + 0.958560i \(0.591957\pi\)
\(350\) −569.270 956.192i −1.62649 2.73198i
\(351\) 0 0
\(352\) 55.6160i 0.158000i
\(353\) −251.151 −0.711475 −0.355737 0.934586i \(-0.615770\pi\)
−0.355737 + 0.934586i \(0.615770\pi\)
\(354\) 0 0
\(355\) 89.8761 + 326.655i 0.253172 + 0.920154i
\(356\) 673.288i 1.89126i
\(357\) 0 0
\(358\) 433.054i 1.20965i
\(359\) 314.839i 0.876989i 0.898734 + 0.438495i \(0.144488\pi\)
−0.898734 + 0.438495i \(0.855512\pi\)
\(360\) 0 0
\(361\) −110.280 −0.305484
\(362\) 42.0762 0.116233
\(363\) 0 0
\(364\) −467.988 −1.28568
\(365\) −69.8712 253.947i −0.191428 0.695745i
\(366\) 0 0
\(367\) 225.392i 0.614148i 0.951686 + 0.307074i \(0.0993499\pi\)
−0.951686 + 0.307074i \(0.900650\pi\)
\(368\) 75.0069 0.203823
\(369\) 0 0
\(370\) 67.6338 + 245.815i 0.182794 + 0.664365i
\(371\) 228.493i 0.615883i
\(372\) 0 0
\(373\) 501.181i 1.34365i 0.740711 + 0.671824i \(0.234489\pi\)
−0.740711 + 0.671824i \(0.765511\pi\)
\(374\) 455.046i 1.21670i
\(375\) 0 0
\(376\) 815.624 2.16921
\(377\) −119.388 −0.316680
\(378\) 0 0
\(379\) 3.37369 0.00890156 0.00445078 0.999990i \(-0.498583\pi\)
0.00445078 + 0.999990i \(0.498583\pi\)
\(380\) 621.226 170.925i 1.63481 0.449802i
\(381\) 0 0
\(382\) 995.430i 2.60584i
\(383\) −415.059 −1.08371 −0.541853 0.840473i \(-0.682277\pi\)
−0.541853 + 0.840473i \(0.682277\pi\)
\(384\) 0 0
\(385\) 873.876 240.439i 2.26981 0.624517i
\(386\) 1145.77i 2.96832i
\(387\) 0 0
\(388\) 520.032i 1.34029i
\(389\) 738.710i 1.89900i 0.313769 + 0.949499i \(0.398408\pi\)
−0.313769 + 0.949499i \(0.601592\pi\)
\(390\) 0 0
\(391\) 39.0592 0.0998956
\(392\) 1647.01 4.20156
\(393\) 0 0
\(394\) 314.656 0.798620
\(395\) 264.646 72.8151i 0.669991 0.184342i
\(396\) 0 0
\(397\) 258.122i 0.650183i 0.945683 + 0.325091i \(0.105395\pi\)
−0.945683 + 0.325091i \(0.894605\pi\)
\(398\) −1.10030 −0.00276458
\(399\) 0 0
\(400\) 379.749 226.084i 0.949371 0.565210i
\(401\) 299.683i 0.747338i 0.927562 + 0.373669i \(0.121900\pi\)
−0.927562 + 0.373669i \(0.878100\pi\)
\(402\) 0 0
\(403\) 141.488i 0.351088i
\(404\) 656.097i 1.62400i
\(405\) 0 0
\(406\) 1180.73 2.90821
\(407\) −207.647 −0.510188
\(408\) 0 0
\(409\) −549.380 −1.34323 −0.671614 0.740901i \(-0.734399\pi\)
−0.671614 + 0.740901i \(0.734399\pi\)
\(410\) 206.334 + 749.920i 0.503253 + 1.82907i
\(411\) 0 0
\(412\) 292.758i 0.710578i
\(413\) 617.121 1.49424
\(414\) 0 0
\(415\) 12.3294 3.39232i 0.0297094 0.00817427i
\(416\) 17.6432i 0.0424116i
\(417\) 0 0
\(418\) 782.693i 1.87247i
\(419\) 247.992i 0.591866i 0.955209 + 0.295933i \(0.0956306\pi\)
−0.955209 + 0.295933i \(0.904369\pi\)
\(420\) 0 0
\(421\) −326.349 −0.775176 −0.387588 0.921833i \(-0.626692\pi\)
−0.387588 + 0.921833i \(0.626692\pi\)
\(422\) 1144.05 2.71103
\(423\) 0 0
\(424\) −257.846 −0.608127
\(425\) 197.751 117.731i 0.465296 0.277015i
\(426\) 0 0
\(427\) 1168.65i 2.73689i
\(428\) −176.376 −0.412094
\(429\) 0 0
\(430\) −302.147 1098.15i −0.702668 2.55385i
\(431\) 96.3692i 0.223594i 0.993731 + 0.111797i \(0.0356607\pi\)
−0.993731 + 0.111797i \(0.964339\pi\)
\(432\) 0 0
\(433\) 672.095i 1.55218i 0.630620 + 0.776091i \(0.282800\pi\)
−0.630620 + 0.776091i \(0.717200\pi\)
\(434\) 1399.30i 3.22418i
\(435\) 0 0
\(436\) −8.88843 −0.0203863
\(437\) −67.1830 −0.153737
\(438\) 0 0
\(439\) 103.753 0.236339 0.118170 0.992993i \(-0.462297\pi\)
0.118170 + 0.992993i \(0.462297\pi\)
\(440\) 271.327 + 986.137i 0.616652 + 2.24122i
\(441\) 0 0
\(442\) 144.356i 0.326596i
\(443\) 227.758 0.514127 0.257063 0.966395i \(-0.417245\pi\)
0.257063 + 0.966395i \(0.417245\pi\)
\(444\) 0 0
\(445\) 109.736 + 398.835i 0.246598 + 0.896260i
\(446\) 176.147i 0.394949i
\(447\) 0 0
\(448\) 728.961i 1.62715i
\(449\) 504.100i 1.12272i −0.827573 0.561359i \(-0.810279\pi\)
0.827573 0.561359i \(-0.189721\pi\)
\(450\) 0 0
\(451\) −633.478 −1.40461
\(452\) 1238.76 2.74063
\(453\) 0 0
\(454\) 1048.73 2.30998
\(455\) 277.222 76.2752i 0.609279 0.167638i
\(456\) 0 0
\(457\) 179.987i 0.393844i −0.980419 0.196922i \(-0.936905\pi\)
0.980419 0.196922i \(-0.0630946\pi\)
\(458\) −973.518 −2.12558
\(459\) 0 0
\(460\) −166.464 + 45.8010i −0.361877 + 0.0995673i
\(461\) 583.193i 1.26506i 0.774535 + 0.632531i \(0.217984\pi\)
−0.774535 + 0.632531i \(0.782016\pi\)
\(462\) 0 0
\(463\) 15.7765i 0.0340746i −0.999855 0.0170373i \(-0.994577\pi\)
0.999855 0.0170373i \(-0.00542340\pi\)
\(464\) 468.924i 1.01061i
\(465\) 0 0
\(466\) −95.2071 −0.204307
\(467\) −400.171 −0.856896 −0.428448 0.903566i \(-0.640940\pi\)
−0.428448 + 0.903566i \(0.640940\pi\)
\(468\) 0 0
\(469\) −647.294 −1.38016
\(470\) −950.161 + 261.428i −2.02162 + 0.556230i
\(471\) 0 0
\(472\) 696.399i 1.47542i
\(473\) 927.640 1.96118
\(474\) 0 0
\(475\) −340.137 + 202.501i −0.716079 + 0.426319i
\(476\) 957.189i 2.01090i
\(477\) 0 0
\(478\) 61.7480i 0.129180i
\(479\) 162.148i 0.338514i −0.985572 0.169257i \(-0.945863\pi\)
0.985572 0.169257i \(-0.0541368\pi\)
\(480\) 0 0
\(481\) −65.8723 −0.136949
\(482\) −710.363 −1.47378
\(483\) 0 0
\(484\) −653.474 −1.35015
\(485\) 84.7576 + 308.051i 0.174758 + 0.635157i
\(486\) 0 0
\(487\) 328.071i 0.673658i −0.941566 0.336829i \(-0.890646\pi\)
0.941566 0.336829i \(-0.109354\pi\)
\(488\) 1318.78 2.70242
\(489\) 0 0
\(490\) −1918.68 + 527.909i −3.91568 + 1.07736i
\(491\) 39.4500i 0.0803462i 0.999193 + 0.0401731i \(0.0127909\pi\)
−0.999193 + 0.0401731i \(0.987209\pi\)
\(492\) 0 0
\(493\) 244.188i 0.495311i
\(494\) 248.296i 0.502623i
\(495\) 0 0
\(496\) 555.726 1.12041
\(497\) 865.710 1.74187
\(498\) 0 0
\(499\) −75.7024 −0.151708 −0.0758541 0.997119i \(-0.524168\pi\)
−0.0758541 + 0.997119i \(0.524168\pi\)
\(500\) −704.728 + 733.634i −1.40946 + 1.46727i
\(501\) 0 0
\(502\) 408.304i 0.813354i
\(503\) −139.725 −0.277784 −0.138892 0.990308i \(-0.544354\pi\)
−0.138892 + 0.990308i \(0.544354\pi\)
\(504\) 0 0
\(505\) −106.934 388.652i −0.211751 0.769607i
\(506\) 209.730i 0.414486i
\(507\) 0 0
\(508\) 931.804i 1.83426i
\(509\) 801.430i 1.57452i 0.616622 + 0.787259i \(0.288501\pi\)
−0.616622 + 0.787259i \(0.711499\pi\)
\(510\) 0 0
\(511\) −673.018 −1.31706
\(512\) 950.213 1.85588
\(513\) 0 0
\(514\) −534.322 −1.03954
\(515\) −47.7152 173.421i −0.0926510 0.336740i
\(516\) 0 0
\(517\) 802.626i 1.55247i
\(518\) 651.466 1.25766
\(519\) 0 0
\(520\) 86.0738 + 312.835i 0.165526 + 0.601606i
\(521\) 472.323i 0.906570i −0.891366 0.453285i \(-0.850252\pi\)
0.891366 0.453285i \(-0.149748\pi\)
\(522\) 0 0
\(523\) 843.303i 1.61243i −0.591620 0.806217i \(-0.701511\pi\)
0.591620 0.806217i \(-0.298489\pi\)
\(524\) 1392.50i 2.65745i
\(525\) 0 0
\(526\) −918.016 −1.74528
\(527\) 289.390 0.549126
\(528\) 0 0
\(529\) −510.998 −0.965969
\(530\) 300.377 82.6461i 0.566749 0.155936i
\(531\) 0 0
\(532\) 1646.39i 3.09472i
\(533\) −200.960 −0.377036
\(534\) 0 0
\(535\) 104.480 28.7467i 0.195289 0.0537321i
\(536\) 730.448i 1.36278i
\(537\) 0 0
\(538\) 36.3098i 0.0674904i
\(539\) 1620.76i 3.00698i
\(540\) 0 0
\(541\) 797.318 1.47379 0.736893 0.676010i \(-0.236292\pi\)
0.736893 + 0.676010i \(0.236292\pi\)
\(542\) −1747.54 −3.22424
\(543\) 0 0
\(544\) −36.0862 −0.0663349
\(545\) 5.26524 1.44868i 0.00966098 0.00265813i
\(546\) 0 0
\(547\) 882.252i 1.61289i 0.591308 + 0.806446i \(0.298612\pi\)
−0.591308 + 0.806446i \(0.701388\pi\)
\(548\) −296.401 −0.540877
\(549\) 0 0
\(550\) −632.164 1061.83i −1.14939 1.93060i
\(551\) 420.011i 0.762270i
\(552\) 0 0
\(553\) 701.374i 1.26831i
\(554\) 1223.83i 2.20908i
\(555\) 0 0
\(556\) 616.751 1.10926
\(557\) 589.979 1.05921 0.529604 0.848245i \(-0.322341\pi\)
0.529604 + 0.848245i \(0.322341\pi\)
\(558\) 0 0
\(559\) 294.278 0.526436
\(560\) −299.587 1088.85i −0.534977 1.94437i
\(561\) 0 0
\(562\) 1017.75i 1.81095i
\(563\) −786.155 −1.39637 −0.698183 0.715919i \(-0.746008\pi\)
−0.698183 + 0.715919i \(0.746008\pi\)
\(564\) 0 0
\(565\) −733.805 + 201.900i −1.29877 + 0.357345i
\(566\) 655.191i 1.15758i
\(567\) 0 0
\(568\) 976.922i 1.71993i
\(569\) 1090.38i 1.91631i 0.286242 + 0.958157i \(0.407594\pi\)
−0.286242 + 0.958157i \(0.592406\pi\)
\(570\) 0 0
\(571\) −2.68062 −0.00469461 −0.00234730 0.999997i \(-0.500747\pi\)
−0.00234730 + 0.999997i \(0.500747\pi\)
\(572\) −519.692 −0.908552
\(573\) 0 0
\(574\) 1987.46 3.46247
\(575\) 91.1431 54.2622i 0.158510 0.0943691i
\(576\) 0 0
\(577\) 802.089i 1.39010i 0.718960 + 0.695051i \(0.244618\pi\)
−0.718960 + 0.695051i \(0.755382\pi\)
\(578\) 711.622 1.23118
\(579\) 0 0
\(580\) −286.336 1040.69i −0.493683 1.79429i
\(581\) 32.6757i 0.0562405i
\(582\) 0 0
\(583\) 253.737i 0.435226i
\(584\) 759.476i 1.30047i
\(585\) 0 0
\(586\) −1079.93 −1.84289
\(587\) −1109.11 −1.88945 −0.944727 0.327857i \(-0.893674\pi\)
−0.944727 + 0.327857i \(0.893674\pi\)
\(588\) 0 0
\(589\) −497.759 −0.845091
\(590\) −223.213 811.269i −0.378328 1.37503i
\(591\) 0 0
\(592\) 258.728i 0.437040i
\(593\) 633.417 1.06816 0.534078 0.845435i \(-0.320659\pi\)
0.534078 + 0.845435i \(0.320659\pi\)
\(594\) 0 0
\(595\) −156.008 567.009i −0.262198 0.952957i
\(596\) 1557.80i 2.61375i
\(597\) 0 0
\(598\) 66.5333i 0.111260i
\(599\) 524.561i 0.875729i 0.899041 + 0.437864i \(0.144265\pi\)
−0.899041 + 0.437864i \(0.855735\pi\)
\(600\) 0 0
\(601\) 694.003 1.15475 0.577374 0.816480i \(-0.304078\pi\)
0.577374 + 0.816480i \(0.304078\pi\)
\(602\) −2910.36 −4.83448
\(603\) 0 0
\(604\) 1946.98 3.22347
\(605\) 387.098 106.507i 0.639832 0.176044i
\(606\) 0 0
\(607\) 899.771i 1.48233i 0.671326 + 0.741163i \(0.265725\pi\)
−0.671326 + 0.741163i \(0.734275\pi\)
\(608\) 62.0693 0.102088
\(609\) 0 0
\(610\) −1536.31 + 422.702i −2.51854 + 0.692955i
\(611\) 254.619i 0.416726i
\(612\) 0 0
\(613\) 966.059i 1.57595i 0.615706 + 0.787976i \(0.288871\pi\)
−0.615706 + 0.787976i \(0.711129\pi\)
\(614\) 501.302i 0.816453i
\(615\) 0 0
\(616\) 2613.49 4.24268
\(617\) −279.257 −0.452605 −0.226302 0.974057i \(-0.572664\pi\)
−0.226302 + 0.974057i \(0.572664\pi\)
\(618\) 0 0
\(619\) −838.583 −1.35474 −0.677369 0.735643i \(-0.736880\pi\)
−0.677369 + 0.735643i \(0.736880\pi\)
\(620\) −1233.33 + 339.339i −1.98924 + 0.547322i
\(621\) 0 0
\(622\) 97.0765i 0.156071i
\(623\) 1057.01 1.69664
\(624\) 0 0
\(625\) 297.888 549.443i 0.476621 0.879109i
\(626\) 1456.18i 2.32617i
\(627\) 0 0
\(628\) 1166.58i 1.85762i
\(629\) 134.730i 0.214198i
\(630\) 0 0
\(631\) −544.887 −0.863529 −0.431764 0.901986i \(-0.642109\pi\)
−0.431764 + 0.901986i \(0.642109\pi\)
\(632\) 791.475 1.25233
\(633\) 0 0
\(634\) 233.668 0.368561
\(635\) −151.870 551.972i −0.239166 0.869247i
\(636\) 0 0
\(637\) 514.160i 0.807158i
\(638\) 1311.18 2.05514
\(639\) 0 0
\(640\) −1033.88 + 284.464i −1.61544 + 0.444475i
\(641\) 0.293309i 0.000457581i 1.00000 0.000228790i \(7.28262e-5\pi\)
−1.00000 0.000228790i \(0.999927\pi\)
\(642\) 0 0
\(643\) 155.418i 0.241707i −0.992670 0.120854i \(-0.961437\pi\)
0.992670 0.120854i \(-0.0385632\pi\)
\(644\) 441.167i 0.685042i
\(645\) 0 0
\(646\) 507.846 0.786139
\(647\) 657.668 1.01649 0.508244 0.861213i \(-0.330295\pi\)
0.508244 + 0.861213i \(0.330295\pi\)
\(648\) 0 0
\(649\) 685.301 1.05593
\(650\) −200.543 336.848i −0.308528 0.518228i
\(651\) 0 0
\(652\) 1130.87i 1.73446i
\(653\) 1006.20 1.54089 0.770446 0.637506i \(-0.220034\pi\)
0.770446 + 0.637506i \(0.220034\pi\)
\(654\) 0 0
\(655\) 226.958 + 824.877i 0.346500 + 1.25935i
\(656\) 789.314i 1.20322i
\(657\) 0 0
\(658\) 2518.14i 3.82697i
\(659\) 1251.23i 1.89868i 0.314249 + 0.949340i \(0.398247\pi\)
−0.314249 + 0.949340i \(0.601753\pi\)
\(660\) 0 0
\(661\) −797.169 −1.20600 −0.603002 0.797739i \(-0.706029\pi\)
−0.603002 + 0.797739i \(0.706029\pi\)
\(662\) 370.996 0.560416
\(663\) 0 0
\(664\) 36.8734 0.0555322
\(665\) 268.338 + 975.273i 0.403515 + 1.46658i
\(666\) 0 0
\(667\) 112.546i 0.168735i
\(668\) −1673.07 −2.50459
\(669\) 0 0
\(670\) 234.127 + 850.935i 0.349443 + 1.27005i
\(671\) 1297.76i 1.93407i
\(672\) 0 0
\(673\) 1250.84i 1.85861i −0.369318 0.929303i \(-0.620409\pi\)
0.369318 0.929303i \(-0.379591\pi\)
\(674\) 1856.55i 2.75452i
\(675\) 0 0
\(676\) 1210.50 1.79068
\(677\) −604.295 −0.892607 −0.446303 0.894882i \(-0.647260\pi\)
−0.446303 + 0.894882i \(0.647260\pi\)
\(678\) 0 0
\(679\) 816.407 1.20237
\(680\) 639.850 176.049i 0.940955 0.258895i
\(681\) 0 0
\(682\) 1553.89i 2.27843i
\(683\) 707.854 1.03639 0.518195 0.855263i \(-0.326604\pi\)
0.518195 + 0.855263i \(0.326604\pi\)
\(684\) 0 0
\(685\) 175.579 48.3089i 0.256319 0.0705240i
\(686\) 2903.82i 4.23298i
\(687\) 0 0
\(688\) 1155.84i 1.68000i
\(689\) 80.4936i 0.116827i
\(690\) 0 0
\(691\) 486.209 0.703631 0.351815 0.936069i \(-0.385565\pi\)
0.351815 + 0.936069i \(0.385565\pi\)
\(692\) −386.872 −0.559063
\(693\) 0 0
\(694\) −9.44604 −0.0136110
\(695\) −365.345 + 100.521i −0.525676 + 0.144635i
\(696\) 0 0
\(697\) 411.028i 0.589711i
\(698\) 692.805 0.992557
\(699\) 0 0
\(700\) 1329.76 + 2233.56i 1.89965 + 3.19080i
\(701\) 646.017i 0.921564i −0.887513 0.460782i \(-0.847569\pi\)
0.887513 0.460782i \(-0.152431\pi\)
\(702\) 0 0
\(703\) 231.740i 0.329645i
\(704\) 809.497i 1.14985i
\(705\) 0 0
\(706\) 875.009 1.23939
\(707\) −1030.02 −1.45688
\(708\) 0 0
\(709\) 639.268 0.901647 0.450823 0.892613i \(-0.351130\pi\)
0.450823 + 0.892613i \(0.351130\pi\)
\(710\) −313.128 1138.06i −0.441026 1.60291i
\(711\) 0 0
\(712\) 1192.79i 1.67527i
\(713\) 133.379 0.187068
\(714\) 0 0
\(715\) 307.850 84.7021i 0.430559 0.118464i
\(716\) 1011.57i 1.41280i
\(717\) 0 0
\(718\) 1096.90i 1.52772i
\(719\) 1060.47i 1.47493i −0.675386 0.737465i \(-0.736023\pi\)
0.675386 0.737465i \(-0.263977\pi\)
\(720\) 0 0
\(721\) −459.606 −0.637456
\(722\) 384.214 0.532153
\(723\) 0 0
\(724\) −98.2855 −0.135754
\(725\) 339.234 + 569.804i 0.467908 + 0.785936i
\(726\) 0 0
\(727\) 800.091i 1.10054i 0.834988 + 0.550269i \(0.185475\pi\)
−0.834988 + 0.550269i \(0.814525\pi\)
\(728\) 829.085 1.13885
\(729\) 0 0
\(730\) 243.431 + 884.751i 0.333468 + 1.21199i
\(731\) 601.894i 0.823384i
\(732\) 0 0
\(733\) 9.68613i 0.0132144i 0.999978 + 0.00660718i \(0.00210315\pi\)
−0.999978 + 0.00660718i \(0.997897\pi\)
\(734\) 785.267i 1.06985i
\(735\) 0 0
\(736\) −16.6321 −0.0225979
\(737\) −718.807 −0.975315
\(738\) 0 0
\(739\) −1107.89 −1.49918 −0.749590 0.661902i \(-0.769749\pi\)
−0.749590 + 0.661902i \(0.769749\pi\)
\(740\) −157.985 574.198i −0.213494 0.775943i
\(741\) 0 0
\(742\) 796.069i 1.07287i
\(743\) 780.455 1.05041 0.525206 0.850975i \(-0.323988\pi\)
0.525206 + 0.850975i \(0.323988\pi\)
\(744\) 0 0
\(745\) −253.898 922.791i −0.340802 1.23865i
\(746\) 1746.11i 2.34063i
\(747\) 0 0
\(748\) 1062.94i 1.42104i
\(749\) 276.895i 0.369687i
\(750\) 0 0
\(751\) −73.3096 −0.0976160 −0.0488080 0.998808i \(-0.515542\pi\)
−0.0488080 + 0.998808i \(0.515542\pi\)
\(752\) −1000.07 −1.32988
\(753\) 0 0
\(754\) 415.949 0.551657
\(755\) −1153.33 + 317.328i −1.52759 + 0.420302i
\(756\) 0 0
\(757\) 95.5082i 0.126167i 0.998008 + 0.0630834i \(0.0200934\pi\)
−0.998008 + 0.0630834i \(0.979907\pi\)
\(758\) −11.7539 −0.0155065
\(759\) 0 0
\(760\) −1100.56 + 302.809i −1.44811 + 0.398433i
\(761\) 789.348i 1.03725i 0.855001 + 0.518626i \(0.173556\pi\)
−0.855001 + 0.518626i \(0.826444\pi\)
\(762\) 0 0
\(763\) 13.9541i 0.0182884i
\(764\) 2325.22i 3.04348i
\(765\) 0 0
\(766\) 1446.07 1.88781
\(767\) 217.400 0.283442
\(768\) 0 0
\(769\) −30.0502 −0.0390770 −0.0195385 0.999809i \(-0.506220\pi\)
−0.0195385 + 0.999809i \(0.506220\pi\)
\(770\) −3044.58 + 837.689i −3.95400 + 1.08791i
\(771\) 0 0
\(772\) 2676.40i 3.46684i
\(773\) −1290.89 −1.66998 −0.834988 0.550269i \(-0.814525\pi\)
−0.834988 + 0.550269i \(0.814525\pi\)
\(774\) 0 0
\(775\) 675.279 402.029i 0.871328 0.518747i
\(776\) 921.285i 1.18722i
\(777\) 0 0
\(778\) 2573.67i 3.30805i
\(779\) 706.981i 0.907549i
\(780\) 0 0
\(781\) 961.354 1.23093
\(782\) −136.082 −0.174018
\(783\) 0 0
\(784\) −2019.47 −2.57586
\(785\) 190.136 + 691.049i 0.242211 + 0.880317i
\(786\) 0 0
\(787\) 85.6276i 0.108803i −0.998519 0.0544013i \(-0.982675\pi\)
0.998519 0.0544013i \(-0.0173250\pi\)
\(788\) −735.003 −0.932745
\(789\) 0 0
\(790\) −922.028 + 253.688i −1.16712 + 0.321124i
\(791\) 1944.75i 2.45860i
\(792\) 0 0
\(793\) 411.693i 0.519159i
\(794\) 899.299i 1.13262i
\(795\) 0 0
\(796\) 2.57019 0.00322889
\(797\) 757.641 0.950617 0.475308 0.879819i \(-0.342337\pi\)
0.475308 + 0.879819i \(0.342337\pi\)
\(798\) 0 0
\(799\) −520.780 −0.651789
\(800\) −84.2057 + 50.1320i −0.105257 + 0.0626650i
\(801\) 0 0
\(802\) 1044.09i 1.30186i
\(803\) −747.373 −0.930726
\(804\) 0 0
\(805\) −71.9037 261.334i −0.0893213 0.324638i
\(806\) 492.945i 0.611594i
\(807\) 0 0
\(808\) 1162.34i 1.43853i
\(809\) 624.032i 0.771362i 0.922632 + 0.385681i \(0.126033\pi\)
−0.922632 + 0.385681i \(0.873967\pi\)
\(810\) 0 0
\(811\) 972.993 1.19974 0.599872 0.800096i \(-0.295218\pi\)
0.599872 + 0.800096i \(0.295218\pi\)
\(812\) −2758.06 −3.39663
\(813\) 0 0
\(814\) 723.440 0.888748
\(815\) 184.314 + 669.890i 0.226152 + 0.821951i
\(816\) 0 0
\(817\) 1035.28i 1.26717i
\(818\) 1914.04 2.33990
\(819\) 0 0
\(820\) −481.974 1751.73i −0.587773 2.13626i
\(821\) 936.341i 1.14049i −0.821475 0.570244i \(-0.806849\pi\)
0.821475 0.570244i \(-0.193151\pi\)
\(822\) 0 0
\(823\) 256.883i 0.312130i 0.987747 + 0.156065i \(0.0498809\pi\)
−0.987747 + 0.156065i \(0.950119\pi\)
\(824\) 518.648i 0.629428i
\(825\) 0 0
\(826\) −2150.05 −2.60297
\(827\) −13.1651 −0.0159191 −0.00795957 0.999968i \(-0.502534\pi\)
−0.00795957 + 0.999968i \(0.502534\pi\)
\(828\) 0 0
\(829\) −1494.14 −1.80234 −0.901171 0.433464i \(-0.857291\pi\)
−0.901171 + 0.433464i \(0.857291\pi\)
\(830\) −42.9556 + 11.8188i −0.0517537 + 0.0142396i
\(831\) 0 0
\(832\) 256.799i 0.308653i
\(833\) −1051.62 −1.26245
\(834\) 0 0
\(835\) 991.073 272.685i 1.18691 0.326569i
\(836\) 1828.29i 2.18695i
\(837\) 0 0
\(838\) 864.004i 1.03103i
\(839\) 112.413i 0.133985i −0.997753 0.0669923i \(-0.978660\pi\)
0.997753 0.0669923i \(-0.0213403\pi\)
\(840\) 0 0
\(841\) 137.391 0.163366
\(842\) 1137.00 1.35036
\(843\) 0 0
\(844\) −2672.39 −3.16634
\(845\) −717.064 + 197.294i −0.848597 + 0.233484i
\(846\) 0 0
\(847\) 1025.90i 1.21122i
\(848\) 316.156 0.372826
\(849\) 0 0
\(850\) −688.964 + 410.176i −0.810546 + 0.482560i
\(851\) 62.0970i 0.0729695i
\(852\) 0 0
\(853\) 62.4653i 0.0732302i −0.999329 0.0366151i \(-0.988342\pi\)
0.999329 0.0366151i \(-0.0116576\pi\)
\(854\) 4071.58i 4.76766i
\(855\) 0 0
\(856\) 312.467 0.365031
\(857\) 1527.56 1.78246 0.891228 0.453556i \(-0.149845\pi\)
0.891228 + 0.453556i \(0.149845\pi\)
\(858\) 0 0
\(859\) −864.271 −1.00614 −0.503068 0.864247i \(-0.667796\pi\)
−0.503068 + 0.864247i \(0.667796\pi\)
\(860\) 705.783 + 2565.17i 0.820678 + 2.98276i
\(861\) 0 0
\(862\) 335.750i 0.389501i
\(863\) −593.430 −0.687636 −0.343818 0.939036i \(-0.611720\pi\)
−0.343818 + 0.939036i \(0.611720\pi\)
\(864\) 0 0
\(865\) 229.171 63.0544i 0.264938 0.0728952i
\(866\) 2341.58i 2.70390i
\(867\) 0 0
\(868\) 3268.61i 3.76567i
\(869\) 778.862i 0.896274i
\(870\) 0 0
\(871\) −228.029 −0.261802
\(872\) 15.7467 0.0180581
\(873\) 0 0
\(874\) 234.065 0.267809
\(875\) −1151.74 1106.36i −1.31628 1.26442i
\(876\) 0 0
\(877\) 80.1032i 0.0913377i 0.998957 + 0.0456689i \(0.0145419\pi\)
−0.998957 + 0.0456689i \(0.985458\pi\)
\(878\) −361.475 −0.411703
\(879\) 0 0
\(880\) −332.686 1209.15i −0.378052 1.37403i
\(881\) 612.391i 0.695109i 0.937660 + 0.347555i \(0.112988\pi\)
−0.937660 + 0.347555i \(0.887012\pi\)
\(882\) 0 0
\(883\) 1106.80i 1.25345i 0.779239 + 0.626727i \(0.215606\pi\)
−0.779239 + 0.626727i \(0.784394\pi\)
\(884\) 337.199i 0.381447i
\(885\) 0 0
\(886\) −793.509 −0.895608
\(887\) −741.000 −0.835400 −0.417700 0.908585i \(-0.637164\pi\)
−0.417700 + 0.908585i \(0.637164\pi\)
\(888\) 0 0
\(889\) −1462.85 −1.64550
\(890\) −382.320 1389.54i −0.429573 1.56128i
\(891\) 0 0
\(892\) 411.461i 0.461279i
\(893\) 895.756 1.00309
\(894\) 0 0
\(895\) 164.871 + 599.222i 0.184213 + 0.669522i
\(896\) 2740.03i 3.05807i
\(897\) 0 0
\(898\) 1756.28i 1.95577i
\(899\) 833.853i 0.927534i
\(900\) 0 0
\(901\) 164.636 0.182725
\(902\) 2207.04 2.44682
\(903\) 0 0
\(904\) −2194.58 −2.42764
\(905\) 58.2214 16.0191i 0.0643330 0.0177006i
\(906\) 0 0
\(907\) 295.839i 0.326174i −0.986612 0.163087i \(-0.947855\pi\)
0.986612 0.163087i \(-0.0521450\pi\)
\(908\) −2449.72 −2.69793
\(909\) 0 0
\(910\) −965.842 + 265.743i −1.06136 + 0.292025i
\(911\) 695.520i 0.763469i 0.924272 + 0.381734i \(0.124673\pi\)
−0.924272 + 0.381734i \(0.875327\pi\)
\(912\) 0 0
\(913\) 36.2857i 0.0397434i
\(914\) 627.073i 0.686076i
\(915\) 0 0
\(916\) 2274.03 2.48257
\(917\) 2186.11 2.38399
\(918\) 0 0
\(919\) 60.1197 0.0654186 0.0327093 0.999465i \(-0.489586\pi\)
0.0327093 + 0.999465i \(0.489586\pi\)
\(920\) 294.906 81.1407i 0.320550 0.0881964i
\(921\) 0 0
\(922\) 2031.84i 2.20374i
\(923\) 304.973 0.330415
\(924\) 0 0
\(925\) 187.171 + 314.388i 0.202348 + 0.339879i
\(926\) 54.9654i 0.0593579i
\(927\) 0 0
\(928\) 103.979i 0.112047i
\(929\) 1427.23i 1.53631i −0.640262 0.768156i \(-0.721174\pi\)
0.640262 0.768156i \(-0.278826\pi\)
\(930\) 0 0
\(931\) 1808.82 1.94288
\(932\) 222.394 0.238620
\(933\) 0 0
\(934\) 1394.19 1.49271
\(935\) −173.243 629.653i −0.185287 0.673425i
\(936\) 0 0
\(937\) 174.346i 0.186068i −0.995663 0.0930341i \(-0.970343\pi\)
0.995663 0.0930341i \(-0.0296566\pi\)
\(938\) 2255.17 2.40423
\(939\) 0 0
\(940\) 2219.47 610.668i 2.36114 0.649647i
\(941\) 459.422i 0.488228i 0.969747 + 0.244114i \(0.0784971\pi\)
−0.969747 + 0.244114i \(0.921503\pi\)
\(942\) 0 0
\(943\) 189.442i 0.200893i
\(944\) 853.885i 0.904540i
\(945\) 0 0
\(946\) −3231.90 −3.41638
\(947\) 853.975 0.901769 0.450884 0.892582i \(-0.351109\pi\)
0.450884 + 0.892582i \(0.351109\pi\)
\(948\) 0 0
\(949\) −237.091 −0.249833
\(950\) 1185.04 705.515i 1.24741 0.742647i
\(951\) 0 0
\(952\) 1695.75i 1.78125i
\(953\) 1103.28 1.15769 0.578843 0.815439i \(-0.303504\pi\)
0.578843 + 0.815439i \(0.303504\pi\)
\(954\) 0 0
\(955\) 378.976 + 1377.39i 0.396834 + 1.44229i
\(956\) 144.237i 0.150875i
\(957\) 0 0
\(958\) 564.925i 0.589692i
\(959\) 465.324i 0.485218i
\(960\) 0 0
\(961\) 27.2069 0.0283110
\(962\) 229.499 0.238565
\(963\) 0 0
\(964\) 1659.33 1.72130
\(965\) −436.214 1585.42i −0.452035 1.64292i
\(966\) 0 0
\(967\) 1023.22i 1.05814i 0.848579 + 0.529068i \(0.177459\pi\)
−0.848579 + 0.529068i \(0.822541\pi\)
\(968\) 1157.69 1.19596
\(969\) 0 0
\(970\) −295.295 1073.25i −0.304428 1.10644i
\(971\) 589.306i 0.606906i 0.952846 + 0.303453i \(0.0981395\pi\)
−0.952846 + 0.303453i \(0.901860\pi\)
\(972\) 0 0
\(973\) 968.247i 0.995115i
\(974\) 1143.00i 1.17351i
\(975\) 0 0
\(976\) −1617.01 −1.65678
\(977\) −757.233 −0.775059 −0.387530 0.921857i \(-0.626672\pi\)
−0.387530 + 0.921857i \(0.626672\pi\)
\(978\) 0 0
\(979\) 1173.78 1.19896
\(980\) 4481.84 1233.14i 4.57331 1.25830i
\(981\) 0 0
\(982\) 137.444i 0.139963i
\(983\) −1403.90 −1.42818 −0.714091 0.700053i \(-0.753160\pi\)
−0.714091 + 0.700053i \(0.753160\pi\)
\(984\) 0 0
\(985\) 435.394 119.795i 0.442024 0.121619i
\(986\) 850.752i 0.862831i
\(987\) 0 0
\(988\) 579.993i 0.587037i
\(989\) 277.412i 0.280498i
\(990\) 0 0
\(991\) 1778.87 1.79502 0.897512 0.440990i \(-0.145373\pi\)
0.897512 + 0.440990i \(0.145373\pi\)
\(992\) −123.227 −0.124221
\(993\) 0 0
\(994\) −3016.13 −3.03434
\(995\) −1.52250 + 0.418903i −0.00153015 + 0.000421008i
\(996\) 0 0
\(997\) 1393.94i 1.39813i −0.715056 0.699067i \(-0.753599\pi\)
0.715056 0.699067i \(-0.246401\pi\)
\(998\) 263.747 0.264276
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.d.b.404.4 yes 24
3.2 odd 2 inner 405.3.d.b.404.21 yes 24
5.4 even 2 inner 405.3.d.b.404.22 yes 24
9.2 odd 6 405.3.h.k.134.4 48
9.4 even 3 405.3.h.k.269.22 48
9.5 odd 6 405.3.h.k.269.3 48
9.7 even 3 405.3.h.k.134.21 48
15.14 odd 2 inner 405.3.d.b.404.3 24
45.4 even 6 405.3.h.k.269.4 48
45.14 odd 6 405.3.h.k.269.21 48
45.29 odd 6 405.3.h.k.134.22 48
45.34 even 6 405.3.h.k.134.3 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.3 24 15.14 odd 2 inner
405.3.d.b.404.4 yes 24 1.1 even 1 trivial
405.3.d.b.404.21 yes 24 3.2 odd 2 inner
405.3.d.b.404.22 yes 24 5.4 even 2 inner
405.3.h.k.134.3 48 45.34 even 6
405.3.h.k.134.4 48 9.2 odd 6
405.3.h.k.134.21 48 9.7 even 3
405.3.h.k.134.22 48 45.29 odd 6
405.3.h.k.269.3 48 9.5 odd 6
405.3.h.k.269.4 48 45.4 even 6
405.3.h.k.269.21 48 45.14 odd 6
405.3.h.k.269.22 48 9.4 even 3