Properties

Label 405.3.h.k.269.4
Level $405$
Weight $3$
Character 405.269
Analytic conductor $11.035$
Analytic rank $0$
Dimension $48$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [405,3,Mod(134,405)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("405.134"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(405, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([5, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 405 = 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 405.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,-48,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0354507066\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(24\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.4
Character \(\chi\) \(=\) 405.269
Dual form 405.3.h.k.134.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.74200 + 3.01723i) q^{2} +(-4.06913 - 7.04793i) q^{4} +(-1.26172 - 4.83819i) q^{5} +(11.0647 + 6.38818i) q^{7} +14.4177 q^{8} +(16.7958 + 4.62123i) q^{10} +(-12.2871 - 7.09395i) q^{11} +(-3.89787 + 2.25044i) q^{13} +(-38.5493 + 22.2564i) q^{14} +(-8.83907 + 15.3097i) q^{16} -9.20574 q^{17} -15.8342 q^{19} +(-28.9651 + 28.5797i) q^{20} +(42.8082 - 24.7153i) q^{22} +(2.12146 + 3.67447i) q^{23} +(-21.8161 + 12.2089i) q^{25} -15.6810i q^{26} -103.977i q^{28} +(-22.9719 - 13.2628i) q^{29} +(-15.7179 - 27.2242i) q^{31} +(-1.95998 - 3.39479i) q^{32} +(16.0364 - 27.7759i) q^{34} +(16.9468 - 61.5930i) q^{35} -14.6355i q^{37} +(27.5831 - 47.7753i) q^{38} +(-18.1910 - 69.7554i) q^{40} +(38.6673 - 22.3246i) q^{41} +(-56.6228 - 32.6912i) q^{43} +115.465i q^{44} -14.7823 q^{46} +(-28.2856 + 48.9921i) q^{47} +(57.1178 + 98.9309i) q^{49} +(1.16674 - 87.0922i) q^{50} +(31.7218 + 18.3146i) q^{52} -17.8840 q^{53} +(-18.8190 + 68.3978i) q^{55} +(159.527 + 92.1027i) q^{56} +(80.0340 - 46.2076i) q^{58} +(-41.8306 + 24.1509i) q^{59} +(45.7349 - 79.2151i) q^{61} +109.522 q^{62} -57.0554 q^{64} +(15.8060 + 16.0192i) q^{65} +(-43.8758 + 25.3317i) q^{67} +(37.4593 + 64.8815i) q^{68} +(156.319 + 158.427i) q^{70} -67.7587i q^{71} -52.6768i q^{73} +(44.1586 + 25.4950i) q^{74} +(64.4312 + 111.598i) q^{76} +(-90.6349 - 156.984i) q^{77} +(27.4481 - 47.5415i) q^{79} +(85.2237 + 23.4485i) q^{80} +155.558i q^{82} +(-1.27876 + 2.21487i) q^{83} +(11.6151 + 44.5391i) q^{85} +(197.274 - 113.896i) q^{86} +(-177.151 - 102.278i) q^{88} -82.7313i q^{89} -57.5048 q^{91} +(17.2650 - 29.9038i) q^{92} +(-98.5469 - 170.688i) q^{94} +(19.9782 + 76.6086i) q^{95} +(-55.3388 - 31.9499i) q^{97} -397.997 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{4} + 24 q^{10} - 96 q^{16} - 48 q^{25} - 144 q^{34} - 72 q^{40} - 336 q^{46} + 288 q^{49} - 264 q^{55} + 360 q^{61} - 144 q^{64} + 156 q^{70} - 48 q^{76} + 480 q^{79} + 456 q^{85} - 96 q^{91}+ \cdots - 384 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/405\mathbb{Z}\right)^\times\).

\(n\) \(82\) \(326\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.74200 + 3.01723i −0.871000 + 1.50862i −0.0100362 + 0.999950i \(0.503195\pi\)
−0.860964 + 0.508666i \(0.830139\pi\)
\(3\) 0 0
\(4\) −4.06913 7.04793i −1.01728 1.76198i
\(5\) −1.26172 4.83819i −0.252344 0.967638i
\(6\) 0 0
\(7\) 11.0647 + 6.38818i 1.58067 + 0.912598i 0.994762 + 0.102217i \(0.0325936\pi\)
0.585903 + 0.810381i \(0.300740\pi\)
\(8\) 14.4177 1.80221
\(9\) 0 0
\(10\) 16.7958 + 4.62123i 1.67958 + 0.462123i
\(11\) −12.2871 7.09395i −1.11701 0.644905i −0.176372 0.984324i \(-0.556436\pi\)
−0.940635 + 0.339419i \(0.889770\pi\)
\(12\) 0 0
\(13\) −3.89787 + 2.25044i −0.299836 + 0.173110i −0.642369 0.766395i \(-0.722048\pi\)
0.342533 + 0.939506i \(0.388715\pi\)
\(14\) −38.5493 + 22.2564i −2.75352 + 1.58974i
\(15\) 0 0
\(16\) −8.83907 + 15.3097i −0.552442 + 0.956857i
\(17\) −9.20574 −0.541514 −0.270757 0.962648i \(-0.587274\pi\)
−0.270757 + 0.962648i \(0.587274\pi\)
\(18\) 0 0
\(19\) −15.8342 −0.833376 −0.416688 0.909049i \(-0.636809\pi\)
−0.416688 + 0.909049i \(0.636809\pi\)
\(20\) −28.9651 + 28.5797i −1.44826 + 1.42899i
\(21\) 0 0
\(22\) 42.8082 24.7153i 1.94583 1.12342i
\(23\) 2.12146 + 3.67447i 0.0922373 + 0.159760i 0.908452 0.417989i \(-0.137265\pi\)
−0.816215 + 0.577748i \(0.803932\pi\)
\(24\) 0 0
\(25\) −21.8161 + 12.2089i −0.872645 + 0.488354i
\(26\) 15.6810i 0.603117i
\(27\) 0 0
\(28\) 103.977i 3.71348i
\(29\) −22.9719 13.2628i −0.792133 0.457338i 0.0485796 0.998819i \(-0.484531\pi\)
−0.840713 + 0.541481i \(0.817864\pi\)
\(30\) 0 0
\(31\) −15.7179 27.2242i −0.507028 0.878199i −0.999967 0.00813474i \(-0.997411\pi\)
0.492939 0.870064i \(-0.335923\pi\)
\(32\) −1.95998 3.39479i −0.0612494 0.106087i
\(33\) 0 0
\(34\) 16.0364 27.7759i 0.471659 0.816937i
\(35\) 16.9468 61.5930i 0.484193 1.75980i
\(36\) 0 0
\(37\) 14.6355i 0.395553i −0.980247 0.197777i \(-0.936628\pi\)
0.980247 0.197777i \(-0.0633720\pi\)
\(38\) 27.5831 47.7753i 0.725871 1.25725i
\(39\) 0 0
\(40\) −18.1910 69.7554i −0.454776 1.74388i
\(41\) 38.6673 22.3246i 0.943104 0.544502i 0.0521722 0.998638i \(-0.483386\pi\)
0.890932 + 0.454137i \(0.150052\pi\)
\(42\) 0 0
\(43\) −56.6228 32.6912i −1.31681 0.760261i −0.333596 0.942716i \(-0.608262\pi\)
−0.983214 + 0.182455i \(0.941596\pi\)
\(44\) 115.465i 2.62420i
\(45\) 0 0
\(46\) −14.7823 −0.321355
\(47\) −28.2856 + 48.9921i −0.601821 + 1.04238i 0.390725 + 0.920508i \(0.372224\pi\)
−0.992545 + 0.121876i \(0.961109\pi\)
\(48\) 0 0
\(49\) 57.1178 + 98.9309i 1.16567 + 2.01900i
\(50\) 1.16674 87.0922i 0.0233348 1.74184i
\(51\) 0 0
\(52\) 31.7218 + 18.3146i 0.610035 + 0.352204i
\(53\) −17.8840 −0.337434 −0.168717 0.985665i \(-0.553962\pi\)
−0.168717 + 0.985665i \(0.553962\pi\)
\(54\) 0 0
\(55\) −18.8190 + 68.3978i −0.342164 + 1.24360i
\(56\) 159.527 + 92.1027i 2.84869 + 1.64469i
\(57\) 0 0
\(58\) 80.0340 46.2076i 1.37990 0.796683i
\(59\) −41.8306 + 24.1509i −0.708992 + 0.409337i −0.810688 0.585479i \(-0.800907\pi\)
0.101695 + 0.994816i \(0.467573\pi\)
\(60\) 0 0
\(61\) 45.7349 79.2151i 0.749752 1.29861i −0.198190 0.980164i \(-0.563506\pi\)
0.947942 0.318444i \(-0.103160\pi\)
\(62\) 109.522 1.76649
\(63\) 0 0
\(64\) −57.0554 −0.891491
\(65\) 15.8060 + 16.0192i 0.243170 + 0.246449i
\(66\) 0 0
\(67\) −43.8758 + 25.3317i −0.654862 + 0.378085i −0.790317 0.612699i \(-0.790084\pi\)
0.135454 + 0.990784i \(0.456751\pi\)
\(68\) 37.4593 + 64.8815i 0.550873 + 0.954139i
\(69\) 0 0
\(70\) 156.319 + 158.427i 2.23313 + 2.26325i
\(71\) 67.7587i 0.954348i −0.878809 0.477174i \(-0.841661\pi\)
0.878809 0.477174i \(-0.158339\pi\)
\(72\) 0 0
\(73\) 52.6768i 0.721600i −0.932643 0.360800i \(-0.882504\pi\)
0.932643 0.360800i \(-0.117496\pi\)
\(74\) 44.1586 + 25.4950i 0.596738 + 0.344527i
\(75\) 0 0
\(76\) 64.4312 + 111.598i 0.847778 + 1.46840i
\(77\) −90.6349 156.984i −1.17708 2.03876i
\(78\) 0 0
\(79\) 27.4481 47.5415i 0.347444 0.601791i −0.638351 0.769746i \(-0.720383\pi\)
0.985795 + 0.167955i \(0.0537163\pi\)
\(80\) 85.2237 + 23.4485i 1.06530 + 0.293107i
\(81\) 0 0
\(82\) 155.558i 1.89704i
\(83\) −1.27876 + 2.21487i −0.0154067 + 0.0266852i −0.873626 0.486598i \(-0.838238\pi\)
0.858219 + 0.513283i \(0.171571\pi\)
\(84\) 0 0
\(85\) 11.6151 + 44.5391i 0.136648 + 0.523990i
\(86\) 197.274 113.896i 2.29388 1.32437i
\(87\) 0 0
\(88\) −177.151 102.278i −2.01308 1.16225i
\(89\) 82.7313i 0.929565i −0.885425 0.464783i \(-0.846132\pi\)
0.885425 0.464783i \(-0.153868\pi\)
\(90\) 0 0
\(91\) −57.5048 −0.631921
\(92\) 17.2650 29.9038i 0.187663 0.325041i
\(93\) 0 0
\(94\) −98.5469 170.688i −1.04837 1.81583i
\(95\) 19.9782 + 76.6086i 0.210297 + 0.806406i
\(96\) 0 0
\(97\) −55.3388 31.9499i −0.570503 0.329380i 0.186847 0.982389i \(-0.440173\pi\)
−0.757350 + 0.653009i \(0.773506\pi\)
\(98\) −397.997 −4.06119
\(99\) 0 0
\(100\) 174.820 + 104.079i 1.74820 + 1.04079i
\(101\) −69.8180 40.3094i −0.691267 0.399103i 0.112819 0.993616i \(-0.464012\pi\)
−0.804087 + 0.594512i \(0.797345\pi\)
\(102\) 0 0
\(103\) −31.1536 + 17.9866i −0.302462 + 0.174627i −0.643549 0.765405i \(-0.722539\pi\)
0.341086 + 0.940032i \(0.389205\pi\)
\(104\) −56.1982 + 32.4460i −0.540367 + 0.311981i
\(105\) 0 0
\(106\) 31.1539 53.9602i 0.293905 0.509059i
\(107\) 21.6725 0.202546 0.101273 0.994859i \(-0.467708\pi\)
0.101273 + 0.994859i \(0.467708\pi\)
\(108\) 0 0
\(109\) −1.09218 −0.0100200 −0.00501000 0.999987i \(-0.501595\pi\)
−0.00501000 + 0.999987i \(0.501595\pi\)
\(110\) −173.589 175.930i −1.57808 1.59937i
\(111\) 0 0
\(112\) −195.603 + 112.931i −1.74645 + 1.00831i
\(113\) 76.1074 + 131.822i 0.673517 + 1.16657i 0.976900 + 0.213697i \(0.0685505\pi\)
−0.303383 + 0.952869i \(0.598116\pi\)
\(114\) 0 0
\(115\) 15.1011 14.9002i 0.131314 0.129567i
\(116\) 215.872i 1.86097i
\(117\) 0 0
\(118\) 168.283i 1.42613i
\(119\) −101.858 58.8080i −0.855953 0.494185i
\(120\) 0 0
\(121\) 40.1483 + 69.5389i 0.331804 + 0.574702i
\(122\) 159.340 + 275.985i 1.30607 + 2.26217i
\(123\) 0 0
\(124\) −127.916 + 221.557i −1.03158 + 1.78675i
\(125\) 86.5946 + 90.1464i 0.692757 + 0.721172i
\(126\) 0 0
\(127\) 114.497i 0.901549i −0.892638 0.450775i \(-0.851148\pi\)
0.892638 0.450775i \(-0.148852\pi\)
\(128\) 107.230 185.729i 0.837738 1.45100i
\(129\) 0 0
\(130\) −75.8678 + 19.7850i −0.583598 + 0.152193i
\(131\) −148.182 + 85.5530i −1.13116 + 0.653077i −0.944227 0.329296i \(-0.893189\pi\)
−0.186935 + 0.982372i \(0.559855\pi\)
\(132\) 0 0
\(133\) −175.200 101.151i −1.31729 0.760537i
\(134\) 176.511i 1.31725i
\(135\) 0 0
\(136\) −132.725 −0.975922
\(137\) −18.2103 + 31.5412i −0.132922 + 0.230228i −0.924802 0.380449i \(-0.875769\pi\)
0.791880 + 0.610677i \(0.209103\pi\)
\(138\) 0 0
\(139\) −37.8921 65.6311i −0.272605 0.472166i 0.696923 0.717146i \(-0.254552\pi\)
−0.969528 + 0.244980i \(0.921219\pi\)
\(140\) −503.062 + 131.190i −3.59330 + 0.937072i
\(141\) 0 0
\(142\) 204.444 + 118.036i 1.43974 + 0.831237i
\(143\) 63.8579 0.446559
\(144\) 0 0
\(145\) −35.1840 + 127.876i −0.242648 + 0.881905i
\(146\) 158.938 + 91.7629i 1.08862 + 0.628513i
\(147\) 0 0
\(148\) −103.150 + 59.5535i −0.696958 + 0.402389i
\(149\) 165.772 95.7083i 1.11256 0.642338i 0.173070 0.984910i \(-0.444631\pi\)
0.939492 + 0.342572i \(0.111298\pi\)
\(150\) 0 0
\(151\) −119.619 + 207.186i −0.792178 + 1.37209i 0.132438 + 0.991191i \(0.457719\pi\)
−0.924616 + 0.380901i \(0.875614\pi\)
\(152\) −228.292 −1.50192
\(153\) 0 0
\(154\) 631.544 4.10094
\(155\) −111.884 + 110.395i −0.721833 + 0.712228i
\(156\) 0 0
\(157\) 124.141 71.6729i 0.790707 0.456515i −0.0495042 0.998774i \(-0.515764\pi\)
0.840212 + 0.542259i \(0.182431\pi\)
\(158\) 95.6291 + 165.634i 0.605248 + 1.04832i
\(159\) 0 0
\(160\) −13.9517 + 13.7660i −0.0871979 + 0.0860376i
\(161\) 54.2090i 0.336702i
\(162\) 0 0
\(163\) 138.957i 0.852496i 0.904606 + 0.426248i \(0.140165\pi\)
−0.904606 + 0.426248i \(0.859835\pi\)
\(164\) −314.684 181.683i −1.91881 1.10782i
\(165\) 0 0
\(166\) −4.45519 7.71661i −0.0268385 0.0464856i
\(167\) −102.790 178.038i −0.615510 1.06610i −0.990295 0.138983i \(-0.955617\pi\)
0.374784 0.927112i \(-0.377717\pi\)
\(168\) 0 0
\(169\) −74.3711 + 128.814i −0.440066 + 0.762216i
\(170\) −154.618 42.5418i −0.909519 0.250246i
\(171\) 0 0
\(172\) 532.099i 3.09360i
\(173\) −23.7687 + 41.1687i −0.137392 + 0.237969i −0.926508 0.376274i \(-0.877205\pi\)
0.789117 + 0.614243i \(0.210539\pi\)
\(174\) 0 0
\(175\) −319.381 4.27863i −1.82503 0.0244493i
\(176\) 217.213 125.408i 1.23416 0.712545i
\(177\) 0 0
\(178\) 249.620 + 144.118i 1.40236 + 0.809651i
\(179\) 124.298i 0.694402i −0.937791 0.347201i \(-0.887132\pi\)
0.937791 0.347201i \(-0.112868\pi\)
\(180\) 0 0
\(181\) −12.0770 −0.0667237 −0.0333618 0.999443i \(-0.510621\pi\)
−0.0333618 + 0.999443i \(0.510621\pi\)
\(182\) 100.173 173.505i 0.550403 0.953326i
\(183\) 0 0
\(184\) 30.5865 + 52.9773i 0.166231 + 0.287920i
\(185\) −70.8091 + 18.4658i −0.382752 + 0.0998153i
\(186\) 0 0
\(187\) 113.112 + 65.3051i 0.604876 + 0.349225i
\(188\) 460.390 2.44888
\(189\) 0 0
\(190\) −265.948 73.1732i −1.39973 0.385122i
\(191\) 247.436 + 142.857i 1.29548 + 0.747945i 0.979620 0.200862i \(-0.0643742\pi\)
0.315859 + 0.948806i \(0.397708\pi\)
\(192\) 0 0
\(193\) −284.807 + 164.433i −1.47568 + 0.851987i −0.999624 0.0274255i \(-0.991269\pi\)
−0.476061 + 0.879412i \(0.657936\pi\)
\(194\) 192.800 111.313i 0.993816 0.573780i
\(195\) 0 0
\(196\) 464.839 805.125i 2.37163 4.10778i
\(197\) 90.3147 0.458450 0.229225 0.973373i \(-0.426381\pi\)
0.229225 + 0.973373i \(0.426381\pi\)
\(198\) 0 0
\(199\) 0.315816 0.00158702 0.000793508 1.00000i \(-0.499747\pi\)
0.000793508 1.00000i \(0.499747\pi\)
\(200\) −314.538 + 176.023i −1.57269 + 0.880116i
\(201\) 0 0
\(202\) 243.246 140.438i 1.20419 0.695238i
\(203\) −169.451 293.497i −0.834732 1.44580i
\(204\) 0 0
\(205\) −156.798 158.912i −0.764867 0.775182i
\(206\) 125.330i 0.608399i
\(207\) 0 0
\(208\) 79.5670i 0.382534i
\(209\) 194.556 + 112.327i 0.930888 + 0.537448i
\(210\) 0 0
\(211\) 164.187 + 284.380i 0.778137 + 1.34777i 0.933014 + 0.359839i \(0.117168\pi\)
−0.154878 + 0.987934i \(0.549498\pi\)
\(212\) 72.7723 + 126.045i 0.343266 + 0.594553i
\(213\) 0 0
\(214\) −37.7534 + 65.3909i −0.176418 + 0.305565i
\(215\) −86.7242 + 315.199i −0.403368 + 1.46604i
\(216\) 0 0
\(217\) 401.635i 1.85085i
\(218\) 1.90258 3.29536i 0.00872741 0.0151163i
\(219\) 0 0
\(220\) 558.640 145.684i 2.53927 0.662200i
\(221\) 35.8828 20.7169i 0.162366 0.0937418i
\(222\) 0 0
\(223\) 43.7853 + 25.2795i 0.196347 + 0.113361i 0.594950 0.803763i \(-0.297172\pi\)
−0.398604 + 0.917123i \(0.630505\pi\)
\(224\) 50.0829i 0.223584i
\(225\) 0 0
\(226\) −530.316 −2.34653
\(227\) −150.507 + 260.685i −0.663024 + 1.14839i 0.316793 + 0.948495i \(0.397394\pi\)
−0.979817 + 0.199897i \(0.935939\pi\)
\(228\) 0 0
\(229\) −139.713 241.989i −0.610099 1.05672i −0.991223 0.132198i \(-0.957796\pi\)
0.381124 0.924524i \(-0.375537\pi\)
\(230\) 18.6511 + 71.5196i 0.0810918 + 0.310955i
\(231\) 0 0
\(232\) −331.201 191.219i −1.42759 0.824219i
\(233\) −27.3269 −0.117283 −0.0586415 0.998279i \(-0.518677\pi\)
−0.0586415 + 0.998279i \(0.518677\pi\)
\(234\) 0 0
\(235\) 272.721 + 75.0368i 1.16052 + 0.319305i
\(236\) 340.428 + 196.546i 1.44249 + 0.832822i
\(237\) 0 0
\(238\) 354.875 204.887i 1.49107 0.860870i
\(239\) 15.3488 8.86165i 0.0642210 0.0370780i −0.467546 0.883969i \(-0.654862\pi\)
0.531767 + 0.846891i \(0.321528\pi\)
\(240\) 0 0
\(241\) −101.946 + 176.576i −0.423014 + 0.732682i −0.996233 0.0867204i \(-0.972361\pi\)
0.573218 + 0.819403i \(0.305695\pi\)
\(242\) −279.753 −1.15601
\(243\) 0 0
\(244\) −744.404 −3.05083
\(245\) 406.580 401.170i 1.65951 1.63743i
\(246\) 0 0
\(247\) 61.7194 35.6337i 0.249876 0.144266i
\(248\) −226.615 392.509i −0.913771 1.58270i
\(249\) 0 0
\(250\) −422.840 + 104.241i −1.69136 + 0.416963i
\(251\) 117.194i 0.466908i 0.972368 + 0.233454i \(0.0750029\pi\)
−0.972368 + 0.233454i \(0.924997\pi\)
\(252\) 0 0
\(253\) 60.1981i 0.237937i
\(254\) 345.463 + 199.453i 1.36009 + 0.785249i
\(255\) 0 0
\(256\) 259.480 + 449.433i 1.01359 + 1.75560i
\(257\) 76.6823 + 132.818i 0.298375 + 0.516800i 0.975764 0.218824i \(-0.0702222\pi\)
−0.677390 + 0.735624i \(0.736889\pi\)
\(258\) 0 0
\(259\) 93.4940 161.936i 0.360981 0.625237i
\(260\) 48.5855 176.584i 0.186867 0.679170i
\(261\) 0 0
\(262\) 596.133i 2.27532i
\(263\) 131.747 228.193i 0.500941 0.867655i −0.499059 0.866568i \(-0.666321\pi\)
0.999999 0.00108680i \(-0.000345938\pi\)
\(264\) 0 0
\(265\) 22.5646 + 86.5262i 0.0851494 + 0.326514i
\(266\) 610.395 352.412i 2.29472 1.32486i
\(267\) 0 0
\(268\) 357.072 + 206.156i 1.33236 + 0.769238i
\(269\) 10.4219i 0.0387431i −0.999812 0.0193715i \(-0.993833\pi\)
0.999812 0.0193715i \(-0.00616654\pi\)
\(270\) 0 0
\(271\) 501.590 1.85089 0.925443 0.378886i \(-0.123693\pi\)
0.925443 + 0.378886i \(0.123693\pi\)
\(272\) 81.3702 140.937i 0.299155 0.518152i
\(273\) 0 0
\(274\) −63.4448 109.890i −0.231550 0.401057i
\(275\) 354.666 + 4.75133i 1.28969 + 0.0172776i
\(276\) 0 0
\(277\) −304.210 175.636i −1.09823 0.634065i −0.162476 0.986713i \(-0.551948\pi\)
−0.935756 + 0.352648i \(0.885281\pi\)
\(278\) 264.032 0.949756
\(279\) 0 0
\(280\) 244.333 888.027i 0.872617 3.17153i
\(281\) 252.986 + 146.061i 0.900304 + 0.519791i 0.877299 0.479944i \(-0.159343\pi\)
0.0230054 + 0.999735i \(0.492677\pi\)
\(282\) 0 0
\(283\) 162.862 94.0285i 0.575485 0.332256i −0.183852 0.982954i \(-0.558857\pi\)
0.759337 + 0.650698i \(0.225523\pi\)
\(284\) −477.559 + 275.719i −1.68155 + 0.970840i
\(285\) 0 0
\(286\) −111.241 + 192.674i −0.388953 + 0.673686i
\(287\) 570.454 1.98764
\(288\) 0 0
\(289\) −204.254 −0.706762
\(290\) −324.542 328.918i −1.11911 1.13420i
\(291\) 0 0
\(292\) −371.262 + 214.348i −1.27145 + 0.734070i
\(293\) 154.985 + 268.442i 0.528958 + 0.916183i 0.999430 + 0.0337676i \(0.0107506\pi\)
−0.470471 + 0.882415i \(0.655916\pi\)
\(294\) 0 0
\(295\) 169.625 + 171.913i 0.575000 + 0.582754i
\(296\) 211.009i 0.712869i
\(297\) 0 0
\(298\) 666.895i 2.23790i
\(299\) −16.5383 9.54841i −0.0553121 0.0319345i
\(300\) 0 0
\(301\) −417.675 723.434i −1.38762 2.40344i
\(302\) −416.752 721.836i −1.37997 2.39018i
\(303\) 0 0
\(304\) 139.959 242.416i 0.460392 0.797422i
\(305\) −440.962 121.327i −1.44578 0.397793i
\(306\) 0 0
\(307\) 143.887i 0.468687i −0.972154 0.234344i \(-0.924706\pi\)
0.972154 0.234344i \(-0.0752941\pi\)
\(308\) −737.610 + 1277.58i −2.39484 + 4.14798i
\(309\) 0 0
\(310\) −138.186 529.889i −0.445762 1.70932i
\(311\) 24.1305 13.9318i 0.0775901 0.0447966i −0.460703 0.887554i \(-0.652403\pi\)
0.538293 + 0.842758i \(0.319069\pi\)
\(312\) 0 0
\(313\) 361.967 + 208.982i 1.15644 + 0.667673i 0.950449 0.310880i \(-0.100624\pi\)
0.205995 + 0.978553i \(0.433957\pi\)
\(314\) 499.416i 1.59050i
\(315\) 0 0
\(316\) −446.759 −1.41379
\(317\) −33.5344 + 58.0833i −0.105787 + 0.183228i −0.914059 0.405580i \(-0.867069\pi\)
0.808273 + 0.588808i \(0.200403\pi\)
\(318\) 0 0
\(319\) 188.172 + 325.923i 0.589880 + 1.02170i
\(320\) 71.9879 + 276.045i 0.224962 + 0.862640i
\(321\) 0 0
\(322\) −163.561 94.4321i −0.507954 0.293268i
\(323\) 145.765 0.451285
\(324\) 0 0
\(325\) 57.5612 96.6843i 0.177111 0.297490i
\(326\) −419.265 242.063i −1.28609 0.742524i
\(327\) 0 0
\(328\) 557.492 321.868i 1.69967 0.981305i
\(329\) −625.940 + 361.387i −1.90255 + 1.09844i
\(330\) 0 0
\(331\) 53.2428 92.2192i 0.160854 0.278608i −0.774321 0.632793i \(-0.781908\pi\)
0.935175 + 0.354185i \(0.115242\pi\)
\(332\) 20.8137 0.0626918
\(333\) 0 0
\(334\) 716.242 2.14444
\(335\) 177.918 + 180.318i 0.531100 + 0.538262i
\(336\) 0 0
\(337\) 461.486 266.439i 1.36940 0.790621i 0.378545 0.925583i \(-0.376424\pi\)
0.990851 + 0.134962i \(0.0430911\pi\)
\(338\) −259.109 448.790i −0.766594 1.32778i
\(339\) 0 0
\(340\) 266.646 263.097i 0.784252 0.773816i
\(341\) 446.008i 1.30794i
\(342\) 0 0
\(343\) 833.474i 2.42995i
\(344\) −816.369 471.331i −2.37317 1.37015i
\(345\) 0 0
\(346\) −82.8103 143.432i −0.239336 0.414542i
\(347\) 1.35563 + 2.34802i 0.00390672 + 0.00676664i 0.867972 0.496613i \(-0.165423\pi\)
−0.864065 + 0.503380i \(0.832090\pi\)
\(348\) 0 0
\(349\) 99.4267 172.212i 0.284890 0.493444i −0.687692 0.726002i \(-0.741376\pi\)
0.972583 + 0.232558i \(0.0747095\pi\)
\(350\) 569.270 956.192i 1.62649 2.73198i
\(351\) 0 0
\(352\) 55.6160i 0.158000i
\(353\) −125.575 + 217.503i −0.355737 + 0.616155i −0.987244 0.159215i \(-0.949104\pi\)
0.631506 + 0.775371i \(0.282437\pi\)
\(354\) 0 0
\(355\) −327.829 + 85.4924i −0.923463 + 0.240824i
\(356\) −583.085 + 336.644i −1.63788 + 0.945630i
\(357\) 0 0
\(358\) 375.036 + 216.527i 1.04759 + 0.604824i
\(359\) 314.839i 0.876989i 0.898734 + 0.438495i \(0.144488\pi\)
−0.898734 + 0.438495i \(0.855512\pi\)
\(360\) 0 0
\(361\) −110.280 −0.305484
\(362\) 21.0381 36.4391i 0.0581163 0.100660i
\(363\) 0 0
\(364\) 233.994 + 405.290i 0.642841 + 1.11343i
\(365\) −254.860 + 66.4632i −0.698247 + 0.182091i
\(366\) 0 0
\(367\) 195.196 + 112.696i 0.531868 + 0.307074i 0.741777 0.670647i \(-0.233983\pi\)
−0.209909 + 0.977721i \(0.567317\pi\)
\(368\) −75.0069 −0.203823
\(369\) 0 0
\(370\) 67.6338 245.815i 0.182794 0.664365i
\(371\) −197.880 114.246i −0.533371 0.307942i
\(372\) 0 0
\(373\) −434.035 + 250.590i −1.16363 + 0.671824i −0.952172 0.305563i \(-0.901156\pi\)
−0.211461 + 0.977386i \(0.567822\pi\)
\(374\) −394.081 + 227.523i −1.05369 + 0.608350i
\(375\) 0 0
\(376\) −407.812 + 706.351i −1.08461 + 1.87859i
\(377\) 119.388 0.316680
\(378\) 0 0
\(379\) 3.37369 0.00890156 0.00445078 0.999990i \(-0.498583\pi\)
0.00445078 + 0.999990i \(0.498583\pi\)
\(380\) 458.638 452.535i 1.20694 1.19088i
\(381\) 0 0
\(382\) −862.068 + 497.715i −2.25672 + 1.30292i
\(383\) −207.530 359.452i −0.541853 0.938516i −0.998798 0.0490215i \(-0.984390\pi\)
0.456945 0.889495i \(-0.348944\pi\)
\(384\) 0 0
\(385\) −645.164 + 636.579i −1.67575 + 1.65345i
\(386\) 1145.77i 2.96832i
\(387\) 0 0
\(388\) 520.032i 1.34029i
\(389\) −639.742 369.355i −1.64458 0.949499i −0.979175 0.203018i \(-0.934925\pi\)
−0.665406 0.746482i \(-0.731742\pi\)
\(390\) 0 0
\(391\) −19.5296 33.8263i −0.0499478 0.0865122i
\(392\) 823.505 + 1426.35i 2.10078 + 3.63866i
\(393\) 0 0
\(394\) −157.328 + 272.500i −0.399310 + 0.691625i
\(395\) −264.646 72.8151i −0.669991 0.184342i
\(396\) 0 0
\(397\) 258.122i 0.650183i −0.945683 0.325091i \(-0.894605\pi\)
0.945683 0.325091i \(-0.105395\pi\)
\(398\) −0.550152 + 0.952891i −0.00138229 + 0.00239420i
\(399\) 0 0
\(400\) 5.92016 441.914i 0.0148004 1.10478i
\(401\) 259.533 149.841i 0.647214 0.373669i −0.140174 0.990127i \(-0.544766\pi\)
0.787388 + 0.616458i \(0.211433\pi\)
\(402\) 0 0
\(403\) 122.532 + 70.7441i 0.304051 + 0.175544i
\(404\) 656.097i 1.62400i
\(405\) 0 0
\(406\) 1180.73 2.90821
\(407\) −103.823 + 179.827i −0.255094 + 0.441836i
\(408\) 0 0
\(409\) 274.690 + 475.777i 0.671614 + 1.16327i 0.977446 + 0.211184i \(0.0677320\pi\)
−0.305832 + 0.952085i \(0.598935\pi\)
\(410\) 752.617 196.270i 1.83565 0.478707i
\(411\) 0 0
\(412\) 253.536 + 146.379i 0.615379 + 0.355289i
\(413\) −617.121 −1.49424
\(414\) 0 0
\(415\) 12.3294 + 3.39232i 0.0297094 + 0.00817427i
\(416\) 15.2795 + 8.82162i 0.0367295 + 0.0212058i
\(417\) 0 0
\(418\) −677.832 + 391.346i −1.62161 + 0.936235i
\(419\) 214.767 123.996i 0.512571 0.295933i −0.221319 0.975202i \(-0.571036\pi\)
0.733890 + 0.679268i \(0.237703\pi\)
\(420\) 0 0
\(421\) 163.175 282.627i 0.387588 0.671322i −0.604537 0.796577i \(-0.706642\pi\)
0.992125 + 0.125255i \(0.0399750\pi\)
\(422\) −1144.05 −2.71103
\(423\) 0 0
\(424\) −257.846 −0.608127
\(425\) 200.834 112.392i 0.472550 0.264451i
\(426\) 0 0
\(427\) 1012.08 584.325i 2.37021 1.36844i
\(428\) −88.1880 152.746i −0.206047 0.356884i
\(429\) 0 0
\(430\) −799.955 810.744i −1.86036 1.88545i
\(431\) 96.3692i 0.223594i 0.993731 + 0.111797i \(0.0356607\pi\)
−0.993731 + 0.111797i \(0.964339\pi\)
\(432\) 0 0
\(433\) 672.095i 1.55218i −0.630620 0.776091i \(-0.717200\pi\)
0.630620 0.776091i \(-0.282800\pi\)
\(434\) 1211.83 + 699.648i 2.79222 + 1.61209i
\(435\) 0 0
\(436\) 4.44422 + 7.69761i 0.0101932 + 0.0176551i
\(437\) −33.5915 58.1822i −0.0768684 0.133140i
\(438\) 0 0
\(439\) −51.8764 + 89.8526i −0.118170 + 0.204676i −0.919042 0.394159i \(-0.871036\pi\)
0.800873 + 0.598835i \(0.204369\pi\)
\(440\) −271.327 + 986.137i −0.616652 + 2.24122i
\(441\) 0 0
\(442\) 144.356i 0.326596i
\(443\) 113.879 197.244i 0.257063 0.445247i −0.708391 0.705821i \(-0.750578\pi\)
0.965454 + 0.260574i \(0.0839118\pi\)
\(444\) 0 0
\(445\) −400.270 + 104.384i −0.899482 + 0.234570i
\(446\) −152.548 + 88.0736i −0.342036 + 0.197474i
\(447\) 0 0
\(448\) −631.299 364.481i −1.40915 0.813573i
\(449\) 504.100i 1.12272i −0.827573 0.561359i \(-0.810279\pi\)
0.827573 0.561359i \(-0.189721\pi\)
\(450\) 0 0
\(451\) −633.478 −1.40461
\(452\) 619.381 1072.80i 1.37031 2.37345i
\(453\) 0 0
\(454\) −524.365 908.226i −1.15499 2.00050i
\(455\) 72.5548 + 278.219i 0.159461 + 0.611470i
\(456\) 0 0
\(457\) −155.873 89.9933i −0.341079 0.196922i 0.319670 0.947529i \(-0.396428\pi\)
−0.660749 + 0.750607i \(0.729761\pi\)
\(458\) 973.518 2.12558
\(459\) 0 0
\(460\) −166.464 45.8010i −0.361877 0.0995673i
\(461\) −505.060 291.597i −1.09558 0.632531i −0.160520 0.987033i \(-0.551317\pi\)
−0.935055 + 0.354502i \(0.884650\pi\)
\(462\) 0 0
\(463\) 13.6629 7.88827i 0.0295095 0.0170373i −0.485173 0.874418i \(-0.661243\pi\)
0.514682 + 0.857381i \(0.327910\pi\)
\(464\) 406.100 234.462i 0.875215 0.505306i
\(465\) 0 0
\(466\) 47.6035 82.4517i 0.102154 0.176935i
\(467\) 400.171 0.856896 0.428448 0.903566i \(-0.359060\pi\)
0.428448 + 0.903566i \(0.359060\pi\)
\(468\) 0 0
\(469\) −647.294 −1.38016
\(470\) −701.484 + 692.149i −1.49252 + 1.47266i
\(471\) 0 0
\(472\) −603.099 + 348.199i −1.27775 + 0.737711i
\(473\) 463.820 + 803.360i 0.980592 + 1.69843i
\(474\) 0 0
\(475\) 345.440 193.317i 0.727242 0.406983i
\(476\) 957.189i 2.01090i
\(477\) 0 0
\(478\) 61.7480i 0.129180i
\(479\) 140.425 + 81.0741i 0.293162 + 0.169257i 0.639367 0.768902i \(-0.279197\pi\)
−0.346205 + 0.938159i \(0.612530\pi\)
\(480\) 0 0
\(481\) 32.9362 + 57.0471i 0.0684744 + 0.118601i
\(482\) −355.181 615.192i −0.736891 1.27633i
\(483\) 0 0
\(484\) 326.737 565.925i 0.675077 1.16927i
\(485\) −84.7576 + 308.051i −0.174758 + 0.635157i
\(486\) 0 0
\(487\) 328.071i 0.673658i 0.941566 + 0.336829i \(0.109354\pi\)
−0.941566 + 0.336829i \(0.890646\pi\)
\(488\) 659.390 1142.10i 1.35121 2.34036i
\(489\) 0 0
\(490\) 502.160 + 1925.58i 1.02482 + 3.92976i
\(491\) 34.1647 19.7250i 0.0695819 0.0401731i −0.464805 0.885413i \(-0.653876\pi\)
0.534387 + 0.845240i \(0.320542\pi\)
\(492\) 0 0
\(493\) 211.473 + 122.094i 0.428952 + 0.247655i
\(494\) 248.296i 0.502623i
\(495\) 0 0
\(496\) 555.726 1.12041
\(497\) 432.855 749.727i 0.870936 1.50850i
\(498\) 0 0
\(499\) 37.8512 + 65.5602i 0.0758541 + 0.131383i 0.901457 0.432868i \(-0.142498\pi\)
−0.825603 + 0.564251i \(0.809165\pi\)
\(500\) 282.982 977.130i 0.565964 1.95426i
\(501\) 0 0
\(502\) −353.602 204.152i −0.704385 0.406677i
\(503\) 139.725 0.277784 0.138892 0.990308i \(-0.455646\pi\)
0.138892 + 0.990308i \(0.455646\pi\)
\(504\) 0 0
\(505\) −106.934 + 388.652i −0.211751 + 0.769607i
\(506\) 181.632 + 104.865i 0.358956 + 0.207243i
\(507\) 0 0
\(508\) −806.966 + 465.902i −1.58851 + 0.917129i
\(509\) 694.059 400.715i 1.36357 0.787259i 0.373475 0.927640i \(-0.378166\pi\)
0.990098 + 0.140381i \(0.0448327\pi\)
\(510\) 0 0
\(511\) 336.509 582.851i 0.658530 1.14061i
\(512\) −950.213 −1.85588
\(513\) 0 0
\(514\) −534.322 −1.03954
\(515\) 126.329 + 128.033i 0.245300 + 0.248608i
\(516\) 0 0
\(517\) 695.095 401.313i 1.34448 0.776234i
\(518\) 325.733 + 564.186i 0.628828 + 1.08916i
\(519\) 0 0
\(520\) 227.886 + 230.960i 0.438243 + 0.444153i
\(521\) 472.323i 0.906570i −0.891366 0.453285i \(-0.850252\pi\)
0.891366 0.453285i \(-0.149748\pi\)
\(522\) 0 0
\(523\) 843.303i 1.61243i 0.591620 + 0.806217i \(0.298489\pi\)
−0.591620 + 0.806217i \(0.701511\pi\)
\(524\) 1205.94 + 696.252i 2.30142 + 1.32873i
\(525\) 0 0
\(526\) 459.008 + 795.025i 0.872639 + 1.51145i
\(527\) 144.695 + 250.619i 0.274563 + 0.475557i
\(528\) 0 0
\(529\) 255.499 442.537i 0.482985 0.836554i
\(530\) −300.377 82.6461i −0.566749 0.155936i
\(531\) 0 0
\(532\) 1646.39i 3.09472i
\(533\) −100.480 + 174.036i −0.188518 + 0.326522i
\(534\) 0 0
\(535\) −27.3445 104.856i −0.0511113 0.195992i
\(536\) −632.586 + 365.224i −1.18020 + 0.681388i
\(537\) 0 0
\(538\) 31.4452 + 18.1549i 0.0584484 + 0.0337452i
\(539\) 1620.76i 3.00698i
\(540\) 0 0
\(541\) 797.318 1.47379 0.736893 0.676010i \(-0.236292\pi\)
0.736893 + 0.676010i \(0.236292\pi\)
\(542\) −873.770 + 1513.41i −1.61212 + 2.79228i
\(543\) 0 0
\(544\) 18.0431 + 31.2515i 0.0331674 + 0.0574477i
\(545\) 1.37802 + 5.28417i 0.00252848 + 0.00969572i
\(546\) 0 0
\(547\) 764.052 + 441.126i 1.39680 + 0.806446i 0.994057 0.108865i \(-0.0347216\pi\)
0.402748 + 0.915311i \(0.368055\pi\)
\(548\) 296.401 0.540877
\(549\) 0 0
\(550\) −632.164 + 1061.83i −1.14939 + 1.93060i
\(551\) 363.740 + 210.005i 0.660145 + 0.381135i
\(552\) 0 0
\(553\) 607.407 350.687i 1.09839 0.634153i
\(554\) 1059.87 611.915i 1.91312 1.10454i
\(555\) 0 0
\(556\) −308.376 + 534.122i −0.554632 + 0.960652i
\(557\) −589.979 −1.05921 −0.529604 0.848245i \(-0.677659\pi\)
−0.529604 + 0.848245i \(0.677659\pi\)
\(558\) 0 0
\(559\) 294.278 0.526436
\(560\) 793.178 + 803.875i 1.41639 + 1.43549i
\(561\) 0 0
\(562\) −881.401 + 508.877i −1.56833 + 0.905476i
\(563\) −393.077 680.830i −0.698183 1.20929i −0.969096 0.246685i \(-0.920659\pi\)
0.270912 0.962604i \(-0.412675\pi\)
\(564\) 0 0
\(565\) 541.753 534.544i 0.958855 0.946096i
\(566\) 655.191i 1.15758i
\(567\) 0 0
\(568\) 976.922i 1.71993i
\(569\) −944.299 545.191i −1.65958 0.958157i −0.972910 0.231185i \(-0.925740\pi\)
−0.686667 0.726972i \(-0.740927\pi\)
\(570\) 0 0
\(571\) 1.34031 + 2.32148i 0.00234730 + 0.00406565i 0.867197 0.497966i \(-0.165919\pi\)
−0.864849 + 0.502031i \(0.832586\pi\)
\(572\) −259.846 450.066i −0.454276 0.786829i
\(573\) 0 0
\(574\) −993.730 + 1721.19i −1.73124 + 2.99859i
\(575\) −91.1431 54.2622i −0.158510 0.0943691i
\(576\) 0 0
\(577\) 802.089i 1.39010i −0.718960 0.695051i \(-0.755382\pi\)
0.718960 0.695051i \(-0.244618\pi\)
\(578\) 355.811 616.282i 0.615590 1.06623i
\(579\) 0 0
\(580\) 1044.43 272.370i 1.80074 0.469603i
\(581\) −28.2980 + 16.3379i −0.0487057 + 0.0281202i
\(582\) 0 0
\(583\) 219.742 + 126.868i 0.376917 + 0.217613i
\(584\) 759.476i 1.30047i
\(585\) 0 0
\(586\) −1079.93 −1.84289
\(587\) −554.555 + 960.517i −0.944727 + 1.63632i −0.188431 + 0.982086i \(0.560340\pi\)
−0.756296 + 0.654230i \(0.772993\pi\)
\(588\) 0 0
\(589\) 248.879 + 431.072i 0.422545 + 0.731870i
\(590\) −814.186 + 212.326i −1.37998 + 0.359875i
\(591\) 0 0
\(592\) 224.065 + 129.364i 0.378488 + 0.218520i
\(593\) −633.417 −1.06816 −0.534078 0.845435i \(-0.679341\pi\)
−0.534078 + 0.845435i \(0.679341\pi\)
\(594\) 0 0
\(595\) −156.008 + 567.009i −0.262198 + 0.952957i
\(596\) −1349.09 778.898i −2.26358 1.30688i
\(597\) 0 0
\(598\) 57.6195 33.2666i 0.0963537 0.0556298i
\(599\) 454.283 262.281i 0.758403 0.437864i −0.0703190 0.997525i \(-0.522402\pi\)
0.828722 + 0.559660i \(0.189068\pi\)
\(600\) 0 0
\(601\) −347.002 + 601.024i −0.577374 + 1.00004i 0.418406 + 0.908260i \(0.362589\pi\)
−0.995779 + 0.0917802i \(0.970744\pi\)
\(602\) 2910.36 4.83448
\(603\) 0 0
\(604\) 1946.98 3.22347
\(605\) 285.787 281.984i 0.472375 0.466089i
\(606\) 0 0
\(607\) −779.225 + 449.886i −1.28373 + 0.741163i −0.977528 0.210804i \(-0.932392\pi\)
−0.306203 + 0.951966i \(0.599059\pi\)
\(608\) 31.0346 + 53.7536i 0.0510438 + 0.0884104i
\(609\) 0 0
\(610\) 1134.23 1119.13i 1.85939 1.83465i
\(611\) 254.619i 0.416726i
\(612\) 0 0
\(613\) 966.059i 1.57595i −0.615706 0.787976i \(-0.711129\pi\)
0.615706 0.787976i \(-0.288871\pi\)
\(614\) 434.140 + 250.651i 0.707069 + 0.408226i
\(615\) 0 0
\(616\) −1306.74 2263.35i −2.12134 3.67427i
\(617\) −139.629 241.844i −0.226302 0.391967i 0.730407 0.683012i \(-0.239330\pi\)
−0.956709 + 0.291045i \(0.905997\pi\)
\(618\) 0 0
\(619\) 419.292 726.234i 0.677369 1.17324i −0.298401 0.954441i \(-0.596453\pi\)
0.975770 0.218797i \(-0.0702134\pi\)
\(620\) 1233.33 + 339.339i 1.98924 + 0.547322i
\(621\) 0 0
\(622\) 97.0765i 0.156071i
\(623\) 528.503 915.394i 0.848319 1.46933i
\(624\) 0 0
\(625\) 326.888 532.700i 0.523020 0.852320i
\(626\) −1261.09 + 728.092i −2.01453 + 1.16309i
\(627\) 0 0
\(628\) −1010.29 583.292i −1.60874 0.928809i
\(629\) 134.730i 0.214198i
\(630\) 0 0
\(631\) −544.887 −0.863529 −0.431764 0.901986i \(-0.642109\pi\)
−0.431764 + 0.901986i \(0.642109\pi\)
\(632\) 395.737 685.437i 0.626167 1.08455i
\(633\) 0 0
\(634\) −116.834 202.362i −0.184280 0.319183i
\(635\) −553.957 + 144.463i −0.872373 + 0.227500i
\(636\) 0 0
\(637\) −445.275 257.080i −0.699019 0.403579i
\(638\) −1311.18 −2.05514
\(639\) 0 0
\(640\) −1033.88 284.464i −1.61544 0.444475i
\(641\) −0.254013 0.146655i −0.000396276 0.000228790i 0.499802 0.866140i \(-0.333406\pi\)
−0.500198 + 0.865911i \(0.666739\pi\)
\(642\) 0 0
\(643\) 134.596 77.7089i 0.209325 0.120854i −0.391673 0.920105i \(-0.628103\pi\)
0.600997 + 0.799251i \(0.294770\pi\)
\(644\) 382.062 220.583i 0.593264 0.342521i
\(645\) 0 0
\(646\) −253.923 + 439.807i −0.393069 + 0.680816i
\(647\) −657.668 −1.01649 −0.508244 0.861213i \(-0.669705\pi\)
−0.508244 + 0.861213i \(0.669705\pi\)
\(648\) 0 0
\(649\) 685.301 1.05593
\(650\) 191.448 + 342.100i 0.294535 + 0.526307i
\(651\) 0 0
\(652\) 979.358 565.433i 1.50208 0.867228i
\(653\) 503.101 + 871.396i 0.770446 + 1.33445i 0.937319 + 0.348473i \(0.113300\pi\)
−0.166873 + 0.985978i \(0.553367\pi\)
\(654\) 0 0
\(655\) 600.886 + 608.990i 0.917383 + 0.929755i
\(656\) 789.314i 1.20322i
\(657\) 0 0
\(658\) 2518.14i 3.82697i
\(659\) −1083.60 625.615i −1.64431 0.949340i −0.979278 0.202522i \(-0.935086\pi\)
−0.665028 0.746818i \(-0.731581\pi\)
\(660\) 0 0
\(661\) 398.585 + 690.369i 0.603002 + 1.04443i 0.992364 + 0.123346i \(0.0393624\pi\)
−0.389361 + 0.921085i \(0.627304\pi\)
\(662\) 185.498 + 321.292i 0.280208 + 0.485335i
\(663\) 0 0
\(664\) −18.4367 + 31.9333i −0.0277661 + 0.0480923i
\(665\) −268.338 + 975.273i −0.403515 + 1.46658i
\(666\) 0 0
\(667\) 112.546i 0.168735i
\(668\) −836.533 + 1448.92i −1.25229 + 2.16904i
\(669\) 0 0
\(670\) −853.994 + 222.707i −1.27462 + 0.332399i
\(671\) −1123.90 + 648.882i −1.67496 + 0.967037i
\(672\) 0 0
\(673\) −1083.26 625.421i −1.60960 0.929303i −0.989459 0.144812i \(-0.953742\pi\)
−0.620141 0.784491i \(-0.712925\pi\)
\(674\) 1856.55i 2.75452i
\(675\) 0 0
\(676\) 1210.50 1.79068
\(677\) −302.147 + 523.335i −0.446303 + 0.773020i −0.998142 0.0609308i \(-0.980593\pi\)
0.551839 + 0.833951i \(0.313926\pi\)
\(678\) 0 0
\(679\) −408.203 707.029i −0.601183 1.04128i
\(680\) 167.462 + 642.150i 0.246268 + 0.944339i
\(681\) 0 0
\(682\) −1345.71 776.945i −1.97318 1.13922i
\(683\) −707.854 −1.03639 −0.518195 0.855263i \(-0.673396\pi\)
−0.518195 + 0.855263i \(0.673396\pi\)
\(684\) 0 0
\(685\) 175.579 + 48.3089i 0.256319 + 0.0705240i
\(686\) −2514.78 1451.91i −3.66587 2.11649i
\(687\) 0 0
\(688\) 1000.99 577.920i 1.45492 0.840000i
\(689\) 69.7095 40.2468i 0.101175 0.0584134i
\(690\) 0 0
\(691\) −243.104 + 421.069i −0.351815 + 0.609362i −0.986568 0.163354i \(-0.947769\pi\)
0.634752 + 0.772716i \(0.281102\pi\)
\(692\) 386.872 0.559063
\(693\) 0 0
\(694\) −9.44604 −0.0136110
\(695\) −269.726 + 266.137i −0.388095 + 0.382931i
\(696\) 0 0
\(697\) −355.961 + 205.514i −0.510705 + 0.294855i
\(698\) 346.403 + 599.987i 0.496279 + 0.859580i
\(699\) 0 0
\(700\) 1269.44 + 2268.38i 1.81349 + 3.24055i
\(701\) 646.017i 0.921564i −0.887513 0.460782i \(-0.847569\pi\)
0.887513 0.460782i \(-0.152431\pi\)
\(702\) 0 0
\(703\) 231.740i 0.329645i
\(704\) 701.045 + 404.748i 0.995802 + 0.574927i
\(705\) 0 0
\(706\) −437.504 757.780i −0.619695 1.07334i
\(707\) −515.008 892.020i −0.728441 1.26170i
\(708\) 0 0
\(709\) −319.634 + 553.622i −0.450823 + 0.780849i −0.998437 0.0558820i \(-0.982203\pi\)
0.547614 + 0.836731i \(0.315536\pi\)
\(710\) 313.128 1138.06i 0.441026 1.60291i
\(711\) 0 0
\(712\) 1192.79i 1.67527i
\(713\) 66.6896 115.510i 0.0935338 0.162005i
\(714\) 0 0
\(715\) −80.5707 308.957i −0.112686 0.432107i
\(716\) −876.044 + 505.784i −1.22352 + 0.706402i
\(717\) 0 0
\(718\) −949.943 548.450i −1.32304 0.763858i
\(719\) 1060.47i 1.47493i −0.675386 0.737465i \(-0.736023\pi\)
0.675386 0.737465i \(-0.263977\pi\)
\(720\) 0 0
\(721\) −459.606 −0.637456
\(722\) 192.107 332.739i 0.266076 0.460858i
\(723\) 0 0
\(724\) 49.1428 + 85.1178i 0.0678768 + 0.117566i
\(725\) 663.081 + 8.88306i 0.914595 + 0.0122525i
\(726\) 0 0
\(727\) 692.899 + 400.045i 0.953093 + 0.550269i 0.894040 0.447986i \(-0.147859\pi\)
0.0590528 + 0.998255i \(0.481192\pi\)
\(728\) −829.085 −1.13885
\(729\) 0 0
\(730\) 243.431 884.751i 0.333468 1.21199i
\(731\) 521.255 + 300.947i 0.713072 + 0.411692i
\(732\) 0 0
\(733\) −8.38843 + 4.84307i −0.0114440 + 0.00660718i −0.505711 0.862703i \(-0.668770\pi\)
0.494267 + 0.869310i \(0.335436\pi\)
\(734\) −680.061 + 392.633i −0.926514 + 0.534923i
\(735\) 0 0
\(736\) 8.31603 14.4038i 0.0112990 0.0195704i
\(737\) 718.807 0.975315
\(738\) 0 0
\(739\) −1107.89 −1.49918 −0.749590 0.661902i \(-0.769749\pi\)
−0.749590 + 0.661902i \(0.769749\pi\)
\(740\) 418.277 + 423.918i 0.565239 + 0.572862i
\(741\) 0 0
\(742\) 689.416 398.034i 0.929131 0.536434i
\(743\) 390.228 + 675.894i 0.525206 + 0.909683i 0.999569 + 0.0293537i \(0.00934491\pi\)
−0.474364 + 0.880329i \(0.657322\pi\)
\(744\) 0 0
\(745\) −672.212 681.278i −0.902298 0.914467i
\(746\) 1746.11i 2.34063i
\(747\) 0 0
\(748\) 1062.94i 1.42104i
\(749\) 239.799 + 138.448i 0.320158 + 0.184843i
\(750\) 0 0
\(751\) 36.6548 + 63.4880i 0.0488080 + 0.0845379i 0.889397 0.457135i \(-0.151124\pi\)
−0.840589 + 0.541673i \(0.817791\pi\)
\(752\) −500.036 866.088i −0.664942 1.15171i
\(753\) 0 0
\(754\) −207.975 + 360.223i −0.275828 + 0.477749i
\(755\) 1153.33 + 317.328i 1.52759 + 0.420302i
\(756\) 0 0
\(757\) 95.5082i 0.126167i −0.998008 0.0630834i \(-0.979907\pi\)
0.998008 0.0630834i \(-0.0200934\pi\)
\(758\) −5.87697 + 10.1792i −0.00775325 + 0.0134290i
\(759\) 0 0
\(760\) 288.040 + 1104.52i 0.378999 + 1.45331i
\(761\) 683.596 394.674i 0.898286 0.518626i 0.0216424 0.999766i \(-0.493110\pi\)
0.876644 + 0.481140i \(0.159777\pi\)
\(762\) 0 0
\(763\) −12.0846 6.97704i −0.0158383 0.00914422i
\(764\) 2325.22i 3.04348i
\(765\) 0 0
\(766\) 1446.07 1.88781
\(767\) 108.700 188.274i 0.141721 0.245468i
\(768\) 0 0
\(769\) 15.0251 + 26.0242i 0.0195385 + 0.0338416i 0.875629 0.482984i \(-0.160447\pi\)
−0.856091 + 0.516825i \(0.827114\pi\)
\(770\) −796.831 3055.53i −1.03485 3.96822i
\(771\) 0 0
\(772\) 2317.83 + 1338.20i 3.00237 + 1.73342i
\(773\) 1290.89 1.66998 0.834988 0.550269i \(-0.185475\pi\)
0.834988 + 0.550269i \(0.185475\pi\)
\(774\) 0 0
\(775\) 675.279 + 402.029i 0.871328 + 0.518747i
\(776\) −797.857 460.643i −1.02817 0.593612i
\(777\) 0 0
\(778\) 2228.86 1286.83i 2.86486 1.65403i
\(779\) −612.264 + 353.491i −0.785961 + 0.453775i
\(780\) 0 0
\(781\) −480.677 + 832.557i −0.615463 + 1.06601i
\(782\) 136.082 0.174018
\(783\) 0 0
\(784\) −2019.47 −2.57586
\(785\) −503.398 510.187i −0.641271 0.649920i
\(786\) 0 0
\(787\) 74.1557 42.8138i 0.0942258 0.0544013i −0.452147 0.891944i \(-0.649342\pi\)
0.546372 + 0.837542i \(0.316008\pi\)
\(788\) −367.502 636.532i −0.466373 0.807781i
\(789\) 0 0
\(790\) 680.714 671.656i 0.861663 0.850197i
\(791\) 1944.75i 2.45860i
\(792\) 0 0
\(793\) 411.693i 0.519159i
\(794\) 778.815 + 449.649i 0.980876 + 0.566309i
\(795\) 0 0
\(796\) −1.28510 2.22585i −0.00161444 0.00279630i
\(797\) 378.821 + 656.137i 0.475308 + 0.823258i 0.999600 0.0282806i \(-0.00900321\pi\)
−0.524292 + 0.851539i \(0.675670\pi\)
\(798\) 0 0
\(799\) 260.390 451.008i 0.325895 0.564466i
\(800\) 84.2057 + 50.1320i 0.105257 + 0.0626650i
\(801\) 0 0
\(802\) 1044.09i 1.30186i
\(803\) −373.687 + 647.244i −0.465363 + 0.806032i
\(804\) 0 0
\(805\) 262.274 68.3965i 0.325806 0.0849646i
\(806\) −426.903 + 246.473i −0.529656 + 0.305797i
\(807\) 0 0
\(808\) −1006.61 581.168i −1.24581 0.719267i
\(809\) 624.032i 0.771362i 0.922632 + 0.385681i \(0.126033\pi\)
−0.922632 + 0.385681i \(0.873967\pi\)
\(810\) 0 0
\(811\) 972.993 1.19974 0.599872 0.800096i \(-0.295218\pi\)
0.599872 + 0.800096i \(0.295218\pi\)
\(812\) −1379.03 + 2388.55i −1.69832 + 2.94157i
\(813\) 0 0
\(814\) −361.720 626.518i −0.444374 0.769678i
\(815\) 672.299 175.324i 0.824907 0.215122i
\(816\) 0 0
\(817\) 896.575 + 517.638i 1.09740 + 0.633583i
\(818\) −1914.04 −2.33990
\(819\) 0 0
\(820\) −481.974 + 1751.73i −0.587773 + 2.13626i
\(821\) 810.895 + 468.170i 0.987692 + 0.570244i 0.904584 0.426296i \(-0.140182\pi\)
0.0831083 + 0.996541i \(0.473515\pi\)
\(822\) 0 0
\(823\) −222.467 + 128.441i −0.270312 + 0.156065i −0.629030 0.777381i \(-0.716548\pi\)
0.358717 + 0.933446i \(0.383214\pi\)
\(824\) −449.163 + 259.324i −0.545100 + 0.314714i
\(825\) 0 0
\(826\) 1075.02 1862.00i 1.30148 2.25423i
\(827\) 13.1651 0.0159191 0.00795957 0.999968i \(-0.497466\pi\)
0.00795957 + 0.999968i \(0.497466\pi\)
\(828\) 0 0
\(829\) −1494.14 −1.80234 −0.901171 0.433464i \(-0.857291\pi\)
−0.901171 + 0.433464i \(0.857291\pi\)
\(830\) −31.7132 + 31.2912i −0.0382087 + 0.0377003i
\(831\) 0 0
\(832\) 222.395 128.400i 0.267301 0.154326i
\(833\) −525.812 910.733i −0.631227 1.09332i
\(834\) 0 0
\(835\) −731.689 + 721.952i −0.876274 + 0.864613i
\(836\) 1828.29i 2.18695i
\(837\) 0 0
\(838\) 864.004i 1.03103i
\(839\) 97.3526 + 56.2066i 0.116034 + 0.0669923i 0.556894 0.830584i \(-0.311993\pi\)
−0.440860 + 0.897576i \(0.645326\pi\)
\(840\) 0 0
\(841\) −68.6954 118.984i −0.0816830 0.141479i
\(842\) 568.500 + 984.671i 0.675178 + 1.16944i
\(843\) 0 0
\(844\) 1336.19 2314.36i 1.58317 2.74213i
\(845\) 717.064 + 197.294i 0.848597 + 0.233484i
\(846\) 0 0
\(847\) 1025.90i 1.21122i
\(848\) 158.078 273.799i 0.186413 0.322876i
\(849\) 0 0
\(850\) −10.7407 + 801.748i −0.0126362 + 0.943233i
\(851\) 53.7776 31.0485i 0.0631934 0.0364847i
\(852\) 0 0
\(853\) −54.0966 31.2327i −0.0634192 0.0366151i 0.467955 0.883752i \(-0.344991\pi\)
−0.531374 + 0.847137i \(0.678324\pi\)
\(854\) 4071.58i 4.76766i
\(855\) 0 0
\(856\) 312.467 0.365031
\(857\) 763.782 1322.91i 0.891228 1.54365i 0.0528232 0.998604i \(-0.483178\pi\)
0.838405 0.545048i \(-0.183489\pi\)
\(858\) 0 0
\(859\) 432.136 + 748.481i 0.503068 + 0.871340i 0.999994 + 0.00354649i \(0.00112888\pi\)
−0.496926 + 0.867793i \(0.665538\pi\)
\(860\) 2574.39 671.359i 2.99348 0.780649i
\(861\) 0 0
\(862\) −290.768 167.875i −0.337318 0.194751i
\(863\) 593.430 0.687636 0.343818 0.939036i \(-0.388280\pi\)
0.343818 + 0.939036i \(0.388280\pi\)
\(864\) 0 0
\(865\) 229.171 + 63.0544i 0.264938 + 0.0728952i
\(866\) 2027.87 + 1170.79i 2.34165 + 1.35195i
\(867\) 0 0
\(868\) −2830.70 + 1634.30i −3.26117 + 1.88284i
\(869\) −674.514 + 389.431i −0.776196 + 0.448137i
\(870\) 0 0
\(871\) 114.015 197.479i 0.130901 0.226727i
\(872\) −15.7467 −0.0180581
\(873\) 0 0
\(874\) 234.065 0.267809
\(875\) 382.267 + 1550.62i 0.436877 + 1.77214i
\(876\) 0 0
\(877\) −69.3714 + 40.0516i −0.0791008 + 0.0456689i −0.539029 0.842287i \(-0.681209\pi\)
0.459928 + 0.887956i \(0.347875\pi\)
\(878\) −180.738 313.047i −0.205851 0.356545i
\(879\) 0 0
\(880\) −880.808 892.687i −1.00092 1.01442i
\(881\) 612.391i 0.695109i 0.937660 + 0.347555i \(0.112988\pi\)
−0.937660 + 0.347555i \(0.887012\pi\)
\(882\) 0 0
\(883\) 1106.80i 1.25345i −0.779239 0.626727i \(-0.784394\pi\)
0.779239 0.626727i \(-0.215606\pi\)
\(884\) −292.023 168.600i −0.330343 0.190724i
\(885\) 0 0
\(886\) 396.755 + 687.199i 0.447804 + 0.775620i
\(887\) −370.500 641.725i −0.417700 0.723477i 0.578008 0.816031i \(-0.303830\pi\)
−0.995708 + 0.0925538i \(0.970497\pi\)
\(888\) 0 0
\(889\) 731.426 1266.87i 0.822752 1.42505i
\(890\) 382.320 1389.54i 0.429573 1.56128i
\(891\) 0 0
\(892\) 411.461i 0.461279i
\(893\) 447.878 775.748i 0.501543 0.868698i
\(894\) 0 0
\(895\) −601.377 + 156.829i −0.671930 + 0.175228i
\(896\) 2372.94 1370.02i 2.64837 1.52904i
\(897\) 0 0
\(898\) 1520.99 + 878.142i 1.69375 + 0.977887i
\(899\) 833.853i 0.927534i
\(900\) 0 0
\(901\) 164.636 0.182725
\(902\) 1103.52 1911.35i 1.22341 2.11901i
\(903\) 0 0
\(904\) 1097.29 + 1900.56i 1.21382 + 2.10239i
\(905\) 15.2377 + 58.4307i 0.0168373 + 0.0645643i
\(906\) 0 0
\(907\) −256.204 147.920i −0.282475 0.163087i 0.352069 0.935974i \(-0.385478\pi\)
−0.634543 + 0.772887i \(0.718812\pi\)
\(908\) 2449.72 2.69793
\(909\) 0 0
\(910\) −965.842 265.743i −1.06136 0.292025i
\(911\) −602.338 347.760i −0.661183 0.381734i 0.131544 0.991310i \(-0.458006\pi\)
−0.792728 + 0.609576i \(0.791340\pi\)
\(912\) 0 0
\(913\) 31.4244 18.1429i 0.0344188 0.0198717i
\(914\) 543.061 313.537i 0.594159 0.343038i
\(915\) 0 0
\(916\) −1137.02 + 1969.37i −1.24128 + 2.14997i
\(917\) −2186.11 −2.38399
\(918\) 0 0
\(919\) 60.1197 0.0654186 0.0327093 0.999465i \(-0.489586\pi\)
0.0327093 + 0.999465i \(0.489586\pi\)
\(920\) 217.723 214.826i 0.236655 0.233506i
\(921\) 0 0
\(922\) 1759.63 1015.92i 1.90849 1.10187i
\(923\) 152.487 + 264.115i 0.165208 + 0.286148i
\(924\) 0 0
\(925\) 178.682 + 319.289i 0.193170 + 0.345178i
\(926\) 54.9654i 0.0593579i
\(927\) 0 0
\(928\) 103.979i 0.112047i
\(929\) 1236.02 + 713.617i 1.33049 + 0.768156i 0.985374 0.170405i \(-0.0545077\pi\)
0.345112 + 0.938562i \(0.387841\pi\)
\(930\) 0 0
\(931\) −904.412 1566.49i −0.971441 1.68259i
\(932\) 111.197 + 192.598i 0.119310 + 0.206651i
\(933\) 0 0
\(934\) −697.097 + 1207.41i −0.746356 + 1.29273i
\(935\) 173.243 629.653i 0.185287 0.673425i
\(936\) 0 0
\(937\) 174.346i 0.186068i 0.995663 + 0.0930341i \(0.0296566\pi\)
−0.995663 + 0.0930341i \(0.970343\pi\)
\(938\) 1127.59 1953.04i 1.20212 2.08213i
\(939\) 0 0
\(940\) −580.883 2227.45i −0.617960 2.36963i
\(941\) 397.871 229.711i 0.422818 0.244114i −0.273464 0.961882i \(-0.588170\pi\)
0.696282 + 0.717768i \(0.254836\pi\)
\(942\) 0 0
\(943\) 164.062 + 94.7212i 0.173979 + 0.100447i
\(944\) 853.885i 0.904540i
\(945\) 0 0
\(946\) −3231.90 −3.41638
\(947\) 426.988 739.564i 0.450884 0.780955i −0.547557 0.836769i \(-0.684442\pi\)
0.998441 + 0.0558137i \(0.0177753\pi\)
\(948\) 0 0
\(949\) 118.546 + 205.327i 0.124916 + 0.216362i
\(950\) −18.4744 + 1379.03i −0.0194467 + 1.45161i
\(951\) 0 0
\(952\) −1468.56 847.874i −1.54261 0.890624i
\(953\) −1103.28 −1.15769 −0.578843 0.815439i \(-0.696496\pi\)
−0.578843 + 0.815439i \(0.696496\pi\)
\(954\) 0 0
\(955\) 378.976 1377.39i 0.396834 1.44229i
\(956\) −124.913 72.1183i −0.130662 0.0754376i
\(957\) 0 0
\(958\) −489.239 + 282.462i −0.510688 + 0.294846i
\(959\) −402.982 + 232.662i −0.420211 + 0.242609i
\(960\) 0 0
\(961\) −13.6034 + 23.5618i −0.0141555 + 0.0245180i
\(962\) −229.499 −0.238565
\(963\) 0 0
\(964\) 1659.33 1.72130
\(965\) 1154.91 + 1170.48i 1.19679 + 1.21293i
\(966\) 0 0
\(967\) −886.133 + 511.609i −0.916373 + 0.529068i −0.882476 0.470357i \(-0.844125\pi\)
−0.0338972 + 0.999425i \(0.510792\pi\)
\(968\) 578.845 + 1002.59i 0.597981 + 1.03573i
\(969\) 0 0
\(970\) −781.815 792.359i −0.805995 0.816864i
\(971\) 589.306i 0.606906i 0.952846 + 0.303453i \(0.0981395\pi\)
−0.952846 + 0.303453i \(0.901860\pi\)
\(972\) 0 0
\(973\) 968.247i 0.995115i
\(974\) −989.868 571.500i −1.01629 0.586756i
\(975\) 0 0
\(976\) 808.507 + 1400.38i 0.828389 + 1.43481i
\(977\) −378.616 655.783i −0.387530 0.671221i 0.604587 0.796539i \(-0.293338\pi\)
−0.992117 + 0.125318i \(0.960005\pi\)
\(978\) 0 0
\(979\) −586.892 + 1016.53i −0.599481 + 1.03833i
\(980\) −4481.84 1233.14i −4.57331 1.25830i
\(981\) 0 0
\(982\) 137.444i 0.139963i
\(983\) −701.951 + 1215.82i −0.714091 + 1.23684i 0.249218 + 0.968447i \(0.419826\pi\)
−0.963309 + 0.268394i \(0.913507\pi\)
\(984\) 0 0
\(985\) −113.952 436.959i −0.115687 0.443614i
\(986\) −736.772 + 425.376i −0.747234 + 0.431416i
\(987\) 0 0
\(988\) −502.288 289.996i −0.508389 0.293519i
\(989\) 277.412i 0.280498i
\(990\) 0 0
\(991\) 1778.87 1.79502 0.897512 0.440990i \(-0.145373\pi\)
0.897512 + 0.440990i \(0.145373\pi\)
\(992\) −61.6135 + 106.718i −0.0621104 + 0.107578i
\(993\) 0 0
\(994\) 1508.07 + 2612.05i 1.51717 + 2.62782i
\(995\) −0.398471 1.52798i −0.000400473 0.00153566i
\(996\) 0 0
\(997\) −1207.19 696.970i −1.21082 0.699067i −0.247882 0.968790i \(-0.579735\pi\)
−0.962938 + 0.269723i \(0.913068\pi\)
\(998\) −263.747 −0.264276
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 405.3.h.k.269.4 48
3.2 odd 2 inner 405.3.h.k.269.21 48
5.4 even 2 inner 405.3.h.k.269.22 48
9.2 odd 6 405.3.d.b.404.3 24
9.4 even 3 inner 405.3.h.k.134.3 48
9.5 odd 6 inner 405.3.h.k.134.22 48
9.7 even 3 405.3.d.b.404.22 yes 24
15.14 odd 2 inner 405.3.h.k.269.3 48
45.4 even 6 inner 405.3.h.k.134.21 48
45.14 odd 6 inner 405.3.h.k.134.4 48
45.29 odd 6 405.3.d.b.404.21 yes 24
45.34 even 6 405.3.d.b.404.4 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
405.3.d.b.404.3 24 9.2 odd 6
405.3.d.b.404.4 yes 24 45.34 even 6
405.3.d.b.404.21 yes 24 45.29 odd 6
405.3.d.b.404.22 yes 24 9.7 even 3
405.3.h.k.134.3 48 9.4 even 3 inner
405.3.h.k.134.4 48 45.14 odd 6 inner
405.3.h.k.134.21 48 45.4 even 6 inner
405.3.h.k.134.22 48 9.5 odd 6 inner
405.3.h.k.269.3 48 15.14 odd 2 inner
405.3.h.k.269.4 48 1.1 even 1 trivial
405.3.h.k.269.21 48 3.2 odd 2 inner
405.3.h.k.269.22 48 5.4 even 2 inner